楊 雪,余 莉,李允偉,李巖軍
(南京航空航天大學航空宇航學院,江蘇南京 210016)
環(huán)帆傘穩(wěn)降階段織物透氣性影響數(shù)值模擬
楊 雪*,余 莉,李允偉,李巖軍
(南京航空航天大學航空宇航學院,江蘇南京 210016)
為研究織物透氣性對降落傘氣動性能的影響,將織物的透氣性能用Ergun公式描述,建立了含織物透氣性能附加源項影響的新型流場動量控制方程,對上述方程進行了數(shù)值求解,并和無織物透氣性影響的傳統(tǒng)模型的數(shù)值結(jié)果進行了對比。數(shù)值結(jié)果表明,新型流場動量方程能夠得到織物透流速度,該速度明顯低于周圍有孔出流速度和繞流速度。傘衣尾部存在緊貼傘衣織物的第一尾渦區(qū)和尾部中心旋渦對組成的第二尾渦區(qū),織物透氣性使第一尾渦區(qū)變長,螺旋點增多,旋渦分布更均勻?qū)ΨQ,而第二尾渦區(qū)尺寸則變小,整個尾渦區(qū)變短變窄,提高了傘衣的穩(wěn)定性。其次,織物透氣性使傘衣內(nèi)側(cè)壓力有所降低,外側(cè)負壓有所升高,沿傘衣徑向壓差系數(shù)減小,阻力系數(shù)小于非透氣性傘衣,更接近空投試驗結(jié)果,該模型可以提高透氣性傘衣流場計算的準確性。
降落傘;數(shù)值模擬;湍流模型;織物透氣性;流場結(jié)構(gòu);尾渦流態(tài)
降落傘傘衣是一種微孔透氣材料,其織物透氣性對降落傘的氣動性能(如阻力系數(shù)、穩(wěn)定性、開傘性能等)有很大的影響,由于織物透氣性影響的流場模擬較為困難,風洞試驗是研究降落傘氣動性能和流場結(jié)構(gòu)的主要方法[1-2]。但由于降落傘傘衣一般面積很大,受風洞尺寸限制,模型傘小尺寸結(jié)構(gòu)(如微孔)的縮尺效應引起的誤差難以估計,因此風洞試驗往往只能適用于面積較小的傘衣,應用非常有限。
早期對于降落傘繞流流場的研究是基于勢流理論,Roberts在這方面做了較多工作,以此來確立傘衣面上的壓力分布[3]。由于降落傘繞流存在流動分離、旋渦生成和脫落,在勢流理論假設下,計算結(jié)果誤差很大??紤]到繞鈍體流動的流場特性,Mayer,F(xiàn)rucht,彭勇等人采用渦方法來計算傘形物的繞流問題[4-8],渦方法對于大尺度分離流動具有自適應性強、計算量小等優(yōu)點,但是由于渦的布置是人為近似確定的,這也導致計算結(jié)果的誤差比較大。近年來,隨著CFD技術(shù)的發(fā)展,采用基于網(wǎng)格的CFD技術(shù)來分析降落傘的氣動特性成為各國學者研究的熱點[9-14],該方法精度高,能精確地獲得流場細節(jié)結(jié)構(gòu),具有強大的生命力和廣泛的應用前景。
降落傘傘衣是一種柔性可拉伸織物微孔透氣結(jié)構(gòu),若采用常規(guī)的加密網(wǎng)格方式處理,不僅對計算機提出了更為苛刻的要求,同時會造成其它區(qū)域很大的計算浪費,造成非常大的計算誤差,甚至導致計算無法收斂,因此對織物透氣性的流場模擬被認為是降落傘流場計算的關鍵技術(shù)問題。Tezduyar[15]將環(huán)帆傘衣分為12個同心塊,對每一塊的織物透氣性采用幾何孔隙率均勻化建模(Homogenized Modeling of Geometric Porosity),較好的模擬了透氣傘衣的全局流場特性,但孔隙率參數(shù)較難測準,使局部流場結(jié)構(gòu)誤差較大。Han[16]對十字形傘衣采用透氣跳躍(porous jump)邊界條件來模擬織物透氣性,軸向力系數(shù)與實驗結(jié)果比較一致,但在傘衣處出現(xiàn)壓力階躍,無透流速度,與實際物理現(xiàn)象并不完全一致。Aquelet、Tamborra、Coquet[17-19]等對降落傘流固耦合過程的織物透氣性進行了模擬,將流體和固體的相對速度作為透過織物的氣流速度應用于Ergun公式中得到透過織物產(chǎn)生的壓降,以接觸力形式施加到傘衣織物上,阻力系數(shù)與實驗結(jié)果比較符合,但只對織物透氣性進行了力等效,沒有很好的模擬它對氣動性能的影響。
本文建立了新型的透氣織物流場動量方程,將整個流場計算域分成傘衣厚度區(qū)域(多孔織物區(qū))的流動和傘衣外的流動兩部分,在傘衣織物區(qū),將織物透氣性模型引入動量方程的源項來考慮傘衣織物的透氣性問題,數(shù)值結(jié)果較好的得到了傘衣的透流速度和繞透氣傘衣的流場結(jié)構(gòu),和傳統(tǒng)無透氣性影響流場模型相比,數(shù)值結(jié)果更為準確。
本項目采用的環(huán)帆傘共有24個傘衣幅,單個傘衣幅結(jié)構(gòu)如圖1所示,具體結(jié)構(gòu)尺寸見表1。
圖1 環(huán)帆傘傘衣幅Fig.1 A gore of the ringsail parachute
表1 環(huán)帆傘結(jié)構(gòu)尺寸(m)Table 1 The structure size of the ringsail parachute(unit:m)
傘衣的環(huán)片和帆片為兩種不同的材料,厚度分別為0.15 mm和0.1 mm。由于織物透氣性對氣動性能有重要的影響,本文計算時充分考慮了織物透氣性的影響。各傘衣織物的透氣性能可以采用Ergun公式描述[20]:
式中,a、b分別為描述織物透氣性的粘性系數(shù)和慣性系數(shù),e為傘衣厚度,vq為透過傘衣織物的氣流速度,Δp為傘衣織物的試驗壓差。經(jīng)過試驗測量,分別得到兩種織物材料的粘性系數(shù)a和慣性系數(shù)b:
環(huán)片:
α=1.3×106kg/(m3·s),b=6.47×105kg/m4
帆片:
α=1.89×106kg/(m3·s),b=1.17×106kg/m4
2.1 流場控制方程
環(huán)帆傘穩(wěn)降階段速度小,為不可壓流動,流場控制方程采用標準k-ε模型,其表達通式為:
μ、μt分別為流體動力粘度和湍流粘性系數(shù)。本文算例中,對應系數(shù)取值為:c1=1.44,c2= 1.92,cμ=0.09;湍動能k和耗散率ε的湍流普朗特數(shù)分別為:σk=1.0,σε=1.3。
2.2 織物透氣性模型
空氣透過傘衣微孔時,會存在壓力降低,織物透氣性能的好壞可用壓力損失大小來描述。因此,本文考慮壓力修正源項的方法來建立透氣織物的新型流場動量方程,整個流場計算域分成多孔織物域(傘衣區(qū))和自由域兩部分,在多孔織物透氣計算域,流場動量方程為:
式中,si為織物透氣性引起的附加單位源項,其表達式如下:
式(4)中,等式右邊分別為粘性損失項和慣性損失項。其中,α為滲透系數(shù);C2為內(nèi)部阻力因子[21]。
當織物經(jīng)緯向密度一致時,可認為多孔織物域透氣性能為各項同性,據(jù)公式(1)織物透氣性能的Ergun描述:。則沿i維方向的壓力梯度為,式中e為多孔介質(zhì)計算i維方向的
pori厚度(圖2),則織物透氣性能的三維源項表達為:
圖2 流場織物透氣域Fig.2 Permeability of fabric region in the flow field
3.1 數(shù)值建模
降落傘在最后的穩(wěn)定下降階段,外形變化很小,可以假設該階段形狀不變,據(jù)表1及空投圖像資料數(shù)據(jù)處理后建立該降落傘的數(shù)值模型,傘衣存在一定厚度(圖2),為三棱柱體網(wǎng)格,傘衣表面為三角形(圖3)。流場計算域如圖4所示(其中D0為傘衣名義直徑),其傘衣中心區(qū)域的流場網(wǎng)格如圖5所示。
圖3 降落傘模型Fig.3 Parachute model
圖4 流場計算域Fig.4 Computational domain of the flow field
3.2 求解方法
對透氣模擬整個流場計算域分成多孔織物域(傘衣區(qū))和自由域兩大計算區(qū)域,其動量控制方程分別為式(2)和式(3),非透氣模擬則將傘衣設置為無滑移壁面邊界條件,不添加動量方程源項。本文基于有限體積法對上述方程進行三維求解,為了加快計算速度,時間項采用了二階格式的隱式雙時間步離散求解方法[22],空間對流項應用二階迎風格式,粘性項則采用中心差分格式離散求解。
計算中定解條件如下設置:
初始條件:
計算域邊界條件:入口,v=vin;出口,;四周壁面,vb=vin。
圖5 傘衣對稱面的網(wǎng)格Fig.5 Grid in the symmetry plane of the canopy
4.1 流場結(jié)構(gòu)比較
圖6~圖7分別為傘衣中心對稱面流線圖和壓力云圖,結(jié)果表明:傘衣尾部存在緊貼傘衣織物的第一尾渦區(qū)和尾部中心旋渦對組成的第二尾渦區(qū),織物透氣性使第一尾渦區(qū)變長,螺旋點增多,旋渦分布更均勻?qū)ΨQ,而第二尾渦區(qū)尺寸則變小,整個尾渦區(qū)變短變窄,其寬度約縮小15%左右,長度減少25%左右。傘衣尾流壓力分布更均勻,提高了傘衣的穩(wěn)定性。
圖6 傘衣對稱面流線圖Fig.6 Streamline diagram in the symmetry plane of the canopy
圖7 傘衣對稱面壓力云圖Fig.7 Contours of pressure in the symmetry plane of the canopy
圖8 ~圖9分別為傘衣環(huán)片局部壓力云圖和速度矢量圖,結(jié)果表明:透氣模擬的織物面處壓力由內(nèi)側(cè)壓力逐漸過渡到外側(cè)壓力,傘衣外側(cè)壓力分布較非透氣模擬均勻,織物面處有明顯的流體穿過,其流速低于周圍有孔出流速度及自由來流速度,而非透氣模擬氣流均從結(jié)構(gòu)透氣孔處流出,表明本文采用的Ergun修正源項的動量方程模型可有效的模擬織物透氣性情況。
圖8 傘衣環(huán)片局部壓力云圖Fig.8 Contours of pressure around the ring
圖9 傘衣環(huán)片局部速度矢量圖Fig.9 Velocity vector diagram around the ring
4.2 氣動特性比較
本文對環(huán)帆傘穩(wěn)降階段進行了透氣模擬和非透氣模擬,其阻力系數(shù)分別為0.733和0.79,空投試驗的平均阻力系數(shù)為0.731,兩種模型阻力系數(shù)誤差分別為0.27%和8%,可見本文建立的透氣性流場模型使流場計算準確性大為提高。
圖10~圖11為傘衣沿子午線(無量綱量)上內(nèi)外壓力分布和壓差系數(shù),結(jié)果表明:透氣性模型傘衣內(nèi)側(cè)壓力低于或等于非透氣模型,除第一環(huán)和第一帆外,外側(cè)壓力均大于非透氣模型,可見透氣性的存在使傘衣面存在透流速度(速度并不為0),該速度導致傘衣內(nèi)側(cè)正壓減小,傘衣外側(cè)負壓降低,造成透氣性模型壓差系數(shù)小于非透氣性模型,該結(jié)果也與工程經(jīng)驗一致。
圖10 傘衣沿子午線上內(nèi)外壓力分布Fig.10 Internal and external pressure distribution along the meridian of the canopy
圖11 傘衣沿子午線上壓差系數(shù)Fig.11 Pressure coefficient along the meridian of the canopy
本文建立了微孔透氣傘衣的流場方程,以某環(huán)縫傘為對象,開展了透氣傘衣和非透氣傘衣的繞流數(shù)值模擬,對數(shù)值結(jié)果進行了分析,得出如下結(jié)論:
(1)采用對動量方程增加附加源項的新型流場控制方程能有效得到微孔傘衣的透流速度,計算結(jié)果更接近空投試驗結(jié)果,準確性大為提高。
(2)對傘衣尾部流場進行了分析,發(fā)現(xiàn)了兩大尾渦區(qū)分布,透氣性傘衣將使第一尾渦區(qū)變長,螺旋點增多,旋渦分布更均勻?qū)ΨQ,而第二尾渦區(qū)變小,整個尾渦區(qū)變短變窄。
(3)比較了透氣性模型和非透氣性模型的數(shù)值結(jié)果,透氣性模型傘衣內(nèi)側(cè)壓力略有降低,而外側(cè)負壓升高明顯,傘衣阻力系數(shù)降低,尾流壓力分布更均勻。
[1]Barber J,Johari H.Experimental investigation of personnel parachute designs using scale model wind tunnel testing[C]//16th AIAA Aerodynamic Decelerator Systems Technology Conference,Boston:MA,AIAA 2001-2074,2001.
[2]Yu Li,Ming Xiao,Cheng Liqun.Experimental investigation on the flow-field of different vent canopy[J].Acta Aerodynamica Sinica,2008,26(1):19-24.(in Chinese)余莉,明曉,陳麗群.不同透氣情況降落傘的流場試驗研究[J].空氣動力學學報,2008,26(1):19-24.
[3]Roberts B W.A contribution to parachute inflation dynamics[R].AIAA-68-0928,1968.
[4]Meter J,Purvis T W.Vortex lattice theory applied to parachute canopy configurations[R].AIAA-84-0787,1984.
[5]Parag K,Vijay G,Chaman S V.Numerical simulation of the flow past bluff bodies using discrete vortex methods[R].AIAA-95-1559,1995.
[6]Shirayama S,Kuwahara K.Computation of flow past a parachute by a three-dimensional vortex method[C]//AIAA,24th Aerospace Sciences Meeting,Reno,NV.1986.
[7]Frucht Y,Cockrell D.A discrete free vortex method of analysis for inviscid axisymmetric flows around parachute canopies[R].AIAA-91-0850,1991.
[8]Peng Yong,Song Xumin,Qin Zhizeng.Simulation of flow around a parachute shape by viscous vortex method[J].Spacecraft Recovery&Remote Sensing,2004,25(4):10-14.(in Chinese)彭勇,宋旭民,秦子增.用粘性渦方法計算傘狀物繞流[J].航天返回與遙感,2004,25(4):10-14.
[9]Stein K.Computations of the flow characteristics of aerodynamic decelerators using computational fluid dynamics[C]//Proceedings of AIAA 11th Aerodynamic Decelerator and Balloon Technology Conference,1991:9-11.
[10]Barnette D W.Preliminary numerical simulations for parachutes using a Navier-Stokes solver on a zoned grid[C]//AIAA Aerodynamic Decelerator Systems Technology Conference,11th,San Diego,CA.1991:323-332.
[11]Li Xiaoyong,Cao Yihua,Jiang Congwen,et al.The numeric simulation of the parachute flow field during terminal descent[J].Spacecraft Recovery&Remote Sensing,2004,25(2):5-9.(in Chinese)李曉勇,曹義華,蔣崇文,等.降落傘穩(wěn)定下降階段流場地的數(shù)值模擬[J].航天返回與遙感,2004,25(2):5-9.
[12]Cao Yihua,Wan Kan,Song Qianfu,et al.Numerical simulation of parachute fluid-structure interaction in terminal descent[J].Science China,2012,55(11):3131-3141.
[13]Yu Li,Ming Xiao.Study on transient aerodynamic characteristics of parachute opening process[J].Acta Mechanica Sinica,2007,23 (6):627-633.
[14]Sahu J,Benney R.Prediction of terminal descent characteristics of parachute clusters using CFD[J].AIAA-97-1453,1997.
[15]Tezduyar T E,Sathe S,Schwaab M,et al.Fluid-structure interaction modeling of ringsail parachutes[J].Computational Mechanics,2008,43(1):133-142.
[16]Han Y H,Wang Y W,Yang C X,et al.Numerical methods for analyzing the aerodynamic characteristics of cross parachute with permeability[C]//Proceeding of AIAA Aerodynamic Decelerator Systems(ADS)Conference,25-28.
[17]Aquelet N,Tutt B.Euler-Lagrange coupling for porous parachute canopy analysis[J].The International Journal of Multiphysics,2007,1(1):53-68.
[18]Tutt B,Charles R,Roland S.Development of parachute simulation techniques in LS-DYNA[C]//11th International LS-DYNA Users Conference,2010.
[19]Coquet Y,Bordenave P,Capmas G,et al.Improvements in fluidstructure interaction simulations of parachutes using LS-DYNA[C]//21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar,2011.
[20]Han Cheng,Li Yu,Wei Rong,et al.A numerical study of parachute inflation bases on a mixed method[J].Aviation,2012,16 (4):115-123.
[21]Ansys CFX-solver theory guide(Version 14.0)[R].ANSYS,Inc,2011.
[22]Zhao Yunfei,Liu Xu,Tu Guohua,et al.High-accuracy numerical method applied to calculate unsteady Euler equations[J].Journal of National University of Defense Technology,2012,34(3):12-16.(in Chinese)趙云飛,劉緒,涂國華,等.非定常Euler方程數(shù)值計算中高精度格式應用[J].國防科技大學學報,2012,34(3):12-16.
Numerical simulation of the effect of the permeability on the ringsail parachute in terminal descent stage
Yang Xue*,Yu Li,Li Yunwei,Li Yanjun
(College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
For the study of the influence of permeability of fabric on aerodynamic performance of parachute,the permeability of fabric is described by the Ergun equation and introduced into the source term,establishing a new governing equation of flow momentum with the permeability of fabric fully considered.The numerical solution is get and compared with the traditional result,in which the influence of permeability of fabric was ignored.The result shows that the velocity penetrating the fabric can be obtained through the new flow field momentum equation and it’s obviously lower than the velocity of the flow through the surrounding holes and that around the parachute.The first wake vortex region which clings to the canopy and the second wake vortex region which consists of a pair of center points are in the wake of the canopy,the permeability of fabric makes the first wake vortex region longer,the number of the vortex points increase and the distribution of the vortex more uniform and symmetrical.It also decreases the size of the second wake vortex,which improves the stability of the canopy through a shorter and narrower whole wake vortex region.Besides,the permeability of fabric decreases the pressure inside the canopy,increases the pressure outside.The pressure coefficient of the canopy in the radial direction decreases,thus,the drag coefficient of the new model is lower than the traditional model,which is closer to the results of the airdrop experiments.Obviously,the new model is significant to improve the accuracy of flow field simulation around the porous canopy.
parachute;numerical simulation;turbulence model;permeability of fabric;flow field structure;wake vortex
V244.21
:Adoi:10.7638/kqdlxxb-2014.0081
0258-1825(2015)05-0714-06
2014-08-18;
:2014-12-02
國家自然科學基金(11172137);航空科學基金(20122910001)
楊雪*(1991-),女,四川綿陽人,在讀碩士,研究方向:人機環(huán)境工程.E-mail:1287245258@qq.com
楊雪,余莉,李允偉,等.環(huán)帆傘穩(wěn)降階段織物透氣性影響數(shù)值模擬[J].空氣動力學學報,2015,33(5):714-719.
10.7638/kqdlxxb-2014.0081 Yang X,Yu L,Li Y W,et al.Numerical simulation of the effect of the permeability on the ringsail parachute in terminal descent stage[J].Acta Aerodynamica Sinica,2015,33(5):714-719.