• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    X-ray image distortion correction based on SVR

    2015-03-03 07:51:08YUANZehuiLIShizhong
    關(guān)鍵詞:中北大學(xué)畸變全局

    YUAN Ze-hui, LI Shi-zhong

    (College of Mechatronic Engineering, North University of China, Taiyuan 030051, China)

    袁澤慧, 李世中

    (中北大學(xué) 機(jī)電工程學(xué)院, 山西 太原 030051)

    ?

    X-ray image distortion correction based on SVR

    YUAN Ze-hui, LI Shi-zhong

    (CollegeofMechatronicEngineering,NorthUniversityofChina,Taiyuan030051,China)

    X-ray image has been widely used in many fields such as medical diagnosis, industrial inspection, and so on. Unfortunately, due to the physical characteristics of X-ray and imaging system, distortion of the projected image will happen, which restrict the application of X-ray image, especially in high accuracy fields. Distortion correction can be performed using algorithms that can be classified as global or local according to the method used, both having specific advantages and disadvantages. In this paper, a new global method based on support vector regression (SVR) machine for distortion correction is proposed. In order to test the presented method, a calibration phantom is specially designed for this purpose. A comparison of the proposed method with the traditional global distortion correction techniques is performed. The experimental results show that the proposed correction method performs better than the traditional global one.

    X-ray image; distortion correction; support vector regression machine

    X-ray technology has been widely used in a number of fields, especially industrial and medical fields[1]. In the last years, there has been an increasing interest in using projected images to generate three-dimensional (3D) tomographic reconstructions. However, because the the original projected images are distorted, the quality of the reconstructed images is deteriorated. Therefore, how to correct the distortions becomes necessary for using X-ray images.

    Among various types of distortion, pincushion distortion and S-distortion are predominant[2]. The former is the most visually apparent due to photocathode curvature. The latter is introduced by the electron optics of image intensifier and interaction with external magnetic fields, mainly earth magnetic field.

    Correction for spatial distortion in X-image is achieved by imaging a regular calibration grid, consisting of either transparent holes or small opaque objects, which represent the control points and are used to compute the correction coefficients. An interpolation function is to build the map between ideal and raw pixel locations of control points.

    Several methods have been developed to correct the distortion in X-ray images. Normally these correction methods are classified into global methods[3-6]and local methods[7]. In global correction techniques, a single pair of equations in the form of a high-order polynomial (usually a 4th or 5th-order polynomial) are used to correct the image. The global methods are implemented easily and fast. However, for some local distortions that may appear in the acquired image, they can not be corrected and require an excessive calibration of the system. For overcoming the existing problems of global methods, local method is developed. In local correction methods, the raw image is divided into many small areas (usually rectangular or triangular) firstly, and the distortion of each local area is corrected respectively. Since different correction equations are used for each local area, for the neighboring regions, the discontinuities are introduced, which represent the major problem in local methods.

    Both global methods and local methods have their advantages and disadvantages. In this paper, a new global method based on support vector machine (SVM) is proposed, which is based on the strong regression ability of SVM.

    1 Material and method

    The correction for two-dimensional X-ray image distortion is usually achieved by imaging a regular grid phantom, consisting of either transparent holes or small opaque objects, which are used as control points. In this paper, a thin plate with a series of small holes and a large hole, placed in a regular pattern, is specially designed for the correction work. The small holes are inside a circle with a diameter of 3.1 mm, while the large hole, displaced at the centre of the thin plate and used as the original control point, has a diameter of 4.2 mm. The step between holes (the distance between their centers) is 6 mm. The image of the designed thin plate is shown in Fig.1.

    Fig.1 Thin plate attached to the face of XRLL

    In this paper, a new global method based on support vector regression (SVR) for correcting distortion is proposed. As other correction methods, the presented approach mainly involves: (1) automatic control points detection (2) correction modeling (3) application of the correction model to individual images, i.e. image correction. In the following, a detailed description of these steps is given.

    1.1 Automatic grid detection

    As described in above, the centers of holes are used as control points for distortion correction. To detect the centers of holes precisely, image prepossessing and segmentation are carried out. After that, the segmented disjointed pixels are grouped into hole-clusters. Following the clustering operation, for each hole-cluster, mass center approach is used calculate its center coordinates. Next, all the center coordinates are put into a matrix according to their ideal grid orders.

    Distortion correction is to build a mapping model, i.e. a correction model, between the control point coordinates (the holes’ mass centers in this case) of the raw distorted image and the ideal one. After the procedure described previously, the distorted control point coordinates are detected automatically. However, for the ideal image, it is not easy to be obtained since the ideal X-ray image is unknown. In our case, a large hole at the center of the thin plate is specially designed, which is based on the characteristics of pincushion distortion and S-distortion that the distortion in the central part is small. To obtain other small holes’ ideal mass centers, the step between two neighboring centers is calculated by averaging all the steps of each neighboring couple of holes. Then according to the mass center of the large hole and the calculated step, the other small holes’ ideal mass centers are obtained.

    1.2 Support vector regression machine theory

    The support vector machines (SVMs) were proposed by Vapnik[8]in 1998. In the last years, it has been widely used for classification[9-10]and regression[11-12]. When SVM is applied to regression by introducing an alternative loss function, it is termed as SVR.

    The basic idea of SVR is that the data vectorxfrom the inputXis mapped into a high-dimensional feature spaceFby a nonlinear mappingΦ(x),andthenlinearregressionisconductedinFspace.

    Given a set of training data {(x1,y1),(x2,y2),…,(xn,yn)}∈X×R,thegoalofSVRistofindafunctionf(x)thatisnotmorethanεfromthetargetsyiforallthetrainingdata,andatthesametime,itisasflataspossible.Thelinearfunctionf(x)isformulatedas

    (1)

    FlatnessinEq.(1)meansthatoneseekssmallw. One way to ensure this is to minimize the Euclidean norm, i.e. ‖w‖2.Thenthisproblemcanbeformulatedasaconvexoptimizationproblembyrequiring

    (2)

    (3)

    TheconstantC>0determinesthetrade-offoferrormarginbetweentheflatnessoff(x)andtheamountofdeviationinexcessofεthatistolerated.ToenabletheSVRtopredictanonlinearsituation,SVRmapstheinputdataintothefeaturespacebyΦ(X),whichisdenotedby

    ThedecisionfunctioncanbecomputedbytheinnerproductsofΦ(x)TΦ(xi)withoutexplicitlymappingxinto a higher dimension, which saves considerable computation efforts.Φ(x)TΦ(xi)iscalledkernelfunctionK(x,xi)≡Φ(x)TΦ(xi).ChoosingdifferenttypesofkernelfunctionscangeneratedifferentSVRmodels.

    2 Experiment results

    2.1 Determination of SVR parameters

    The generalization ability of SVR relies entirely on a group of parameters. In this paper, a mixture kernel of polynomial kernel and radial basis kernel is used. And for the loss function,ε-insensitive loss function is selected. Therefore, it is needed to determine the following parameters: regularization factorC,εof theε-insensitive loss function,σof Gaussian radial basis function, the orderdof polynomial order Kernel, and the mixture coefficientλ.

    The final SVR coefficients were selected as

    2.2 Experiment results

    In this section the presented SVR model is tested to correct the raw distorted X-ray image. Meanwhile it is compared with the most commonly used polynomial model, and the polynomial model’s order is set to 4. The raw distorted image is shown in Fig.2. And the corrected images are presented in Fig.3 and Fig.4, respectively.

    Fig.2 Raw distorted X-ray image

    Fig.3 Corrected image using polynomial model

    Fig.4 Corrected image using SVR model

    In order to compare the two controllers performance quantitatively, the following measures are taken.

    Fig.5showstheresidualdisplacementofthecorrectedimagesusingpolynomialandSVRmodel,respectively.ItiseasytonoticethatforFig.5(b),alltheerrorsarelessthan0.6pixels.HoweverinFig.5(a),althoughmostoftheerrorsarelessthan0.6pixels,therearestillafewnumberofcontrolpoints’residualdisplacementswhichareevenlargerthan2.5pixels,whichcorrespondstothelocaldistortionsthattheglobalpolynomialmodelcannotcorrect.

    Fig.5 Residual displacement histograms of corrected images

    2) For the corrected image, two control points in a row are formed into a vector. Since the control points, i.e. the holes are displaced in a grid pattern, the angel between the formed vector with the horizontal vector is calculated. It is easy to know that the ideal angle is equal to 0. To explain conveniently, the vector formed by the control points in a row is named row-center-vector.

    The histograms of calculated angles of images corrected by global pronominal model and SVR model are shown in Fig.6(a) and (b), respectively.

    It is easy to observe that, compared with Fig.6(a), there are few angles larger than 1.2 degree in Fig.6(b), which means that by using SVR model, the distortion near the bounding is corrected mostly. Meanwhile, it is can be known that there are 462 angles which are less than 0.4°, which is much larger than 375 in Fig.6(a).

    Fig.6 Histogram of angles between row-center-vector and horizontal vector

    It can be concluded from the comparison results that the display of control points in image corrected by SVR model is much close to the ideal grid, i.e. for correcting the distorted images, the SVR model performs better than global polynomial model.

    3 Conclusion

    In this research, a correction algorithm based on SVR model has been proposed to correct the distortion of the acquired images by X-ray projector. Based on the extracted centers, the correcting SVR model is built and then applied to the raw distorted images. The experiments show that much of the distortion in raw image is found to be effectively corrected. And the developed SVR model performs better than the 4th order polynomial model in two aspects.

    [1] Lee K, Lee K M, Park M S, et al. Measurements of surgeons’ exposure to ionizing radiation does during intra-operative use of C-arm fluoroscopy. Spine, 2012, 37(14): 1240-1244.

    [2] WANG Xiao-hui, NING Ruo-la. Accurate and efficient image intensifier distortion correction algorithm and its application in volume tomographic angiography. In: Proceedings of Medical Imaging 1997: Physics of Medical Imaging, Newport Beach, CA, USA ,1997, 3032(427): 427-440.

    [3] YAN Shi-ju, WANG Cheng-tao, YE Ming. A method based on moving least squares for XRII image distortion correction. Medical Physics, 2007, 34(11): 4194-4206.

    [4] Holdsworth D W, Pollmann S I, Nicolov H N, et al. Correction of XRII geometric distortion using a liquid-filled grid and image subtraction. Medical Physics, 2005, 32(1): 55-64.

    [5] YAN Shi-ju, QIAN Li-wei. XRII image distortion correction for C-arm-based surgical navigation system. Journal of Biomedical Engineering, 2010, 27(3): 548-551.

    [6] LI Yuan-jin, LUO Li-min, ZHANG Peng-cheng, et al. Distortion correction of XRII image based on calibration grid characteristic and biharmonic interpolation. Journal of Southeast University (Natural Science Edition), 2011, 41(6): 1213-1218.

    [7] Cerveria P, Forlani C, Borghese N A, et al. Distortion correction for x-ray image intensifier: local unwarping polynomials and RBF neural networks. Medical Physics, 2002, 29(8): 1759-1771.

    [8] Vapnik V N. The nature of statistical learning theory. New York: Springer-Verlag, 1998.

    [9] Deyong D, Bhowmik S, Magnago F. An effective power quality classifier using wavelet transform and support vector machine. Expert Systems with Application, 2015, 45(15/16): 6075-6081.

    [10] CAO Jian-fang, CHEN Jun-jie, CHEN Li-chao. An improved image classification method basd on multi features using fuzzy support vector machine. BioTechnology, 2014, 10(11): 5543-5542.

    [11] Avila F, Mora M, Oyarce M. A method to construct fruit maturity color scales based on support machines for regression: application to olives and grape seeds. Journal of Engineering, 2014, 162: 9-17.

    [12] Waleed D, Sohel R, Habshah M. Non-sparse epsilon-insensitive support vector regression for outlier detection. Journal of Applied Statistics, 2015, 42(8): 1723-1739.

    基于支持向量回歸機(jī)的X射線圖像畸變校正研究

    X射線圖像已經(jīng)被廣泛的應(yīng)用于各個(gè)領(lǐng)域, 如醫(yī)學(xué)診斷, 工業(yè)檢測(cè)等。 然而, 由于x射線及其成像系統(tǒng)的物理特性, 得到的X圖像存在嚴(yán)重畸變, 這極大限制了X射線在一些高精度場(chǎng)合的應(yīng)用, 因此需對(duì)原始的x射線圖像進(jìn)行校正。 所謂圖像畸變校正, 就是設(shè)法建立畸變圖像特征點(diǎn)坐標(biāo)與理想圖像特征點(diǎn)坐標(biāo)之間的映射模型, 即校正模型, 將畸變的點(diǎn)恢復(fù)到原來(lái)的位置。 目前常用的畸變校正方法主要分為兩類: 全局校正法和局部校正法, 這兩種方法都有各自的優(yōu)缺點(diǎn)。 本文提出了利用支持向量回歸機(jī)建立校正模型的一種全局校正方法, 并將其與全局多項(xiàng)式模型做比較, 通過(guò)比較兩種模型的校正圖像中特征點(diǎn)分布與理想分布的符合度, 檢驗(yàn)所提出算法的效果。 實(shí)驗(yàn)結(jié)果表明, 提出的算法效果明顯好于傳統(tǒng)的多項(xiàng)式方法。

    X-射線圖像; 畸變校正; 支持向量回歸機(jī)

    YUAN Ze-hui, LI Shi-zhong. X-ray image distortion correction based on SVR. Journal of Measurement Science and Instrumentation, 2015, 6(3): 302-306. [

    袁澤慧, 李世中

    (中北大學(xué) 機(jī)電工程學(xué)院, 山西 太原 030051)

    10.3969/j.issn.1674-8042.2015.03.018]

    Received date: 2015-05-14 Foundation items: National Natural Science Foundation of China (No.61305118)

    YUAN Ze-hui (yuanzehui1985@126.com)

    1674-8042(2015)03-0302-05 doi: 10.3969/j.issn.1674-8042.2015.03.018

    CLD number: TP391.41 Document code: A

    猜你喜歡
    中北大學(xué)畸變全局
    《中北大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》征稿啟事
    Cahn-Hilliard-Brinkman系統(tǒng)的全局吸引子
    量子Navier-Stokes方程弱解的全局存在性
    中北大學(xué)信創(chuàng)產(chǎn)業(yè)學(xué)院入選首批現(xiàn)代產(chǎn)業(yè)學(xué)院
    《中北大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡(jiǎn)則
    有機(jī)相化學(xué)鍍鋁法制備Al/石墨烯復(fù)合材料粉末
    落子山東,意在全局
    金橋(2018年4期)2018-09-26 02:24:54
    在Lightroom中校正鏡頭與透視畸變
    新思路:牽一發(fā)動(dòng)全局
    輻射誘導(dǎo)染色體畸變的快速FISH方法的建立
    麻豆成人午夜福利视频| 91午夜精品亚洲一区二区三区 | 久久久久国内视频| 香蕉av资源在线| 熟妇人妻久久中文字幕3abv| 男人的好看免费观看在线视频| 深夜a级毛片| 人妻丰满熟妇av一区二区三区| 日本 欧美在线| 亚洲国产欧美人成| 999久久久精品免费观看国产| 最后的刺客免费高清国语| 欧美一区二区精品小视频在线| 精品一区二区三区av网在线观看| 美女cb高潮喷水在线观看| 国产国拍精品亚洲av在线观看| 国产爱豆传媒在线观看| 91九色精品人成在线观看| 亚洲最大成人中文| 国产成人a区在线观看| 亚洲天堂国产精品一区在线| 国产v大片淫在线免费观看| 久9热在线精品视频| 亚洲五月天丁香| 美女xxoo啪啪120秒动态图 | 免费在线观看成人毛片| 国产成人福利小说| 国产一区二区在线观看日韩| 亚洲专区中文字幕在线| 在线a可以看的网站| 日本三级黄在线观看| 免费看日本二区| 午夜免费激情av| 国产高清有码在线观看视频| 国产蜜桃级精品一区二区三区| 特级一级黄色大片| 精品久久久久久久久久久久久| 欧美高清性xxxxhd video| 国产69精品久久久久777片| 久久草成人影院| 夜夜夜夜夜久久久久| bbb黄色大片| 丝袜美腿在线中文| 国产av不卡久久| 日韩欧美精品v在线| 亚洲 国产 在线| 天天一区二区日本电影三级| 精品久久久久久久人妻蜜臀av| 校园春色视频在线观看| 在线看三级毛片| 久久性视频一级片| 男女视频在线观看网站免费| 波多野结衣高清作品| 久久精品人妻少妇| 欧美日韩综合久久久久久 | a在线观看视频网站| 欧美zozozo另类| 69av精品久久久久久| 免费观看人在逋| 一二三四社区在线视频社区8| 久久国产乱子伦精品免费另类| 老熟妇仑乱视频hdxx| 在线观看66精品国产| 亚洲国产日韩欧美精品在线观看| 国产精品99久久久久久久久| 激情在线观看视频在线高清| 99精品在免费线老司机午夜| 欧洲精品卡2卡3卡4卡5卡区| 久久久精品大字幕| 中文在线观看免费www的网站| 桃色一区二区三区在线观看| 欧美xxxx性猛交bbbb| 日韩高清综合在线| 99在线人妻在线中文字幕| 3wmmmm亚洲av在线观看| 在线观看舔阴道视频| 久久伊人香网站| 在现免费观看毛片| 一区二区三区四区激情视频 | 精品不卡国产一区二区三区| 99精品在免费线老司机午夜| 成熟少妇高潮喷水视频| 国产人妻一区二区三区在| 十八禁人妻一区二区| АⅤ资源中文在线天堂| 天堂√8在线中文| 变态另类丝袜制服| 床上黄色一级片| 国产成人福利小说| 亚洲性夜色夜夜综合| 欧美zozozo另类| 欧美精品国产亚洲| 精品乱码久久久久久99久播| 国产蜜桃级精品一区二区三区| 欧美bdsm另类| 婷婷色综合大香蕉| 国产午夜精品久久久久久一区二区三区 | 国产免费一级a男人的天堂| 成年版毛片免费区| 久久人妻av系列| 国产高清三级在线| 亚洲三级黄色毛片| 国产精品野战在线观看| 人人妻人人看人人澡| 波多野结衣巨乳人妻| 一二三四社区在线视频社区8| 又粗又爽又猛毛片免费看| 国产高清视频在线观看网站| 床上黄色一级片| 深爱激情五月婷婷| 久久久色成人| 国产伦在线观看视频一区| 国内精品久久久久久久电影| 天堂av国产一区二区熟女人妻| 国产毛片a区久久久久| 国产男靠女视频免费网站| 国产亚洲欧美在线一区二区| 欧美色欧美亚洲另类二区| 成人一区二区视频在线观看| 中文字幕av成人在线电影| 婷婷六月久久综合丁香| 嫁个100分男人电影在线观看| 日韩欧美国产在线观看| 久久国产精品影院| 3wmmmm亚洲av在线观看| 51午夜福利影视在线观看| 久久99热6这里只有精品| 午夜视频国产福利| 久久人人精品亚洲av| 我要看日韩黄色一级片| 亚洲人成电影免费在线| 亚洲精品乱码久久久v下载方式| 狂野欧美白嫩少妇大欣赏| 日韩欧美一区二区三区在线观看| 九色国产91popny在线| 啪啪无遮挡十八禁网站| 3wmmmm亚洲av在线观看| 神马国产精品三级电影在线观看| 怎么达到女性高潮| 国产色爽女视频免费观看| 国产成人啪精品午夜网站| 久久久色成人| 白带黄色成豆腐渣| 中文字幕久久专区| 极品教师在线视频| or卡值多少钱| 2021天堂中文幕一二区在线观| 午夜福利高清视频| 国产精品国产高清国产av| 两性午夜刺激爽爽歪歪视频在线观看| 久久久国产成人精品二区| 舔av片在线| av天堂在线播放| 日日夜夜操网爽| 首页视频小说图片口味搜索| 午夜激情欧美在线| 禁无遮挡网站| 精品一区二区免费观看| 成人永久免费在线观看视频| 免费在线观看亚洲国产| 欧美日韩乱码在线| 精品久久久久久,| 老熟妇仑乱视频hdxx| 日韩精品青青久久久久久| 成人国产综合亚洲| 免费观看的影片在线观看| 美女免费视频网站| 在线a可以看的网站| 亚洲av中文字字幕乱码综合| 欧美色欧美亚洲另类二区| 91狼人影院| 亚洲久久久久久中文字幕| 99热这里只有是精品在线观看 | 在线观看66精品国产| 可以在线观看毛片的网站| 日韩免费av在线播放| 天天一区二区日本电影三级| 天堂影院成人在线观看| 亚洲精华国产精华精| 色噜噜av男人的天堂激情| 国产免费一级a男人的天堂| 中文字幕av在线有码专区| 国产真实乱freesex| 国产成人影院久久av| 在线观看午夜福利视频| 男插女下体视频免费在线播放| 亚洲成av人片免费观看| 国产淫片久久久久久久久 | 欧美另类亚洲清纯唯美| 亚洲天堂国产精品一区在线| 日日摸夜夜添夜夜添小说| 99热这里只有是精品50| 久久国产精品人妻蜜桃| 中文在线观看免费www的网站| 国产精品一区二区免费欧美| 午夜视频国产福利| 久久精品国产亚洲av涩爱 | 久久草成人影院| 成人亚洲精品av一区二区| 尤物成人国产欧美一区二区三区| 啦啦啦观看免费观看视频高清| 欧美3d第一页| 免费看美女性在线毛片视频| 亚洲内射少妇av| 成人性生交大片免费视频hd| 亚洲国产精品成人综合色| 国产精品久久久久久人妻精品电影| 91久久精品国产一区二区成人| www.熟女人妻精品国产| 国产男靠女视频免费网站| 一区二区三区四区激情视频 | 国产成年人精品一区二区| 中文字幕精品亚洲无线码一区| 亚洲欧美日韩东京热| 免费av毛片视频| 熟女人妻精品中文字幕| 精品福利观看| 超碰av人人做人人爽久久| 亚洲久久久久久中文字幕| 亚洲成人久久性| 制服丝袜大香蕉在线| 在线播放国产精品三级| 99国产极品粉嫩在线观看| 一区二区三区四区激情视频 | 91午夜精品亚洲一区二区三区 | h日本视频在线播放| 亚洲精品456在线播放app | 欧美另类亚洲清纯唯美| 99热这里只有精品一区| 国产午夜精品论理片| 久久6这里有精品| 1024手机看黄色片| 性欧美人与动物交配| 一级av片app| 亚洲,欧美,日韩| 免费在线观看影片大全网站| 少妇丰满av| 午夜亚洲福利在线播放| 一本久久中文字幕| 99国产精品一区二区三区| 在线免费观看的www视频| 久久草成人影院| 国产精品一区二区性色av| 91久久精品国产一区二区成人| 免费人成在线观看视频色| 色噜噜av男人的天堂激情| 国产美女午夜福利| 两个人的视频大全免费| 精品久久久久久久末码| 91在线观看av| 亚洲熟妇中文字幕五十中出| 高清在线国产一区| 久久精品国产自在天天线| 日韩有码中文字幕| 亚洲中文字幕日韩| 夜夜爽天天搞| 国产成+人综合+亚洲专区| 欧美黄色片欧美黄色片| 日本在线视频免费播放| 看十八女毛片水多多多| 欧美+亚洲+日韩+国产| 99热这里只有精品一区| 免费观看精品视频网站| 伦理电影大哥的女人| 欧美+亚洲+日韩+国产| 久久精品影院6| 久久午夜福利片| 蜜桃久久精品国产亚洲av| .国产精品久久| 高潮久久久久久久久久久不卡| 免费一级毛片在线播放高清视频| 黄色一级大片看看| 久久这里只有精品中国| 丝袜美腿在线中文| 中出人妻视频一区二区| 国产精品国产高清国产av| 男女做爰动态图高潮gif福利片| 99久久无色码亚洲精品果冻| 很黄的视频免费| netflix在线观看网站| 1000部很黄的大片| 欧美性猛交黑人性爽| 国产精品嫩草影院av在线观看 | 色视频www国产| 日本黄色视频三级网站网址| 夜夜爽天天搞| 欧美绝顶高潮抽搐喷水| 欧美性猛交╳xxx乱大交人| 啦啦啦韩国在线观看视频| avwww免费| 久久久国产成人精品二区| 欧美一区二区精品小视频在线| a在线观看视频网站| 成人高潮视频无遮挡免费网站| 有码 亚洲区| 级片在线观看| 男女做爰动态图高潮gif福利片| 欧美黄色淫秽网站| 午夜福利高清视频| 嫁个100分男人电影在线观看| 国产精品一区二区三区四区免费观看 | 老司机福利观看| 久久热精品热| 国产美女午夜福利| 中文字幕av成人在线电影| 午夜福利视频1000在线观看| 成人特级黄色片久久久久久久| 69人妻影院| 亚洲人成网站高清观看| 国产精品,欧美在线| 女人被狂操c到高潮| 12—13女人毛片做爰片一| 日韩欧美精品免费久久 | 精品一区二区三区视频在线| 国内精品一区二区在线观看| 日本a在线网址| 国产伦精品一区二区三区四那| 久久婷婷人人爽人人干人人爱| 国产欧美日韩一区二区精品| 9191精品国产免费久久| 麻豆国产97在线/欧美| 精品久久国产蜜桃| 麻豆av噜噜一区二区三区| 欧美+日韩+精品| 亚洲真实伦在线观看| 精品久久国产蜜桃| 可以在线观看的亚洲视频| 亚洲成av人片在线播放无| 我的老师免费观看完整版| 哪里可以看免费的av片| 精品一区二区三区人妻视频| 毛片一级片免费看久久久久 | 小蜜桃在线观看免费完整版高清| 91麻豆精品激情在线观看国产| 91麻豆av在线| 深夜a级毛片| 老司机午夜十八禁免费视频| 又粗又爽又猛毛片免费看| 国产人妻一区二区三区在| 永久网站在线| 俺也久久电影网| av专区在线播放| 日本成人三级电影网站| 一本精品99久久精品77| 91狼人影院| 五月伊人婷婷丁香| 日日干狠狠操夜夜爽| 国产精品久久久久久久久免 | 日韩精品中文字幕看吧| 欧美在线黄色| 欧美性感艳星| 国产av一区在线观看免费| 一进一出抽搐gif免费好疼| 90打野战视频偷拍视频| 特大巨黑吊av在线直播| 成人av一区二区三区在线看| 两个人视频免费观看高清| 色精品久久人妻99蜜桃| 国产一区二区三区在线臀色熟女| 欧美xxxx黑人xx丫x性爽| 欧美国产日韩亚洲一区| 亚洲成人免费电影在线观看| 丰满乱子伦码专区| 国产精品久久久久久久久免 | 日韩免费av在线播放| 久久午夜亚洲精品久久| 1000部很黄的大片| 性插视频无遮挡在线免费观看| 啦啦啦韩国在线观看视频| 变态另类成人亚洲欧美熟女| eeuss影院久久| 精品免费久久久久久久清纯| 欧美中文日本在线观看视频| 成人国产综合亚洲| 在线免费观看的www视频| 国产成人av教育| 国产精品99久久久久久久久| 亚洲av.av天堂| 色尼玛亚洲综合影院| 日本 av在线| 欧美另类亚洲清纯唯美| 男女做爰动态图高潮gif福利片| 日韩欧美在线二视频| 日本 av在线| 欧洲精品卡2卡3卡4卡5卡区| 一进一出好大好爽视频| 国产精品一区二区免费欧美| 波多野结衣高清作品| 欧美一级a爱片免费观看看| 88av欧美| 国产欧美日韩精品一区二区| 最近视频中文字幕2019在线8| 麻豆一二三区av精品| 国产高清视频在线观看网站| 一卡2卡三卡四卡精品乱码亚洲| 久久精品91蜜桃| 真人做人爱边吃奶动态| 国产高潮美女av| 国内毛片毛片毛片毛片毛片| 国内久久婷婷六月综合欲色啪| 国产爱豆传媒在线观看| 最近中文字幕高清免费大全6 | 亚洲精品久久国产高清桃花| 赤兔流量卡办理| 男女床上黄色一级片免费看| 赤兔流量卡办理| 亚洲av电影在线进入| 国产亚洲精品综合一区在线观看| 俄罗斯特黄特色一大片| 黄色一级大片看看| 97热精品久久久久久| 国产老妇女一区| 亚洲五月婷婷丁香| 91字幕亚洲| 成人av在线播放网站| 日韩人妻高清精品专区| 免费在线观看成人毛片| av天堂在线播放| 欧美3d第一页| 黄色女人牲交| 九色国产91popny在线| 国产av不卡久久| 精品国内亚洲2022精品成人| 午夜福利免费观看在线| 色5月婷婷丁香| 久久6这里有精品| 国产精品98久久久久久宅男小说| 一本一本综合久久| 此物有八面人人有两片| 国产成人欧美在线观看| 搡女人真爽免费视频火全软件 | 最近最新中文字幕大全电影3| 成人精品一区二区免费| 男人舔女人下体高潮全视频| 非洲黑人性xxxx精品又粗又长| 精品一区二区三区人妻视频| 国产av不卡久久| 国内精品久久久久久久电影| 久久精品91蜜桃| 色播亚洲综合网| 欧美激情久久久久久爽电影| 嫩草影院新地址| 亚洲av中文字字幕乱码综合| 精品久久国产蜜桃| 脱女人内裤的视频| 免费电影在线观看免费观看| 欧美另类亚洲清纯唯美| avwww免费| 亚洲人成网站在线播| 男人舔女人下体高潮全视频| 在线看三级毛片| 波野结衣二区三区在线| 欧美黄色片欧美黄色片| 中出人妻视频一区二区| 国产精品综合久久久久久久免费| 97热精品久久久久久| 亚洲色图av天堂| 俄罗斯特黄特色一大片| 中文字幕高清在线视频| 国产不卡一卡二| 一级av片app| 色综合亚洲欧美另类图片| 国产综合懂色| 露出奶头的视频| 好看av亚洲va欧美ⅴa在| 一二三四社区在线视频社区8| 深爱激情五月婷婷| 亚洲av第一区精品v没综合| 国产综合懂色| 成人三级黄色视频| 久久久久久久久中文| 色哟哟哟哟哟哟| 亚洲精品久久国产高清桃花| 精品福利观看| 国产高清有码在线观看视频| 午夜日韩欧美国产| 美女高潮喷水抽搐中文字幕| 欧美高清性xxxxhd video| 神马国产精品三级电影在线观看| 高清毛片免费观看视频网站| 看十八女毛片水多多多| 天美传媒精品一区二区| 国产欧美日韩精品一区二区| 亚洲av免费在线观看| 最近最新中文字幕大全电影3| 欧美日韩中文字幕国产精品一区二区三区| 午夜视频国产福利| 91久久精品国产一区二区成人| 小说图片视频综合网站| 性插视频无遮挡在线免费观看| 亚洲欧美日韩东京热| 色精品久久人妻99蜜桃| 精品一区二区三区人妻视频| 国产淫片久久久久久久久 | 99热只有精品国产| 在线国产一区二区在线| 色播亚洲综合网| 又紧又爽又黄一区二区| 国模一区二区三区四区视频| 99久久精品一区二区三区| 欧美高清成人免费视频www| 波多野结衣高清作品| 尤物成人国产欧美一区二区三区| 国产高清激情床上av| 国产aⅴ精品一区二区三区波| 亚洲精品粉嫩美女一区| 国产探花极品一区二区| 日韩高清综合在线| 免费看a级黄色片| 中文字幕免费在线视频6| 欧美黑人欧美精品刺激| 国产精品人妻久久久久久| 嫩草影院入口| 日韩欧美国产一区二区入口| 成人亚洲精品av一区二区| 久久精品影院6| 搞女人的毛片| 国产精品嫩草影院av在线观看 | 婷婷精品国产亚洲av在线| 婷婷丁香在线五月| 亚洲国产欧洲综合997久久,| 亚洲va日本ⅴa欧美va伊人久久| 久久久久九九精品影院| 亚洲美女黄片视频| 观看免费一级毛片| 观看美女的网站| 成人特级黄色片久久久久久久| 亚洲成a人片在线一区二区| 国产精品一及| 赤兔流量卡办理| 色精品久久人妻99蜜桃| 久久精品人妻少妇| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产欧美人成| 波野结衣二区三区在线| 免费在线观看亚洲国产| 亚洲片人在线观看| 亚洲中文日韩欧美视频| 中亚洲国语对白在线视频| 亚洲专区中文字幕在线| 日韩欧美在线二视频| 欧美性猛交黑人性爽| 一级黄色大片毛片| bbb黄色大片| 一a级毛片在线观看| 天堂网av新在线| 一区二区三区四区激情视频 | 老司机午夜福利在线观看视频| 香蕉av资源在线| 好看av亚洲va欧美ⅴa在| 18禁裸乳无遮挡免费网站照片| 神马国产精品三级电影在线观看| 在线播放国产精品三级| 美女xxoo啪啪120秒动态图 | xxxwww97欧美| 宅男免费午夜| 国产伦一二天堂av在线观看| 男人和女人高潮做爰伦理| 日韩欧美国产一区二区入口| 美女高潮的动态| 亚洲成人中文字幕在线播放| 欧美日韩乱码在线| 色综合欧美亚洲国产小说| www日本黄色视频网| 亚洲第一欧美日韩一区二区三区| 国产精品av视频在线免费观看| 欧美极品一区二区三区四区| 久久精品夜夜夜夜夜久久蜜豆| 成人亚洲精品av一区二区| 男人舔女人下体高潮全视频| 黄色丝袜av网址大全| 久久精品国产亚洲av香蕉五月| 亚洲天堂国产精品一区在线| 欧美精品国产亚洲| 人妻丰满熟妇av一区二区三区| 精品久久久久久久久av| 丁香六月欧美| 欧美日韩中文字幕国产精品一区二区三区| 国产精品不卡视频一区二区 | 欧美高清性xxxxhd video| 在线播放无遮挡| 国产精品久久久久久精品电影| 直男gayav资源| 久久精品国产清高在天天线| 欧美日韩亚洲国产一区二区在线观看| avwww免费| 国产精品久久久久久人妻精品电影| 黄色日韩在线| 精品久久久久久久末码| 全区人妻精品视频| 成人av在线播放网站| 日韩免费av在线播放| 日本黄色片子视频| 亚洲成人中文字幕在线播放| 精品久久久久久久久久久久久| 欧美精品国产亚洲| 久久久久久久久中文| 51午夜福利影视在线观看| 国产毛片a区久久久久| a在线观看视频网站| 三级国产精品欧美在线观看| 亚洲欧美精品综合久久99| 欧美性猛交黑人性爽| 久久香蕉精品热| 老司机福利观看| a级毛片免费高清观看在线播放| 亚洲国产高清在线一区二区三| 极品教师在线视频| a级毛片a级免费在线| 亚洲第一区二区三区不卡| 成年女人毛片免费观看观看9| 99在线人妻在线中文字幕| 伦理电影大哥的女人| 麻豆av噜噜一区二区三区| 免费高清视频大片|