王一茹,唐 杰
解放軍總醫(yī)院 超聲科,北京 100853
前列腺癌上皮-間質轉化研究進展
王一茹,唐 杰
解放軍總醫(yī)院 超聲科,北京 100853
上皮-間質轉化是上皮細胞向間質細胞轉變的過程,其與腫瘤侵襲、轉移等惡性行為密切相關,近年受到廣泛關注。前列腺癌是老年男性發(fā)病率較高的腫瘤,上皮-間質轉化在前列腺癌轉移過程中具有重要作用。本文對前列腺癌上皮-間質轉化研究進展作一綜述,為深入了解前列腺癌轉移機制及防治提供思路。
前列腺;腫瘤;轉移;上皮間質轉化
前列腺癌(prostate cancer,PCa)是危及中老年男性生命的惡性腫瘤。由于環(huán)境污染、飲食結構西方化、人口老齡化、前列腺抗原(prostate specific antigen,PSA)篩查和前列腺穿刺活檢的推廣普及等因素,我國前列腺癌的發(fā)病率明顯上升。據(jù)2012中國腫瘤登記年報統(tǒng)計數(shù)據(jù),前列腺癌是我國男性發(fā)病排名第6位的惡性腫瘤,其發(fā)病率為9.92/100 000,死亡率為4.34/100 000。前列腺癌患者死亡往往是由于腫瘤轉移導致的[1]。腫瘤轉移是惡性腫瘤的行為特征,其發(fā)生進展機制極為復雜。上皮-間質轉化(epithelial-mesenchymal transitions,EMT)使上皮源性的腫瘤細胞獲得遷移、侵襲能力,在腫瘤轉移中具有重要作用[2]。本文將對近幾年的前列腺癌EMT相關研究,尤其在臨床樣本中的研究進展作一綜述。
上皮-間質轉化的概念提出于20世紀80年代[3],是指上皮細胞在一定條件下轉化成間質細胞的過程,使之具有更強的遷移、侵襲及抗凋亡能力[4],并以上皮表型的缺失和間質表型的獲得為主要特征。根據(jù)不同的生物學環(huán)境,EMT分為3個類型:Ⅰ型是指在移植、胚胎發(fā)生和器官發(fā)育過程中的EMT;Ⅱ型是與組織再生和器官纖維化相關的EMT;Ⅲ型是與腫瘤進展和轉移相關的EMT[5]。無論是何種類型的EMT,其關鍵事件主要包括[2]:上皮細胞間連接的分解;頂端-基底極性的消失;細胞形態(tài)中細胞骨架結構的重組和改變;上皮相關基因表達水平的下調和間質表型相關基因的激活;細胞偽足和運動能力的增加;降解細胞外基質蛋白促使侵襲。此外,經歷了EMT的細胞還能夠抵抗衰老和凋亡。
腫瘤轉移是惡性腫瘤的重要生物學特征,癌細胞的侵襲性和轉移能力是導致腫瘤患者復發(fā)、惡化的病理基礎。腫瘤的侵襲、轉移過程是多因素參與、動態(tài)變化的復雜過程[6]。上皮源性的惡性腫瘤發(fā)生EMT能夠使腫瘤細胞擺脫細胞-細胞間連接而更具侵襲性,因此在腫瘤的侵襲和轉移過程中起著重要作用。對于前列腺癌臨床樣本中EMT發(fā)生、發(fā)展相關機制及其與腫瘤預后相關的研究,目前已取得了一定進展。
有些學者通過檢測臨床樣本中EMT標記物即EMT相關基因的表達,分析其與前列腺癌分級、分期、轉移及術后復發(fā)等惡性行為的相關性。Tomita等[7]對83例原位前列腺癌樣本進行檢測,發(fā)現(xiàn)上皮細胞標記物E-cadherin表達與間質細胞標記物N-黏鈣蛋白(N-cadheirn)表達呈負相關;Zhang等[8]在267例前列腺癌組織中發(fā)現(xiàn),波形蛋白(vimentin)的高表達與短期內的生化復發(fā)具有相關性,但與Gleason評分無相關性;Lang等[9]在54例前列腺癌樣本及8例發(fā)生骨轉移的樣本中發(fā)現(xiàn),Vimentin的陽性表達與骨轉移及腫瘤低分化相關;Jaggi等[10]在44例根治術的前列腺癌組織中發(fā)現(xiàn),N-cadherin表達增加與Gleason評分密切相關。上述研究在前列腺癌原發(fā)灶、轉移灶等多種臨床樣本中檢測到EMT相關基因的表達,并認為上皮細胞標記物E-cadherin等表達與前列腺癌預后呈正相關,間質細胞標記物N-cadheirn、Vimentin等表達則與前列腺癌預后呈負相關。
近年文獻報道了一些新的參與EMT的基因表達、信號通路及相關蛋白,在臨床樣本中得到了證實。Ju等[11]研究發(fā)現(xiàn),細胞周期蛋白Cyclin D1能夠通過抑制轉化生長因子-β(transforming growth factor beta,TGF-β)、Snail和Twist而對前列腺癌患者的預后具有一定提示作用;Zhang等[8]通過對287例行前列腺癌根治術患者的癌組織進行分析并經過7年的隨訪認為,NF-κB調節(jié)的EMT能夠預測前列腺癌的生物復發(fā)。這些參與EMT的基因在前列腺癌組織中的表達得到證實,使EMT發(fā)生機制的研究更加深入,也提供了治療的新靶點。
然而,也有一部分文獻研究并未得出臨床樣本中EMT相關基因表達與前列腺癌轉移具有相關性的結論。Sethi等[12]報道在10例前列腺癌根治術的樣本中,E-cadherin的下降與骨轉移的發(fā)生沒有顯著的相關性;Vimentin在原發(fā)腫瘤和轉移癌的表達沒有顯著統(tǒng)計學差異。這些研究結論的不一致,可能是以下幾個原因導致[13]:研究尚缺乏明確的標記物,缺乏縱向評估的病例,病理組織較難全面反應標記物表達的情況。
研究表明,一些轉錄因子能夠抑制上皮細胞E-cadherin的表達,直接參與EMT過程。這些轉錄因子中較為經典的有Snail、ZEB和Twist家族:Beach等[14]在前列腺癌細胞系中證實,Snail能夠直接結合于E-cadherin的E-boxes區(qū)抑制轉錄;Drake等[15]發(fā)現(xiàn),在前列腺癌細胞中沉默ZEB1能夠上調E-cadherin的表達而抑制EMT的發(fā)生;Wallerand等[16]在轉移的膀胱癌和前列腺癌中發(fā)現(xiàn),Twist識別并結合于E-cadherin的E-box區(qū)使其沉默;Cho等[17]認為,TGF-β1誘導的STAT3磷酸化和HIF-1的表達通過與Twist1的啟動子相結合,使Twist1表達上調,從而促進前列腺癌的浸潤。除了在前列腺癌細胞系上進行的機制研究外,這些經典的轉錄因子在前列腺癌組織中的表達也得到了驗證。Graham等[18]對前列腺癌和良性前列腺組織進行了組織芯片的研究,發(fā)現(xiàn)ZEB1表達與Gleason評分相關,并在正常前列腺組織中表達缺失;Kwok等[19]對46例前列腺癌和45例良性前列腺增生組織的研究發(fā)現(xiàn),Twist在癌組織中較良性前列腺增生組織高表達,在Gleason評分≥7的組織中高表達,尤其在骨和淋巴結轉移灶高表達;Bethnsawy等[20]對197例行前列腺癌根治術患者的局部前列腺癌組織中13個EMT相關基因進行了免疫組化染色分析,其中E-cadherin、Snail、Twist和Vimentin的表達與前列腺癌患者的預后密切相關。
近期研究發(fā)現(xiàn)了一些新的參與EMT的轉錄因子,Wang等[21]SOX(sry-related high mobility group box)家族成員SOX4 (sex-determining region Y-box 4)在前列腺癌細胞中與ERG共同參與EMT的過程;并對241例前列腺癌組織芯片進行分析,認為SOX4在前列腺癌進展中具有重要作用并能夠作為預測前列腺癌患者預后的標記物[22];Katoh等[23]關于FOX(Forkhead box)家族的綜述中指出FoxC2、FoxM1、FoxF1和FoxO1等通過直接參與TGF-β通路或間接調節(jié)ZEB轉錄因子而參與了EMT的過程;我們的前期研究也發(fā)現(xiàn),F(xiàn)oxM1能夠作用于Snail2而參與前列腺癌EMT的過程[24]。
大小為20 ~ 25個核苷酸并具有調控功能的非編碼RNA-微小RNA(microRNA,miRNA)能夠選擇性地結合于mRNA,抑制其轉錄或促進其降解而抑制基因表達。研究表明,miRNA能調節(jié)EMT的多個信號通路及EMT相關轉錄因子。目前對于EMT相關miRNA研究最多的是miR-200家族(miR-200a、miR-200b、miR-200c、miR-141和miR-429),它們通過作用于ZEB1和ZEB2參與調節(jié)EMT[25]。
近年在前列腺癌組織中的研究發(fā)現(xiàn)了一些與EMT相關的miRNA,在前列腺癌的轉移和預后中發(fā)揮了重要作用。Josson等[26]發(fā)現(xiàn)miR-409-3p/-5p在發(fā)生骨轉移和高Gleason評分的前列腺癌組織中表達增加;Wang等[27]研究認為,miR-100在前列腺癌組織中較正常組織下調,在骨轉移灶中表達較原發(fā)灶明顯降低,其與腫瘤EMT呈負相關,而miR-100的缺失能夠通過AGO2蛋白(argonaute 2,AGO2)表達上調而促進前列腺癌的轉移,證實miR-100/AGO2在調節(jié)前列腺癌轉移中具有重要作用;Kim等[28]證實miR-200c靶基因的表達模式能夠預測臨床前列腺癌樣本中成紅細胞病毒E26致癌物(erythroblastosis virus E26 oncogen,ERG)的狀態(tài),并認為miR-200c在調控由ERG上調的ZEB1中有重要作用,miR-200c重構能夠逆轉ERG誘導的EMT;Tucci等[29]在218例人前列腺癌轉移組織或轉移淋巴結中發(fā)現(xiàn),p63/miR-205軸缺失,證實其能夠成為前列腺癌轉移行為的提示指標;Peng等[30]對比分析原位前列腺癌組織和骨轉移灶組織的miRNA,證實miR-143和miR-145在骨轉移灶中下調;Majid等[31]研究認為,表達miR-23b能夠抑制EMT引起的Vimentin和Snail的下調,增加上皮標記物E-cadherin的表達,與前列腺癌患者無復發(fā)存活率(recurrence-free survival,RFS)呈正相關。
近年對于另一種具有調控功能的長鏈非編碼RNA—lncRNA的研究不斷升溫。lncRNA是指>200個核苷酸的非編碼RNA,與其他非編碼RNA比較具有類型多、作用模式多和數(shù)量多的特點。近期研究發(fā)現(xiàn),lncRNA參與了許多腫瘤的發(fā)生及發(fā)展,對EMT的過程也有重要的調控作用:Gupta等[32]研究發(fā)現(xiàn),lncRNA HOTAIR(HOX antisense intergenic RNA)能夠重建乳腺癌上皮細胞基因表達的模式,以增加腫瘤的侵襲性和轉移性;Hu等[33]通過建立人乳腺上皮細胞MCF10A/Twist細胞模型,采用芯片的方式篩選Twist誘導的EMT過程中調節(jié)或激活WNT信號通路的lncRNA;Zhao等[34]發(fā)現(xiàn),胃癌中HULC的高表達與淋巴結轉移、遠處轉移及腫瘤進展、分級相關,使HULC沉默能夠有效逆轉EMT;Xu等[35]研究認為,HOTAIR的表達水平在胃癌組織與淋巴結轉移、TNM分期顯著相關,活體研究結果表明,HOTAIR能夠通過調節(jié)Snail促進EMT。前列腺癌EMT相關lncRNA的研究尚未見報道,考慮到lncRNA將成為繼miRNA之后又一具有重要功能的非編碼RNA,可能極具研究價值。
越來越多的研究證實,在發(fā)生轉移的腫瘤患者中常常存在循環(huán)腫瘤細胞(circulating tumor cells,CTCs),這成為腫瘤轉移EMT發(fā)生后續(xù)過程中新的研究方向,并將成為研究腫瘤轉移過程及提示臨床預后的新方法[36]。Aceto等[37]研究發(fā)現(xiàn),乳腺癌患者血液中如果有在腫瘤原位形成的循環(huán)腫瘤細胞群(CTC clusters),與單個的CTCs相比具有23 ~50倍轉移風險;Chen等[38]分離出前列腺癌患者外周血的CTCs并對其進行研究,發(fā)現(xiàn)與非腫瘤細胞相比,CTCs細胞彈性和膜的平滑度增加,其侵襲性和活動能力也增強,除表達促進間質轉化的基因IGF1、IGF2、EGFR、FOXP3和TGFB3外,在去勢抵抗的腫瘤樣本中還檢測到一些EMT相關基因(PTPRN2,ALDH1,ESR2和WNT5A)的表達;Armstrong等[39]證實,在已發(fā)生轉移的去勢抵抗前列腺癌患者中,>80%的CTCs共表達上皮細胞蛋白(EpCAM、CK和E-cadherin)和間質細胞蛋白(Vimentin、N-cadherin和O-cadherin)。研究CTCs的首要任務是將其從血液中準確捕捉并快速分離出來。目前分離CTCs的方法依賴于CTCs的物理特性、表面標記物或者某些功能特征,報道較多的是微流體CTC分離技術。而分離技術的改進將為檢測血液中少量的CTCs提供極大幫助。對血液中CTCs的檢測、追蹤及干預,有望成為控制和治療前列腺癌轉移的有效方法。
EMT在前列腺癌轉移中具有重要的作用,在此過程中給予干預是治療侵襲性前列腺癌的理想方法。Reka等[40]和Chua等[41]研究認為,雷帕霉素和17-AGG能夠抑制TGF-β通路而成為EMT的抑制劑,ALK5、MEK和SRC能夠通過EGF、HGF及IGF-1等誘導因素抑制EMT。另有一些化合物經研究證實能夠參與抑制或逆轉前列腺癌的EMT:Bhat等[42]研究發(fā)現(xiàn)槲皮黃酮可以通過EGFR/PI3K/Akt通路逆轉前列腺癌細胞EMT過程;Ha等[43]研究發(fā)現(xiàn),MMP-9能夠調節(jié)茴香腦的抗轉移活性抑制前列腺癌細胞EMT過程;Wu等[44]研究認為,水飛薊賓能夠上調Cytokeratin-18、下調Vimentin并抑制ZEB1和SLUG等轉錄因子而逆轉前列腺癌細胞系EMT。目前以EMT作為治療靶點的研究多處于臨床前的基礎研究。針對腫瘤EMT的治療方法,目前除了靶向發(fā)生EMT的細胞進行治療外,抑制EMT誘發(fā)因素、抑制參與EMT的轉錄因子和miRNA也有一定的治療作用。
上皮-間質轉化是腫瘤轉移機制中不可或缺的重要組成部分,其發(fā)生、發(fā)展是一個多因素參與的復雜生物學過程。只有充分認識EMT發(fā)生的分子機制,對EMT誘發(fā)因素、信號通路進行阻斷,調控EMT關鍵分子和核心轉錄因子,并在RNA水平予以調節(jié),才能阻滯或逆轉EMT的發(fā)生,并有望成為前列腺癌轉移早期診斷和防治的有效方法。
1 Bubendorf L, Sch?pfer A, Wagner U, et al. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients[J]. Hum Pathol, 2000, 31(5): 578-583.
2 Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelialmesenchymal transition[J]. Nat Rev Mol Cell Biol, 2014, 15(3):178-196.
3 Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells[J]. J Cell Biol, 1982, 95(1):333-339.
4 Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis[J]. J Clin Invest, 2003, 112(12):1776-1784.
5 Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition[J]. J Clin Invest, 2009, 119(6): 1420-1428.
6 Tsai JH, Yang J. Epithelial-mesenchymal plasticity in carcinoma metastasis[J]. Genes Dev, 2013, 27(20): 2192-2206.
7 Tomita K, Van Bokhoven A, Van Leenders GJ, et al. Cadherin switching in human prostate cancer progression[J]. Cancer Res,2000, 60(13): 3650-3654.
8 Zhang Q, Helfand BT, Jang TL, et al. Nuclear factor-kappaB-mediated transforming growth factor-beta-induced expression of vimentin is an Independent predictor of biochemical recurrence after radical prostatectomy[J]. Clin Cancer Res, 2009, 15(10):3557-3567.
9 Lang SH, Hyde C, Reid IN, et al. Enhanced expression of vimentin in motile prostate cell lines and in poorly differentiated and metastatic prostate carcinoma[J]. Prostate, 2002, 52(4): 253-263.
10 Jaggi M, Nazemi T, Abrahams NA, et al. N-cadherin switching occurs in high Gleason grade prostate cancer[J]. Prostate, 2006,66(2): 193-199.
11 Ju X, Casimiro MC, Gormley M, et al. Identification of a cyclin D1 network in prostate cancer that antagonizes epithelial-mesenchymal restraint[J]. Cancer Res, 2014, 74(2): 508-519.
12 Sethi S, Macoska J, Chen W, et al. Molecular signature of epithelialmesenchymal transition (EMT) in human prostate cancer bone metastasis[J]. Am J Transl Res, 2010, 3(1): 90-99.
13 Nauseef JT, Henry MD. Epithelial-to-mesenchymal transition in prostate cancer: paradigm or puzzle?[J]. Nat Rev Urol, 2011, 8(8):428-439.
14 Beach S, Tang H, Park S, et al. Snail is a repressor of RKIP transcription in metastatic prostate cancer cells[J]. Oncogene,2008, 27(15): 2243-2248.
15 Drake JM, Strohbehn G, Bair TB, et al. ZEB1 enhances transendothelial migration and represses the epithelial phenotype of prostate cancer cells[J]. Mol Biol Cell, 2009, 20(8): 2207-2217.
16 Wallerand H, Robert G, Pasticier G, et al. The epithelialmesenchymal transition-inducing factor TWIST is an attractive target in advanced and/or metastatic bladder and prostate cancers[J]. Urol Oncol, 2010, 28(5): 473-479.
17 Cho KH, Jeong KJ, Shin SC, et al. STAT3 mediates TGF-β1-induced TWIST1 expression and prostate cancer invasion[J]. Cancer Lett, 2013, 336(1): 167-173.
18 Graham TR, Zhau HE, Odero-Marah VA, et al. Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-tomesenchymal transition in human prostate cancer cells[J]. Cancer Res, 2008, 68(7): 2479-2488.
19 Kwok WK, Ling MT, Lee TW, et al. Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target[J]. Cancer Res, 2005, 65(12): 5153-5162.
20 Behnsawy HM, Miyake H, Harada K, et al. Expression patterns of epithelial-mesenchymal transition markers in localized prostate cancer: significance in clinicopathological outcomes following radical prostatectomy[J]. BJU Int, 2013, 111(1): 30-37.
21 Wang L, Li Y, Yang X, et al. ERG-SOX4 interaction promotes epithelial-mesenchymal transition in prostate cancer cells[J]. Prostate, 2014, 74(6): 647-658.
22 Wang L, Zhang J, Yang X, et al. SOX4 is associated with poor prognosis in prostate cancer and promotes epithelial-mesenchymal transition in vitro[J]. Prostate Cancer Prostatic Dis, 2013, 16(4):301-307.
23 Katoh M, Igarashi M, Fukuda H, et al. Cancer genetics and genomics of human Fox family genes[J]. Cancer Lett, 2013, 328(2):198-206.
24 Wang Y, Yao B, Wang Y, et al. Increased FoxM1 expression is a target for metformin in the suppression of EMT in prostate cancer[J]. Int J Mol Med, 2014, 33(6): 1514-1522.
25 Lester RD, Jo M, Montel V, et al. uPAR induces epithelialmesenchymal transition in hypoxic breast cancer cells[J]. J Cell Biol, 2007, 178(3): 425-436.
26 Josson S, Gururajan M, Hu P, et al. miR-409-3p/-5p promotes tumorigenesis, Epithelial-to-Mesenchymal transition, and bone metastasis of human prostate cancer[J]. Clin Cancer Res, 2014,20(17): 4636-4646.
27 Wang M, Ren D, Guo W, et al. Loss of miR-100 enhances migration, invasion, epithelial-mesenchymal transition and stemness properties in prostate cancer cells through targeting Argonaute 2[J]. Int J Oncol, 2014, 45(1): 362-372.
28 Kim J, Wu L, Zhao JC, et al. TMPRSS2-ERG gene fusions induce prostate tumorigenesis by modulating microRNA miR-200c[J/OL]. http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2013461a. html
29 Tucci P, Agostini M, Grespi F, et al. Loss of p63 and its microRNA-205 target results in enhanced cell migration and metastasis in prostate cancer[J]. Proc Natl Acad Sci U S A, 2012, 109(38):15312-15317.
30 Peng X, Guo W, Liu T, et al. Identification of miRs-143 and -145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT[J]. PLoS One, 2011, 6(5):e20341.
31 Majid S, Dar AA, Saini S, et al. miR-23b represses proto-oncogene Src kinase and functions as methylation-silenced tumor suppressor with diagnostic and prognostic significance in prostate cancer[J]. Cancer Res, 2012, 72(24): 6435-6446.
32 Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis [J]. Nature, 2010, 464(7291): 1071-1076.
33 Hu P, Yang J, Hou Y, et al. LncRNA expression signatures of twistinduced epithelial-to-mesenchymal transition in MCF10A cells[J]. Cell Signal, 2014, 26(1): 83-93.
34 Zhao Y, Guo Q, Chen J, et al. Role of long non-coding RNA HULC in cell proliferation, apoptosis and tumor metastasis of gastric cancer: a clinical and in vitro investigation[J]. Oncol Rep, 2014,31(1): 358-364.
35 Xu ZY, Yu QM, Du YA, et al. Knockdown of long non-coding RNA HOTAIR suppresses tumor invasion and reverses epithelialmesenchymal transition in gastric cancer[J]. Int J Biol Sci, 2013,9(6): 587-597.
36 Pantel K, Alix-Panabières C. Circulating tumour cells in cancer patients: challenges and perspectives[J]. Trends Mol Med, 2010,16(9): 398-406.
37 Aceto N, Bardia A, Miyamoto DT, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis[J]. Cell, 2014, 158(5): 1110-1122.
38 Chen CL, Mahalingam D, Osmulski P, et al. Single-cell analysis of circulating tumor cells identifies cumulative expression patterns of EMT-related genes in metastatic prostate cancer[J]. Prostate,2013, 73(8): 813-826.
39 Armstrong AJ, Marengo MS, Oltean S, et al. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers[J]. Mol Cancer Res, 2011, 9(8): 997-1007.
40 Reka AK, Kuick R, Kurapati H, et al. Identifying inhibitors of epithelial-mesenchymal transition by connectivity map-based systems approach[J]. J Thorac Oncol, 2011, 6(11): 1784-1792.
41 Chua KN, Sim WJ, Racine V, et al. A cell-based small molecule screening method for identifying inhibitors of epithelial-mesenchymal transition in carcinoma[J]. PLoS One, 2012, 7(3): e33183.
42 Bhat FA, Sharmila G, Balakrishnan S, et al. Quercetin reverses EGF-induced epithelial to mesenchymal transition and invasiveness in prostate cancer (PC-3) cell line via EGFR/PI3K/Akt pathway[J/ OL]. http://linkinghub.elsevier.com/retrieve/pii/S0955-2863(14)00149-1
43 Ha B, Ko H, Kim B, et al. Regulation of crosstalk between epithelial to mesenchymal transition molecules and MMP-9 mediates the antimetastatic activity of anethole in DU145 prostate cancer cells[J]. J Nat Prod, 2014, 77(1): 63-69.
44 Wu K, Zeng J, Li L, et al. Silibinin reverses epithelial-tomesenchymal transition in metastatic prostate cancer cells by targeting transcription factors[J]. Oncol Rep, 2010, 23(6): 1545-1552.
Advances in epithelial-mesenchymal transition in prostate cancer
WANG Yiru, TANG Jie
Department of Ultrasonography, Chinese PLA General Hospital, Beijing 100853, China
TANG Jie. Email: txiner@vip.sina.com
Epithelial-mesenchymal transition (EMT) is a process in which the epithelial cells transform into mesenchymal cells. As it closely associates with the malignant behavior of tumor such as invasion and metastasis, it attracts widespread attention in recent years. Prostate cancer is a threat for elder men, and EMT plays an important role in prostate cancer metastasis. In this paper, the research progress of EMT in prostate cancer will be reviewed to expand thoughts of the mechanism, prevention and treatment of prostate cancer metastasis.
prostate; neoplasms; metastasis; epithelial-mesenchymal transition
R 445.1
A
2095-5227(2015)01-0097-04
10.3969/j.issn.2095-5227.2015.01.030
時間:2014-11-05 09:58
http://www.cnki.net/kcms/detail/11.3275.R.20141105.0958.001.html
2014-09-10
國家自然科學基金項目(81471682)
Supported by the National Natural Science Foundation of China(81471682)
王一茹,女,在讀博士,醫(yī)師。研究方向:超聲醫(yī)學。Email: wyr389006865@163.com
唐杰,男,主任醫(yī)師,教授,博士生導師。Email: txin er@vip.sina.com