王翰瑜 陳勝良
上海交通大學(xué)醫(yī)學(xué)院附屬仁濟(jì)醫(yī)院消化內(nèi)科 上海市消化疾病研究所(200001)
腸道頂端鈉離子/膽汁酸轉(zhuǎn)運(yùn)體及其相關(guān)疾病研究進(jìn)展
王翰瑜*陳勝良#
上海交通大學(xué)醫(yī)學(xué)院附屬仁濟(jì)醫(yī)院消化內(nèi)科上海市消化疾病研究所(200001)
Microbiota;Gut-Liver Axis
膽汁酸為膽固醇代謝產(chǎn)物,是膽汁的重要組分,在脂類的消化、吸收中起十分重要的作用。膽汁酸的腸肝循環(huán)是膽汁酸代謝的關(guān)鍵環(huán)節(jié),由高效、復(fù)雜的轉(zhuǎn)運(yùn)系統(tǒng)精密調(diào)控。頂端鈉離子/膽汁酸轉(zhuǎn)運(yùn)體(apical sodium-dependent bile acid transporter, ASBT)是膽汁酸轉(zhuǎn)運(yùn)環(huán)節(jié)中重要的回腸膽汁酸轉(zhuǎn)運(yùn)體,本文就其表達(dá)調(diào)控以及相關(guān)疾病的研究進(jìn)展作一綜述。
膽固醇在肝細(xì)胞中經(jīng)膽固醇7α-羥化酶(cholesterol 7α-hydroxylase, CYP7A1)催化生成7α-固醇,后者經(jīng)固醇核的還原、羥化、側(cè)鏈的斷裂和加輔酶A、脫水等反應(yīng),生成游離型初級膽汁酸——膽酸和鵝脫氧膽酸,兩者進(jìn)一步與甘氨酸或?;撬峤Y(jié)合生成結(jié)合型初級膽汁酸,初級膽汁酸進(jìn)入腸道,協(xié)助脂類物質(zhì)的消化、吸收。在回腸和結(jié)腸上段細(xì)菌的作用下,結(jié)合膽汁酸水解釋放出游離膽汁酸,進(jìn)而發(fā)生7位脫羥基,形成次級膽汁酸(膽酸轉(zhuǎn)變?yōu)槊撗跄懰?,鵝脫氧膽酸轉(zhuǎn)變?yōu)槭懰?。腸道中的各種膽汁酸約有95%被腸壁重吸收,未被重吸收的膽汁酸(主要為石膽酸)隨糞便排出。由腸道重吸收的膽汁酸(包括初級和次級膽汁酸、結(jié)合型和游離型膽汁酸)均由門靜脈進(jìn)入肝臟,在肝臟中,游離型膽汁酸再次轉(zhuǎn)變?yōu)榻Y(jié)合型膽汁酸,隨膽汁排入腸腔,此過程稱為 “膽汁酸的腸肝循環(huán)”。人體每天產(chǎn)生膽汁酸0.2~0.6 g,總膽汁酸池共3~5 g,通過腸肝循環(huán)重吸收的膽汁酸可達(dá)30 g/d。因此,腸肝循環(huán)可使有限的膽汁酸最大限度地發(fā)揮作用,以滿足人體對膽汁酸的生理需要。
膽汁酸在腸道中的轉(zhuǎn)運(yùn)有兩種方式——主動(dòng)運(yùn)輸和被動(dòng)運(yùn)輸[1]。被動(dòng)運(yùn)輸發(fā)生于小腸和結(jié)腸,是未結(jié)合的膽汁酸和膽汁酸的甘氨酸結(jié)合物重吸收的主要方式;主動(dòng)運(yùn)輸主要發(fā)生于回腸末端,此部位所有類型的膽汁酸都通過這一機(jī)制進(jìn)行運(yùn)輸,但速率不同,結(jié)合型膽汁酸的轉(zhuǎn)運(yùn)效率遠(yuǎn)高于非結(jié)合型膽汁酸。在人體中,主動(dòng)轉(zhuǎn)運(yùn)是膽汁酸完成重吸收的主要方式[2],由位于回腸刷狀緣側(cè)的ASBT以及基底膜面的有機(jī)溶質(zhì)轉(zhuǎn)運(yùn)體(organic solute transporter, OST)α/OSTβ所介導(dǎo)。
1. ASBT的結(jié)構(gòu)和分布:人類ASBT是由348個(gè)氨基酸組成的糖蛋白,具有7個(gè)跨膜區(qū),羧基端位于胞質(zhì)內(nèi),含糖基化位點(diǎn),氨基端位于細(xì)胞外。ASBT編碼基因SLC10A2定位于染色體13q33,DNA序列全長約24 kb,含有6個(gè)外顯子[3]。ASBT分布于腸道、腎近曲小管、膽管等組織的上皮細(xì)胞頂端膜,在腸道中最主要的表達(dá)部位是回腸末端[4]。ASBT為嚴(yán)格依賴于Na+的膽汁酸轉(zhuǎn)運(yùn)體,在Na+沿離子濃度進(jìn)入細(xì)胞的驅(qū)動(dòng)下完成對膽汁酸的轉(zhuǎn)運(yùn),Na+與膽汁酸的轉(zhuǎn)運(yùn)比例為2∶1。ASBT具有嚴(yán)格的底物特異性[5-6],其底物包括膽酸、脫氧膽酸、鵝脫氧膽酸、熊脫氧膽酸以及它們與甘氨酸、牛磺酸的結(jié)合物,ASBT幾乎不轉(zhuǎn)運(yùn)硫酸化和葡萄糖醛酸化膽汁酸。
2. ASBT的表達(dá)調(diào)控:盡管ASBT的具體分子調(diào)控機(jī)制尚不明確,但大量實(shí)驗(yàn)研究表明膽汁酸、膽固醇、激素等對其表達(dá)均有調(diào)控作用。
膽汁酸對ASBT的調(diào)控:膽汁酸對ASBT表達(dá)的調(diào)控作用尚存在爭議,有關(guān)膽汁酸誘導(dǎo)、抑制或不影響ASBT表達(dá)的實(shí)驗(yàn)結(jié)果均有報(bào)道,此種差異可能是由各實(shí)驗(yàn)檢測ASBT表達(dá)的方法、實(shí)驗(yàn)中給予膽汁酸的劑量、方式不同等所造成。Lillienau等[7]發(fā)現(xiàn),以富含?;悄懰岬娘暳衔癸曤嗍罂芍屡;切苊撗跄懰嵛招拭黠@下降,提示了膽汁酸對主動(dòng)轉(zhuǎn)運(yùn)的負(fù)反饋調(diào)節(jié)作用。在大鼠和小鼠模型中,研究[8]表明膽汁酸可通過與核受體超家族成員法尼醇X受體(farnesoid X receptor, FXR)結(jié)合,誘導(dǎo)小分子異源二聚體伴侶(small heterodimer partner, SHP)表達(dá),而SHP可抑制對ASBT具有關(guān)鍵轉(zhuǎn)錄調(diào)控作用的肝受體同源物-1(liver receptor homo-logue-1, LRH-1),從而對ASBT發(fā)揮負(fù)反饋調(diào)節(jié)作用。在人體中,應(yīng)用人結(jié)腸上皮細(xì)胞株Caco-2和回腸活檢標(biāo)本的體外實(shí)驗(yàn)證實(shí),膽汁酸對ASBT的調(diào)控存在多條不同途徑,其中一條為膽汁酸通過FXR-SHP途徑拮抗維甲酸受體/維甲酸X受體(retinoic acid receptor/retinoid X receptor, RAR/RXR)的作用以抑制ASBT轉(zhuǎn)錄[9]。Sinha等[10]的研究提示的膽汁酸介導(dǎo)ASBT轉(zhuǎn)錄抑制的途徑為:膽汁酸與FXR結(jié)合后誘導(dǎo)產(chǎn)生成纖維細(xì)胞生長因子-19(fibroblast growth factor-19, FGF-19),F(xiàn)GF-19與腸上皮細(xì)胞膜上的受體FGFR4/β-Klotho形成復(fù)合體,進(jìn)而通過減少SHP降解而拮抗LRH-1或RARα,下調(diào)ASBT表達(dá)。相反,Duane等[11]的研究發(fā)現(xiàn)膽汁酸可通過表皮生長因子受體(epidermal growth factor receptor, EGFR)和MAPK/ERK級聯(lián)反應(yīng)途徑作用于位于ASBT啟動(dòng)子區(qū)域的激活蛋白-1(activated protein-1, AP-1)反應(yīng)元件,上調(diào)ASBT的轉(zhuǎn)錄。綜上,生理?xiàng)l件下膽汁酸對ASBT的調(diào)控機(jī)制仍有待探索。
膽固醇對ASBT的調(diào)控:有研究者就膽固醇對ASBT的影響進(jìn)行了探討,結(jié)果提示在小鼠和人體中,膽固醇似可負(fù)反饋調(diào)節(jié)ASBT表達(dá),其機(jī)制為非FXR依賴性,可能是由轉(zhuǎn)錄因子SREBP-2和肝細(xì)胞核因子-1α(hepatic nuclear factor-1α, HNF-1α)共同作用所致[12-13]。
此外,尚有研究[14]發(fā)現(xiàn)外源性糖皮質(zhì)激素與其受體結(jié)合后可激活A(yù)SBT啟動(dòng)子序列中的糖皮質(zhì)激素受體反應(yīng)元件,進(jìn)而增強(qiáng)其轉(zhuǎn)錄、表達(dá)。
考慮到ASBT在膽汁酸轉(zhuǎn)運(yùn)中的重要作用,很多研究者就其與膽汁酸相關(guān)腸道炎癥、腫瘤、腸道分泌、運(yùn)動(dòng)和感覺功能、腸道微生態(tài)、腸-肝軸等的關(guān)系作了相關(guān)探索。
1. ASBT與腸道炎癥:研究發(fā)現(xiàn)回腸炎癥與膽汁酸吸收障礙密切相關(guān)。Stelzner等[15]構(gòu)建的急性末端回腸炎動(dòng)物模型提示炎癥可嚴(yán)重?fù)p害膽汁酸在末端回腸的主動(dòng)轉(zhuǎn)運(yùn),亦有不少研究發(fā)現(xiàn)克羅恩病(Crohn’s disease, CD)患者存在膽汁酸重吸收減少、糞便中膽汁酸含量增多的現(xiàn)象,這可能是引起患者腹瀉癥狀的主要原因。一些研究比較了CD患者與正常人群的末端回腸ASBT表達(dá)情況,發(fā)現(xiàn)前者表達(dá)水平較后者明顯降低[14,16]。推測其原因可能為:在腸道炎癥背景下,促炎細(xì)胞因子如白細(xì)胞介素-1(IL-1)、腫瘤壞死因子-α(TNF-α)、IL-6等對ASBT表達(dá)起抑制作用。Neimark等[17]對炎癥因子抑制ASBT表達(dá)的具體機(jī)制進(jìn)行了探討,該研究應(yīng)用結(jié)腸上皮細(xì)胞株Caco-2、小腸上皮細(xì)胞株IEC-6等進(jìn)行一系列實(shí)驗(yàn),發(fā)現(xiàn)人和鼠ASBT啟動(dòng)子區(qū)域存在上、下游2個(gè)AP-1反應(yīng)元件,上游AP-1與c-Jun/c-Jun結(jié)合,上調(diào)ASBT表達(dá),下游AP-1與c-Fos/c-Jun結(jié)合,下調(diào)ASBT表達(dá);而IL-1可誘導(dǎo)c-Fos和c-Jun,進(jìn)而抑制ASBT表達(dá)。
2. ASBT與腸道腫瘤:過多的膽汁酸尤其是次級膽汁酸與腸道黏膜接觸,被認(rèn)為是結(jié)腸腫瘤發(fā)生的危險(xiǎn)因素之一。膽汁酸的致癌機(jī)制為:膽汁酸誘導(dǎo)活性氧和活性氮產(chǎn)生,致結(jié)腸細(xì)胞DNA損傷、部分細(xì)胞凋亡,存活的結(jié)腸細(xì)胞進(jìn)行損傷修復(fù),其中未能完全修復(fù)的細(xì)胞因繼續(xù)錯(cuò)配復(fù)制而致突變蓄積,這些細(xì)胞經(jīng)長期作用而選擇性存活,具有較強(qiáng)的抗凋亡能力,因而具有癌變潛能[18]。Dawson等[19]比較了ASBT缺陷小鼠與野生型小鼠糞便中的膽汁酸含量,發(fā)現(xiàn)前者較后者明顯增高,為腸道膽汁酸轉(zhuǎn)運(yùn)體改變致腸肝循環(huán)障礙可能促進(jìn)結(jié)腸腫瘤發(fā)生提供了一定實(shí)驗(yàn)依據(jù)。一些研究對人類ASBT編碼基因SLC10A2多態(tài)性與結(jié)腸腺瘤、結(jié)腸癌的關(guān)系進(jìn)行了探討,發(fā)現(xiàn)SLC10A2-169位點(diǎn)突變雜合子CT基因型攜帶者罹患結(jié)腸腺瘤的風(fēng)險(xiǎn)是野生型CC基因型攜帶者的2倍[20];然而在散發(fā)和家族性結(jié)腸癌中,盡管SLC10A2可能與腫瘤形成的早期階段有一定聯(lián)系,但并非腫瘤進(jìn)展的主要危險(xiǎn)因素[21]。
3. ASBT與腸道分泌、運(yùn)動(dòng)和感覺功能:腸腔內(nèi)膽汁酸濃度與腸道功能關(guān)系密切。結(jié)腸內(nèi)膽汁酸減少,如膽道淤積性疾病或因治療高脂血癥而使用膽汁酸螯合劑后,患者常出現(xiàn)便秘癥狀。相反,炎癥性腸病或膽囊切除術(shù)后患者腸腔內(nèi)膽汁酸含量增加,往往伴隨腹瀉。膽汁酸作為重要的信號分子,對腸道分泌、運(yùn)動(dòng)和感覺功能均至關(guān)重要。膽汁酸可通過激活腺苷酸環(huán)化酶增加黏膜通透性,通過抑制胞膜頂端Cl-/OH-交換等途徑增加結(jié)腸上皮分泌。除促分泌所致的促動(dòng)力作用外,還有證據(jù)表明,無論是初級還是次級膽汁酸,都可通過膽汁酸的直接作用調(diào)節(jié)結(jié)腸運(yùn)動(dòng)[22],但具體機(jī)制尚不清楚。最近有研究指出,ASBT對腸道運(yùn)動(dòng)的作用可能涉及一個(gè)關(guān)鍵的膽汁酸受體——G蛋白耦聯(lián)膽汁酸受體(G protein-coupled bile acid receptor 5, TGR5),該受體介導(dǎo)了膽汁酸對結(jié)腸的促動(dòng)力作用。Alemi等[23]發(fā)現(xiàn)TGR5敲除小鼠結(jié)腸運(yùn)動(dòng)和排便頻率明顯低于野生型小鼠,并指出TGR5廣泛表達(dá)于腸嗜鉻細(xì)胞和內(nèi)在初級傳入神經(jīng)元,膽汁酸與TGR5結(jié)合后,可刺激5-羥色胺(5-HT)和降鈣素基因相關(guān)肽(CGRP )產(chǎn)生,促進(jìn)結(jié)腸蠕動(dòng)。此外,尚有一些研究關(guān)注于膽汁酸與腸道敏感性的關(guān)系。新近Bajor等[24]的研究顯示,部分腸腔內(nèi)膽汁酸濃度較高的腸易激綜合征患者,直腸擴(kuò)張?jiān)囼?yàn)的疼痛閾值亦較高,表明膽汁酸可降低腸道敏感性。然而Bampton等[25]卻發(fā)現(xiàn)膽汁酸可增加腸道敏感性,因此兩者間的相關(guān)性仍有待進(jìn)一步探索。鑒于膽汁酸與腸道功能之間的密切聯(lián)系,目前已研發(fā)出針對腸道膽汁酸轉(zhuǎn)運(yùn)體的新型藥物,如Elobixibat為ASBT抑制劑,可通過減少膽汁酸重吸收、增加結(jié)腸內(nèi)膽汁酸含量發(fā)揮促分泌和促動(dòng)力作用,從而改善慢性便秘癥狀[26]。
4. ASBT與腸道微生態(tài):越來越多的研究提示膽汁酸代謝紊亂與腸道微生態(tài)失衡對肥胖、糖尿病等代謝性疾病以及包括胃腸道腫瘤在內(nèi)的消化系統(tǒng)疾病的發(fā)生、發(fā)展起一定促進(jìn)作用[27]。膽汁酸本身可影響宿主腸道菌群組成,近年來,也有一些研究試圖探索腸道微生態(tài)與腸道膽汁酸轉(zhuǎn)運(yùn)體之間的關(guān)系。Miyata等[28]的研究發(fā)現(xiàn),經(jīng)氨芐西林處理的小鼠與對照組小鼠相比,腸道菌群數(shù)量顯著減少,ASBT mRNA和蛋白表達(dá)水平以及糞便中的膽汁酸含量顯著增加,由此認(rèn)為初級膽汁酸需經(jīng)腸道細(xì)菌的生物轉(zhuǎn)化作用才能轉(zhuǎn)變?yōu)榇渭壞懼?。?jīng)氨芐西林處理的小鼠腸道菌群數(shù)量減少,影響了由腸道微生物介導(dǎo)的生物轉(zhuǎn)化過程,進(jìn)而改變腸腔內(nèi)膽汁酸 組分,導(dǎo)致ASBT表達(dá)上調(diào),總膽汁酸含量增加。此外,Annaba等[29]發(fā)現(xiàn)致病性大腸桿菌可使Caco-2細(xì)胞ASBT表達(dá)水平下降,并推測其可通過酪氨酸去磷酸化影響ASBT功能,使膽汁酸轉(zhuǎn)運(yùn)速率下降。由此可見,除膽汁酸與微生物之間的直接相互作用外,腸道菌群還可通過影響膽汁酸轉(zhuǎn)運(yùn)改變膽汁酸穩(wěn)態(tài)。
5. ASBT與腸-肝軸:近年來,基于腸道與肝臟生理功能的聯(lián)系以及腸、肝疾病共患的臨床現(xiàn)象所提出的“腸-肝軸”概念逐漸引起研究者的重視,并由此提出了一些臨床治療的新思路,如補(bǔ)充益生菌、益生元制劑可用于治療由飲食不平衡引起的代謝性疾病和非酒精性脂肪性肝病。隨著高糖、高脂飲食方式的普及,肥胖和糖尿病人群逐年增加,這類人群正是罹患肝臟和腸道腫瘤的高危人群。膽汁酸代謝與糖脂代謝密切相關(guān),膽汁酸又與腸道微生態(tài)交互作用,越來越多有關(guān)膽汁酸與代謝性疾病關(guān)系的研究證據(jù)顯示,肥胖和糖尿病人群存在膽汁酸穩(wěn)態(tài)破壞和腸道微生態(tài)失衡,這兩者可能是腸、肝炎癥和腫瘤發(fā)生、發(fā)展的重要促進(jìn)因素[27]。研究[30]發(fā)現(xiàn),ASBT缺陷小鼠血漿三酰甘油水平明顯降低,予高脂肥胖小鼠模型使用ASBT抑制劑可顯著降低其血脂、血糖水平。由此可見,作為膽汁酸腸肝循環(huán)中的重要樞紐,ASBT可為機(jī)體糖脂代謝的調(diào)節(jié)提供新的靶點(diǎn),并可能由此使腸、肝疾病患者獲益。
四、結(jié)語與展望
綜上所述,腸道ASBT對于維持機(jī)體膽汁酸穩(wěn)態(tài)具有重要意義,因其與腸道炎癥、腫瘤、腸道分泌、運(yùn)動(dòng)和感覺功能、腸道微生態(tài)、腸-肝軸等息息相關(guān)而有望成為相關(guān)疾病新的治療靶點(diǎn)。對ASBT調(diào)控機(jī)制以及相關(guān)疾病的深入研究,將可能為這些疾病的新藥研發(fā)和新的臨床治療方向的開拓提供指導(dǎo)。
參考文獻(xiàn)
1 Krag E, Phillips SF. Active and passive bile acid absorption in man. Perfusion studies of the ileum and jejunum[J]. J Clin Invest, 1974, 53 (6): 1686-1694.
2 Dietschy JM. Mechanisms for the intestinal absorption of bile acids[J]. J Lipid Res, 1968, 9 (3): 297-309.
3 Wong MH, Rao PN, Pettenati MJ, et al. Localization of the ileal sodium-bile acid cotransporter gene (SLC10A2) to human chromosome 13q33[J]. Genomics, 1996, 33 (3): 538-540.
4 Meier Y, Eloranta JJ, Darimont J, et al. Regional distribution of solute carrier mRNA expression along the human intestinal tract[J]. Drug Metab Dispos, 2007, 35 (4): 590-594.
5 Craddock AL, Love MW, Daniel RW, et al. Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter[J]. Am J Physiol, 1998, 274 (1 Pt 1): G157-G169.
6 Kramer W, Stengelin S, Baringhaus KH, et al. Substrate specificity of the ileal and the hepatic Na(+)/bile acid cotransporters of the rabbit. Ⅰ. Transport studies with membrane vesicles and cell lines expressing the cloned transporters[J]. J Lipid Res, 1999, 40 (9): 1604-1617.
7 Lillienau J, Crombie DL, Munoz J, et al. Negative feedback regulation of the ileal bile acid transport system in rodents[J]. Gastroenterology, 1993, 104 (1): 38-46.
8 Chen F, Ma L, Dawson PA, et al. Liver receptor homologue-1 mediates species- and cell line-specific bile acid-dependent negative feedback regulation of the apical sodium-dependent bile acid transporter[J]. J Biol Chem, 2003, 278 (22): 19909-19916.
9 Neimark E, Chen F, Li X, et al. Bile acid-induced negative feedback regulation of the human ileal bile acid transporter[J]. Hepatology, 2004, 40 (1): 149-156.
10Sinha J, Chen F, Miloh T, et al. beta-Klotho and FGF-15/19 inhibit the apical sodium-dependent bile acid transporter in enterocytes and cholangiocytes[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 295 (5): G996-G1003.
11Duane WC, Xiong W, Wolvers J. Effects of bile acids on expression of the human apical sodium dependent bile acid transporter gene[J]. Biochim Biophysi Acta, 2007, 1771 (11): 1380-1388.
12Thomas C, Landrier JF, Gaillard D, et al. Cholesterol dependent downregulation of mouse and human apical sodium dependent bile acid transporter (ASBT) gene expression: molecular mechanism and physiological consequences[J]. Gut, 2006, 55 (9): 1321-1331.
13Miyata M, Matsuda Y, Nomoto M, et al. Cholesterol feeding prevents hepatic accumulation of bile acids in cholic acid-fed farnesoid X receptor (FXR)-null mice: FXR-independent suppression of intestinal bile acid absorption[J]. Drug Metab Dispos, 2009, 37 (2): 338-344.
14Jung D, Fantin AC, Scheurer U, et al. Human ileal bile acid transporter gene ASBT (SLC10A2) is transactivated by the glucocorticoid receptor[J].Gut, 2004, 53 (1): 78-84.
15Stelzner M, Somasundaram S, Khakberdiev T. Systemic effects of acute terminal ileitis on uninflamed gut aggravate bile acid malabsorption[J]. J Surg Res, 2001, 99 (2): 359-364.
16Jahnel J, Fickert P, Hauer AC, et al. Inflammatory bowel disease alters intestinal bile acid transporter expression[J]. Drug Metab Dispos, 2014, 42 (9): 1423-1431.
17Neimark E, Chen F, Li X, et al. c-Fos is a critical mediator of inflammatory-mediated repression of the apical sodium-dependent bile acid transporter[J]. Gastro-enterology, 2006, 131 (2): 554-567.
18Bernstein H, Bernstein C, Payne CM, et al. Bile acids as endogenous etiologic agents in gastrointestinal cancer[J]. World J Gastroenterol, 2009, 15 (27): 3329-3340.
19Dawson PA, Haywood J, Craddock AL, et al. Targeted deletion of the ileal bile acid transporter eliminates enterohepatic cycling of bile acids in mice[J]. J Biol Chem, 2003, 278 (36): 33920-33927.
20Wang W, Xue S, Ingles SA, et al. An association between genetic polymorphisms in the ileal sodium-dependent bile acid transporter gene and the risk of colorectal adenomas[J]. Cancer Epidemiol Biomarkers Prev, 2001, 10 (9): 931-936.
21Grünhage F, Jungck M, Lamberti C, et al. Effects of common haplotypes of the ileal sodium dependent bile acid transporter gene on the development of sporadic and familial colorectal cancer: a case control study[J]. BMC Med Genet, 2008, 9: 70.
22Bajor A, Gillberg PG, Abrahamsson H. Bile acids: short and long term effects in the intestine[J]. Scand J Gastroenterol, 2010, 45 (6): 645-664.
23Alemi F, Poole DP, Chiu J, et al. The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice[J]. Gastro-enterology, 2013, 144 (1): 145-154.
24Bajor A, T?rnblom H, Rudling M, et al. Increased colonic bile acid exposure: a relevant factor for symptoms and treatment in IBS[J]. Gut, 2015, 64 (1): 84-92.
25Bampton PA, Dinning PG, Kennedy ML, et al. The proximal colonic motor response to rectal mechanical and chemical stimulation[J]. Am J Physiol Gastrointest Liver Physiol, 2002, 282 (3): G443-G449.
26Wong BS, Camilleri M. Elobixibat for the treatment of constipation[J]. Expert Opin Investig Drugs, 2013, 22 (2): 277-284.
27Tsuei J, Chau T, Mills D, et al. Bile acid dysregulation, gut dysbiosis, and gastrointestinal cancer[J]. Exp Biol Med (Maywood), 2014, 239 (11): 1489-1504.
28Miyata M, Yamakawa H, Hamatsu M, et al. Enterobacteria modulate intestinal bile acid transport and homeostasis through apical sodium-dependent bile acid transporter (SLC10A2) expression[J]. J Pharmacol Exp Ther, 2011, 336 (1): 188-196.
29Annaba F, Sarwar Z, Gill RK, et al. EnteropathogenicEscherichiacoliinhibits ileal sodium-dependent bile acid transporter ASBT[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 302 (10): G1216-G1222.
30Lund?sen T, Andersson EM, Snaith M, et al. Inhibition of intestinal bile acid transporter Slc10a2 improves triglyceride metabolism and normalizes elevated plasma glucose levels in mice[J]. PLoS One, 2012, 7 (5): e37787.
(2014-12-15收稿;2014-12-29修回)
摘要膽汁酸在脂類的消化、吸收中起十分重要的作用。頂端鈉離子/膽汁酸轉(zhuǎn)運(yùn)體(ASBT)位于回腸刷狀緣側(cè),發(fā)揮重吸收膽汁酸的作用,對于維持機(jī)體膽汁酸穩(wěn)態(tài)具有重要意義。近年來,關(guān)于ASBT的表達(dá)調(diào)控及其與腸道炎癥、腫瘤、腸道分泌、運(yùn)動(dòng)和感覺功能、腸道微生態(tài)、腸-肝軸等關(guān)系的研究提示其在一些消化道疾病中發(fā)揮重要作用,有望成為這些疾病新的治療靶點(diǎn)。本文就相關(guān)研究進(jìn)展作一綜述。
關(guān)鍵詞膽酸類;頂端鈉離子/膽汁酸轉(zhuǎn)運(yùn)體;炎癥;腫瘤;微生態(tài);腸-肝軸
Advances in Study on Intestinal Apical Sodium-dependent Bile Acid Transporter and Related DiseasesWANGHanyu,CHENShengliang.DivisionofGastroenterologyandHepatology,RenJiHospital,SchoolofMedicine,ShanghaiJiaoTongUniversity;ShanghaiInstituteofDigestiveDisease,Shanghai(200001)
Correspondence to: CHEN Shengliang, Email: chenslmd@163.com
AbstractBile acids play critical roles in the solubilization and absorption of lipids. The ileal apical sodium-dependent bile acid transporter (ASBT) located at the enterocyte brush border is responsible for the reuptake of bile acids and the maintenance of bile acid homeostasis. Recently, great success has been made in understanding the relationship between ASBT and intestinal inflammation, tumorigenesis, secretion, motility, sensation, gut microbiota, and gut-liver axis in addition to its expression regulation, which implicates ASBT as a contributor of some gastrointestinal diseases and a promising new therapeutic target for these diseases. In this review article, the advances in study on above-mentioned issues were summarized.
Key wordsCholic Acids;Apical Sodium-Dependent Bile Acid Transporter;Inflammation;Neoplasms;
通信作者#本文,Email: chenslmd@163.com
DOI:*Email: whywanghanyu1990@163.com