• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of two-phase flow field in underwater sealing device based on dynamic mesh

    2015-03-03 08:37:16ZHANGXueweiLIQiangLVMengrou
    關(guān)鍵詞:中北大學(xué)激波工程學(xué)院

    ZHANG Xue-wei, LI Qiang, LV Meng-rou

    (College of Mechatronic Engineering, North University of China, Taiyuan 030051, China)

    張學(xué)偉, 李 強(qiáng), 呂夢(mèng)柔

    (中北大學(xué) 機(jī)電工程學(xué)院, 山西 太原 030051)

    ?

    Numerical simulation of two-phase flow field in underwater sealing device based on dynamic mesh

    ZHANG Xue-wei, LI Qiang, LV Meng-rou

    (CollegeofMechatronicEngineering,NorthUniversityofChina,Taiyuan030051,China)

    In order to speed underwater launch of minor-caliber weapons, a sealing device can be set in front of underwater muzzle to separate water, preventing the muzzle from water immersion. By establishing and simplifying the model of underwater weapon sealing device and unstructured mesh computing domain model based on computational fluid dynamics (CFD), dynamic mesh and user defined function (UDF), the N-S equation is solved and the numerical analysis and calculation of the complex two-phase flow inside the sealing device are carried out. The results show that the gas discharged from the sealing device is conducive to the formation of the projectile supercavity. When the projectile is launched at 5 m under water, the shock wave before and after the projectile has impact on the box body up to 100 MPa, therefore the sealing device must be strong enough. The research results have the vital significance to the design of underwater weapon sealing device and the formation of the projectile supercavitation.

    two-phase flow; supercavitation; sealing device; computational fluid dynamics (CFD); dynamic mech

    As a result of the change of international situation, the water weapon has got rapid development. The density of water is about 850 times as dense as that of air, thus water resistance is too large for projectile weapons to hit the target at a distance. Therefore, how to increase the initial velocity and decrease the resistance of underwater weapon inevitably becomes the key of the research.

    In recent years, many experts and scholars have done a lot of work in the numerical simulation of underwater jet and supercavity based on computational fluid dynamics (CFD). TANG, et al.[1]used volume of fluid (VOF) model to simulate the evolution of underwater gas jet. XU Jia-wei, et al.[2-3]used mixture model based on FLUENT software to study the unsteady evolution process of nozzle air-water two-phase flow field at different underwater depths in rocket ignition experiment. CHEN Huan-long, et al.[4-5]calculated the initial flow of underwater gas jet using axisymmetric, inviscid and compressible Euler equations, revealed the gas-water interaction and shock wave shape as well as the formation and evolution process of jet air bags at jet initial stage, and confirmed the similarity of near flow fields of the gas jet in the water and gas. ZHU Lin, et al. used the dynamic mesh technique and mixed multiple flow model to get the effect of thrusting force on production, variation and development processes of water cavity and natural cavity hydrodynamics of projectile bodies[6]. YI Wen-jun, et al. used mixed multi-phase flow model of Fluet6.2 to conduct the simulation of resistance characteristics of underwater projectile[7]. Uhlman and Kinnas[8-10]and Fine used the velocity potential modified boundary element method to carry out nonlinear simulation on many cases of partial cavity flow. But the analysis of muzzle gas injecting sealed container is rare. This paper, using mixed multiple flow model and dynamic mesh technology, by solving N-S equations, carries numerical analysis and calculation for complex water-gas two-phase flow inside it and gets the distribution of the flow field inside the sealing device. Furthermore, the strength of the sealing device and bubble formation of supercavitation are analyzed.

    1 Control equation and numerical method

    1.1 Control equation

    The basic laws of conservation in the element include the following equations.

    Continuity equation

    (1)

    Momentum conservation theorem

    (2)

    Energy conservation equation

    (3)

    whereρstands for the density;t, the time;V, the velocity vector;Sm, the mass added to the continuous phase;p, the pressure born on upon fluid micelle;gandFrepresent gravity and other external volume forces exerted on the infinitesimal;τ, the viscous stress tensor on infinitesimal surface due to molecular viscosity;E, the fluid micelle gross energy;T, the temperature;Jj, the diffusion flux ofj;keff, effective thermal conductivity; andSh, the other customized heat sources.

    1.2 Cavitation model

    Regardless of the influence of the latent heat of evaporation, it is done in the isothermal process. Considering the pressure and bubble volume, Rayleigh-Plesset equation is written as

    (4)

    wherepBis the pressure inside the cavity, which is the sum of steam pressurepvand noncondensable gas partial pressurep;σis coefficient of surface tension. Simulation calculation functions for growth and rupture process of cavitation are given by

    (5)

    2 Dynamic meshing theory and computation model

    2.1 Dynamic mesh updating method

    FLUENT provides three methods of dynamic meshing movement to update the mesh after deformation, including spring smoothing method (smoothing), dynamic layer method (layering) and local mesh reconstruction method (remeshing). Spring smoothing method is to idealize the meshes between the nodes as a spring system. The movement of boundary nodes produces spring force between the nodes, and the force spreads along the downstream nodes in turn and eventually produces a new spring system. Dynamic layer method is that whether to increase or to decrease the mesh layer number is determined by the height of mesh layer close to the moving object surface. In FLUENT, when the mesh cell layer near the border increases or reduces to a certain extent, the mesh automatically splits or merges. Local mesh reconstruction method refers to the interpolation reconstruction method for distorted mesh because the movement of boundary may result in serious quality decline, even negative volume, which increases the difficultly for next solution. The methods adopted in this article to control mesh deformation are the spring smoothing method and the local mesh reconstruction method.

    2.2 Establishment of computation model

    A 3D model profile of a sealing device is shown in Fig.1. The whole sealing device is put under water at a depth of 5 m whose inside pressure and water pressure are equal before firing. The valve (unshown in Fig.1) of the sealing device under the water pressure acts as a seal. Mesh partition method is used for the calculation region, and mesh refinement is processed within the tube and sealing device. The farther from the tank, the sparser the mesh is. Boundary conditions include pressure export, pressure inlet and the solid wall boundary. The related parameters of pressure export and the depth of water are the same, and the pressure inlet parametes are defined based on field function. At the same time, FLUENT UDF is used to control projectile motion parameters. The initial velocity of the projectile is 890 m/s.

    Fig.1 Sealing device with a tube

    Fig.2 exhibits the computation mesh in flow field of the sealing device with a tube.

    Fig.2 Computation mesh in flow field of sealing device with a tube

    In the process of the projectile entering into the water, air, vapor and liquid water are allowed to interpenetrate each other and move at different speeds. VOF model is not applicable, mixture model should be shosen.

    FLUENT simulation settings: ① Calculation is based on three-phase flow, whose major phase is water and minor phases are vapor and compressible gas; ② Realizablek-εmodel is selected as turbulence model, PRESTO is as the pressure and velocity fields coupled mode; ③ Gravity effect should be considered, and the change curve of water pressure with depth is defined based on field function, Patch for repairing it in the computational domain; ④ Using the cavitation model is opened.

    Making unsteady calculation according to the above settings, we can get better convergence by selecting the appropriate iteration step length and the relaxion factor.

    3 Simulation and analysis

    Fig.3 is the nephogram of gas-liquid phase distribution at different times after projectile is out of the chamber. It can be seen that the moment the projectile firing, shock wave in front of projectile is generated by squeezing the air in front of projectile when the projectile moves at high speed in the tube. The gas expands rapidly after entering the sealing device, which results in pressure rising and part of the gas is pushed through the valve into the water forming bubbles. With the projectile velocity increasing, the shock waves in front of the projectile keep swelling and the gas inside the sealing device is constantly discharged into the water, and bubbles increase quickly. After 3.3 ms, gunpowder gas was totally released into the case and enough pressure is created to form a big bubble to wrap the projectile outside the sealing device. At 3.5 ms, the projectile moved throughout the sealing device into the big bubble in the water. At 3.8 ms, the projectile pierced the big bubble into the water, but was still wrapped by cavitation bubbles which are natural supercavitation. The bubbles in the valve in the seal device is helpful to provide the projectile with ventilated supercavitation. The device combines the ventilated supercavitation with natural supercavitation perfectly.

    Fig.3 Nephogram of gas-liquid phase distribution at different times after firing

    Fig.4 is the pressure distribution curve in axial direction of gun when the projectile is fired out of muzzle and goes into the sealing device at different times.

    It can be seen that at 3.3 ms, warhead is just fired out of the tube. The pressure distribution behind the projectile is linear, but the pressure in front of the projectile is higher than atmospheric pressure. This is because the moving projectile in the tube pushes the air in the tube leaked behind the projectile as well as gunpowder gas into the sealing device.

    At 3.5 ms, the projectile goes through the tube into the sealing device, the pressure behind the projectile spreads instantly in the sealing device. But unlike in the air, the pressure diffusion is restricted by the sealing device, resulting in high pressure in the sealing device. The projectile under high pressure continues to move forward and warhead appears in high pressure area. For high-speed projectile, it moves in the sealing device in a very short time, therefore, the effect on the projectile velocity can be neglected. At the time of 3.8 ms, the projectile goes into the water and the end of the projectile appears in low pressure area, which is conducive to the formation of cavitation bubble.

    At 4.0 ms, the pressure of gunpowder gas is still greater than the water pressure. It may be impossible for the gunpowder gas to be instantly released into the sealing device because of the small mouth of the valve, which means the water not going back to the sealing device under super-high firing frequency can be realized absolutely.

    During the whole process, the gunpowder gas is kept in the sealing device and the maxium shock wave can reach up to 100 MPa generated by gunpowder gas at high temperature and high pressure, which requires strong strength capacity of the sealing device.

    Fig.4 Pressure distribution curves in axial direction of gun at different times after projectile is out of muzzle

    4 Conclusion

    The following conclusion can be drawn based on numerical simulation on the complex two-phase flow in the sealing device of underwater weapon by using FLUENT. When the underwater weapon with the sealing device is fired, gunpowder gas pressure distribution in the sealing device is extremely complex. The high pressure also requires strong strength of the sealing device. With high-speed movement, the gas in front of the projectile is extruded and shock wave is formed. The gas in front of the projectile and gunpowder gas leaked from the clearance between projectile and tube expand rapidly after entering sealing device, which results in pressure rising in the sealing device. With the increasing of pressure, the gas inside the sealing device is discharged into the water. As the projectile entering the water, the pressure inside the sealing device is strong enough to prevent the reverse flow of water. Under ultra-high frequency shooting, the pressure of the sealing device can ensure that the water will not flow back at the depth of 25 m under water; at the same time, the actuating pressure of the sealing device caused by the projectile shock wave reach up to 100 MPa. The research results may have some significance to the design of underwater weapon sealing device and the formation of the projectile supercavitation.

    [1] Tang J N, Wang N F, Wei Shyy. Flow structure of gaseous jets injected into water for underwater propulsion. Acta Mechanica Sinica, 2011, 27(4): 461-472.

    [2] CHEN Huan-long, WANG Ning, LIU Hua-ping, et al. Investigation of nozzle gas jet characteristics with different launch depth underwater. Chinese Journal of Hydrodynamics, 2012, 27(6): 659-664.

    [3] XU Jia-wei. Numerical simulation of gas jet due to underwater missle of different ocean depths. Harbin: Harbin Institute of Technology, 2009: 33-89.

    [4] HE Xiao-yan, MA Han-dong, JI Chu-qun. Numerical simulation of the underwater gas jets formed. Journal of Hydrodynamics A, 2004, 19(2): 207-212.

    [5] HE Xiao-yan, MA Han-dong, WANG Qiang. Temporal instability of compressible 3D gas injected in liquids. Acta Aerodynamica Sinica, 2002, 20(1):78-83.

    [6] ZHU lin, YUAN Xu-long, WANG Ya-dong. The influence of the thrusting force on the characters of the high speed flow field. Journal of Air Force Engineering University(Natural Science Edition), 2014, 15(1): 10-14.

    [7] YI Wen-jun, WANG Zhong-yuan, XIONG Tian-hong, et al. Research on drag reduction characteristics of a underwater high-speed supercavitation projectile. Journal of Ballistics, 2008, 20(4): 1-4.

    [8] Uhalman J S. The surface singularity method applied to partially cavitating hydofoils. Journal of Ship Research, 1987: 23-36.

    [9] Uhalman J S. The surface singulaity or boundary integral method applied to supercavitating hydrofoils. Journal of ship Research, 1989, 31(1): 51-65.

    [10] Kinnas S A, Fine N E. A numerical nonlinear analysis of the flow around two-and three-dimensional partially cavitating hydrofoils. Journal of Fluid Mechanics, 1993(254): 151-181.

    基于動(dòng)網(wǎng)格的水下發(fā)射裝置兩相流研究

    為防止水下武器發(fā)射時(shí)水流浸沒(méi)身管, 提高小口徑武器在水下發(fā)射的初速, 水下武器膛口前需設(shè)計(jì)密封裝置。 建立水下武器密封裝置模型的非結(jié)構(gòu)網(wǎng)格計(jì)算域模型, 利用計(jì)算流體動(dòng)力學(xué)(CFD)、 動(dòng)網(wǎng)格和UDF等相關(guān)知識(shí), 通過(guò)求解N-S方程, 對(duì)密封裝置內(nèi)復(fù)雜的兩相流進(jìn)行了數(shù)值分析計(jì)算。 仿真結(jié)果表明, 密封裝置內(nèi)排出的氣體有利于射彈超空炮的形成; 此外, 在水下5 m發(fā)射時(shí)彈前激波和彈后激波對(duì)箱體沖擊作用力峰值可達(dá)100 MPa, 因此要求密封裝置要有足夠的強(qiáng)度。

    兩相流; 超空泡; 密封裝置; 計(jì)算流體動(dòng)力學(xué); 動(dòng)網(wǎng)格

    ZHANG Xue-wei, LI Qiang, LV Meng-rou. Numerical simulation of two-phase flow field in underwater sealing device based on dynamic mesh. Journal of Measurement Science and Instrumentation, 2015, 6(3): 253-257.[

    張學(xué)偉, 李 強(qiáng), 呂夢(mèng)柔

    (中北大學(xué) 機(jī)電工程學(xué)院, 山西 太原 030051)

    10.3969/j.issn.1674-8042.2015.03.009]

    Received date: 2015-05-06 Foundation item: National Natural Science Foundation of China (No.51175481)

    ZHANG Xue-wei (1192579296@qq.com)

    1674-8042(2015)03-0253-05 doi: 10.3969/j.issn.1674-8042.2015.03.009

    CLD number: TJ65; TP391.9 Document code: A

    猜你喜歡
    中北大學(xué)激波工程學(xué)院
    《中北大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》征稿啟事
    福建工程學(xué)院
    福建工程學(xué)院
    中北大學(xué)信創(chuàng)產(chǎn)業(yè)學(xué)院入選首批現(xiàn)代產(chǎn)業(yè)學(xué)院
    一種基于聚類分析的二維激波模式識(shí)別算法
    基于HIFiRE-2超燃發(fā)動(dòng)機(jī)內(nèi)流道的激波邊界層干擾分析
    《中北大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡(jiǎn)則
    福建工程學(xué)院
    有機(jī)相化學(xué)鍍鋁法制備Al/石墨烯復(fù)合材料粉末
    斜激波入射V形鈍前緣溢流口激波干擾研究
    看免费av毛片| 一区在线观看完整版| 精品人妻在线不人妻| 在线观看一区二区三区| 淫妇啪啪啪对白视频| 操美女的视频在线观看| 三级毛片av免费| 女性生殖器流出的白浆| 国产在线观看jvid| 国产99白浆流出| 热re99久久国产66热| 精品国产乱子伦一区二区三区| 日韩大码丰满熟妇| 精品乱码久久久久久99久播| 天堂俺去俺来也www色官网| 99精品在免费线老司机午夜| aaaaa片日本免费| 免费搜索国产男女视频| 午夜福利一区二区在线看| 三上悠亚av全集在线观看| 精品国产亚洲在线| 国产视频一区二区在线看| 亚洲avbb在线观看| 99riav亚洲国产免费| 国产精品爽爽va在线观看网站 | 久久香蕉精品热| 黑人欧美特级aaaaaa片| 欧美日韩亚洲国产一区二区在线观看| 性少妇av在线| 三级毛片av免费| 中文字幕人妻丝袜制服| 自线自在国产av| 在线观看66精品国产| 国产精品98久久久久久宅男小说| 不卡av一区二区三区| 一边摸一边抽搐一进一出视频| 99国产精品一区二区三区| 国产人伦9x9x在线观看| 真人一进一出gif抽搐免费| 亚洲熟妇中文字幕五十中出 | 18禁美女被吸乳视频| 国产av精品麻豆| 精品久久久久久久毛片微露脸| 国产精品二区激情视频| 最好的美女福利视频网| 丰满饥渴人妻一区二区三| 黑人操中国人逼视频| 国产精品永久免费网站| 多毛熟女@视频| www.精华液| aaaaa片日本免费| 99riav亚洲国产免费| 一二三四社区在线视频社区8| 日本五十路高清| ponron亚洲| 岛国在线观看网站| 搡老乐熟女国产| 日韩有码中文字幕| 一夜夜www| 亚洲精品粉嫩美女一区| 日韩欧美一区视频在线观看| 妹子高潮喷水视频| 国产精品99久久99久久久不卡| 一级毛片女人18水好多| 国产人伦9x9x在线观看| 国产精品秋霞免费鲁丝片| 国产av精品麻豆| 久久中文看片网| 婷婷精品国产亚洲av在线| 午夜激情av网站| 99国产精品99久久久久| 久久伊人香网站| 黄色片一级片一级黄色片| 久久亚洲真实| 久久久久久久午夜电影 | 一级作爱视频免费观看| 一个人观看的视频www高清免费观看 | 老司机在亚洲福利影院| 国产99久久九九免费精品| 91老司机精品| 50天的宝宝边吃奶边哭怎么回事| 日本vs欧美在线观看视频| 满18在线观看网站| 国产亚洲欧美在线一区二区| 亚洲成av片中文字幕在线观看| 丰满的人妻完整版| 99热只有精品国产| av视频免费观看在线观看| 99国产精品免费福利视频| 国产精品国产av在线观看| 欧美在线黄色| 1024香蕉在线观看| 91成人精品电影| 久久久久久免费高清国产稀缺| 精品国内亚洲2022精品成人| 欧美久久黑人一区二区| 久久人妻av系列| 91精品国产国语对白视频| av电影中文网址| 美国免费a级毛片| 欧美大码av| 国产亚洲欧美精品永久| 亚洲第一欧美日韩一区二区三区| 免费在线观看亚洲国产| 性少妇av在线| 免费久久久久久久精品成人欧美视频| 午夜成年电影在线免费观看| 亚洲欧美激情综合另类| 女人精品久久久久毛片| 高清av免费在线| 老司机午夜福利在线观看视频| 久久久久久亚洲精品国产蜜桃av| 精品一区二区三区四区五区乱码| 老司机福利观看| 精品久久久久久久久久免费视频 | 免费av中文字幕在线| 黄色片一级片一级黄色片| av福利片在线| 亚洲免费av在线视频| 免费av中文字幕在线| 99在线视频只有这里精品首页| 午夜免费激情av| а√天堂www在线а√下载| 久久精品人人爽人人爽视色| 一二三四社区在线视频社区8| 亚洲男人天堂网一区| 黄片小视频在线播放| 日韩欧美一区视频在线观看| 久久亚洲精品不卡| 亚洲视频免费观看视频| 成年人免费黄色播放视频| 日本精品一区二区三区蜜桃| 免费av中文字幕在线| 在线看a的网站| 国产男靠女视频免费网站| 我的亚洲天堂| 亚洲aⅴ乱码一区二区在线播放 | www.999成人在线观看| 国产精品免费视频内射| 中出人妻视频一区二区| 极品教师在线免费播放| 亚洲国产欧美日韩在线播放| 国产片内射在线| 免费女性裸体啪啪无遮挡网站| 自线自在国产av| 欧美日韩国产mv在线观看视频| 国产97色在线日韩免费| 大香蕉久久成人网| 国产欧美日韩一区二区精品| 女人被狂操c到高潮| 一区在线观看完整版| 国产精华一区二区三区| 国产精品 国内视频| 国产黄色免费在线视频| 精品熟女少妇八av免费久了| 婷婷丁香在线五月| 自拍欧美九色日韩亚洲蝌蚪91| 桃色一区二区三区在线观看| 多毛熟女@视频| 中文字幕av电影在线播放| 亚洲av五月六月丁香网| 超碰97精品在线观看| av免费在线观看网站| 国产成人精品久久二区二区免费| 淫妇啪啪啪对白视频| 精品国产乱子伦一区二区三区| 久久国产亚洲av麻豆专区| 中文字幕精品免费在线观看视频| 亚洲va日本ⅴa欧美va伊人久久| 免费一级毛片在线播放高清视频 | 欧美日韩福利视频一区二区| 男女之事视频高清在线观看| av超薄肉色丝袜交足视频| 亚洲一卡2卡3卡4卡5卡精品中文| 少妇的丰满在线观看| 久久人妻av系列| 777久久人妻少妇嫩草av网站| 又黄又粗又硬又大视频| 亚洲一区中文字幕在线| 国产精品亚洲一级av第二区| 欧美日韩av久久| 一边摸一边抽搐一进一出视频| 国产视频一区二区在线看| av中文乱码字幕在线| 婷婷六月久久综合丁香| 国产精品二区激情视频| 日韩视频一区二区在线观看| 黄色视频,在线免费观看| 香蕉丝袜av| 亚洲国产精品一区二区三区在线| 99精品久久久久人妻精品| 多毛熟女@视频| 女人被狂操c到高潮| 性欧美人与动物交配| 成年女人毛片免费观看观看9| 久久久久国产一级毛片高清牌| √禁漫天堂资源中文www| 久久人妻av系列| 啦啦啦在线免费观看视频4| 成人精品一区二区免费| 天堂影院成人在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜福利一区二区在线看| 久久天堂一区二区三区四区| 亚洲激情在线av| 欧美老熟妇乱子伦牲交| 91精品三级在线观看| 久久久久久久午夜电影 | 久久国产精品人妻蜜桃| 亚洲精品国产色婷婷电影| 天堂影院成人在线观看| 人人妻人人添人人爽欧美一区卜| 看黄色毛片网站| 亚洲自偷自拍图片 自拍| 老司机靠b影院| 成人特级黄色片久久久久久久| 日韩中文字幕欧美一区二区| 天天躁夜夜躁狠狠躁躁| 成人三级黄色视频| 亚洲精品国产精品久久久不卡| 1024视频免费在线观看| 成年女人毛片免费观看观看9| 国产aⅴ精品一区二区三区波| 我的亚洲天堂| 在线十欧美十亚洲十日本专区| 身体一侧抽搐| 婷婷六月久久综合丁香| 性色av乱码一区二区三区2| 男人的好看免费观看在线视频 | 亚洲第一av免费看| 久久精品国产清高在天天线| 一夜夜www| 很黄的视频免费| 国产成人av激情在线播放| 丁香六月欧美| 99国产精品99久久久久| 国产乱人伦免费视频| 久久婷婷成人综合色麻豆| 欧美亚洲日本最大视频资源| 无遮挡黄片免费观看| 亚洲熟妇中文字幕五十中出 | 亚洲国产欧美网| 亚洲国产精品合色在线| 国产99白浆流出| 免费看a级黄色片| 午夜福利,免费看| 免费在线观看完整版高清| 国产精品日韩av在线免费观看 | 90打野战视频偷拍视频| 麻豆国产av国片精品| 国产区一区二久久| 久久午夜亚洲精品久久| 久久精品成人免费网站| av片东京热男人的天堂| 欧美日韩国产mv在线观看视频| 男人舔女人的私密视频| 在线免费观看的www视频| 国产又爽黄色视频| 另类亚洲欧美激情| 亚洲中文av在线| 亚洲aⅴ乱码一区二区在线播放 | 69av精品久久久久久| 久久性视频一级片| x7x7x7水蜜桃| 久久亚洲真实| 亚洲精品粉嫩美女一区| 88av欧美| 日本欧美视频一区| 黑人巨大精品欧美一区二区mp4| 色播在线永久视频| 久久影院123| 最新在线观看一区二区三区| 国产成人av教育| 99在线人妻在线中文字幕| 80岁老熟妇乱子伦牲交| 亚洲精品在线观看二区| 亚洲成人精品中文字幕电影 | 男男h啪啪无遮挡| 久久人人爽av亚洲精品天堂| av电影中文网址| 国产无遮挡羞羞视频在线观看| 精品国产美女av久久久久小说| 国产成人精品无人区| 人妻久久中文字幕网| 在线十欧美十亚洲十日本专区| 日本五十路高清| 久久久久久免费高清国产稀缺| 国产精品香港三级国产av潘金莲| 亚洲七黄色美女视频| 亚洲成国产人片在线观看| 欧美人与性动交α欧美软件| 亚洲中文字幕日韩| 一进一出抽搐gif免费好疼 | 免费女性裸体啪啪无遮挡网站| 亚洲精华国产精华精| 亚洲avbb在线观看| 美女国产高潮福利片在线看| 亚洲国产毛片av蜜桃av| 女生性感内裤真人,穿戴方法视频| 男女床上黄色一级片免费看| 久久人妻熟女aⅴ| 99精品久久久久人妻精品| 自拍欧美九色日韩亚洲蝌蚪91| 我的亚洲天堂| 精品国产超薄肉色丝袜足j| 国产精品免费一区二区三区在线| 日韩大码丰满熟妇| 亚洲欧洲精品一区二区精品久久久| 精品国内亚洲2022精品成人| 女同久久另类99精品国产91| 亚洲成人国产一区在线观看| 天天添夜夜摸| 大香蕉久久成人网| 午夜久久久在线观看| 中文亚洲av片在线观看爽| a级片在线免费高清观看视频| 大香蕉久久成人网| 欧美最黄视频在线播放免费 | 国产成人av激情在线播放| 韩国av一区二区三区四区| 国产男靠女视频免费网站| 亚洲欧美一区二区三区黑人| 一级作爱视频免费观看| 久久久国产成人精品二区 | xxx96com| 欧美大码av| 搡老乐熟女国产| 淫妇啪啪啪对白视频| 欧美最黄视频在线播放免费 | 亚洲欧美日韩高清在线视频| 精品久久久久久久久久免费视频 | 久久伊人香网站| 高清av免费在线| 国产在线精品亚洲第一网站| 日日夜夜操网爽| 亚洲 欧美一区二区三区| 免费久久久久久久精品成人欧美视频| 中出人妻视频一区二区| 亚洲成国产人片在线观看| 欧美中文日本在线观看视频| 首页视频小说图片口味搜索| 最新在线观看一区二区三区| 夜夜夜夜夜久久久久| 夜夜夜夜夜久久久久| 国产精品亚洲av一区麻豆| 精品久久久久久成人av| 无限看片的www在线观看| 成人国产一区最新在线观看| 亚洲久久久国产精品| 99riav亚洲国产免费| 日本三级黄在线观看| 757午夜福利合集在线观看| av中文乱码字幕在线| 女生性感内裤真人,穿戴方法视频| 在线观看免费日韩欧美大片| 国产精品永久免费网站| 欧美激情久久久久久爽电影 | 久久精品91蜜桃| 亚洲精品一二三| 免费看十八禁软件| √禁漫天堂资源中文www| 欧美不卡视频在线免费观看 | 久久久久久久久中文| 日韩免费av在线播放| 99国产综合亚洲精品| 一区二区日韩欧美中文字幕| 欧美日韩亚洲综合一区二区三区_| 成人手机av| 久久国产亚洲av麻豆专区| 欧美在线黄色| 午夜精品在线福利| 日韩免费高清中文字幕av| 一a级毛片在线观看| 国产黄色免费在线视频| 亚洲欧美精品综合久久99| 亚洲午夜理论影院| 亚洲精品美女久久av网站| 两性夫妻黄色片| 色综合婷婷激情| 日韩欧美一区二区三区在线观看| 交换朋友夫妻互换小说| www国产在线视频色| 水蜜桃什么品种好| 日本精品一区二区三区蜜桃| 一级,二级,三级黄色视频| 老司机午夜福利在线观看视频| 窝窝影院91人妻| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩福利视频一区二区| 好看av亚洲va欧美ⅴa在| 免费少妇av软件| 久久精品国产亚洲av高清一级| 亚洲成a人片在线一区二区| 不卡av一区二区三区| 在线观看免费视频网站a站| a级毛片在线看网站| 中出人妻视频一区二区| 热re99久久国产66热| 天天影视国产精品| 大香蕉久久成人网| 咕卡用的链子| 欧美激情 高清一区二区三区| 精品国产一区二区久久| 欧美激情久久久久久爽电影 | 国产成人欧美| 色综合站精品国产| 久久久久国产一级毛片高清牌| 手机成人av网站| 1024香蕉在线观看| 在线观看日韩欧美| 国产精品乱码一区二三区的特点 | 免费少妇av软件| 久久99一区二区三区| 久久久国产成人免费| 搡老乐熟女国产| 日韩精品青青久久久久久| 少妇被粗大的猛进出69影院| 无人区码免费观看不卡| 亚洲自偷自拍图片 自拍| 亚洲av成人不卡在线观看播放网| 俄罗斯特黄特色一大片| 亚洲成国产人片在线观看| 一二三四在线观看免费中文在| 天堂动漫精品| 精品一区二区三区四区五区乱码| 老司机深夜福利视频在线观看| 国产免费av片在线观看野外av| 麻豆国产av国片精品| 好看av亚洲va欧美ⅴa在| 在线观看免费视频网站a站| 久久精品亚洲av国产电影网| 国产精品野战在线观看 | www.www免费av| 日韩大尺度精品在线看网址 | 18禁观看日本| 欧美日韩乱码在线| 校园春色视频在线观看| 欧美不卡视频在线免费观看 | 女人高潮潮喷娇喘18禁视频| 亚洲欧美一区二区三区黑人| 夫妻午夜视频| 不卡一级毛片| 国产精品自产拍在线观看55亚洲| 自拍欧美九色日韩亚洲蝌蚪91| 侵犯人妻中文字幕一二三四区| 国产欧美日韩精品亚洲av| aaaaa片日本免费| 一边摸一边抽搐一进一出视频| a级片在线免费高清观看视频| 操出白浆在线播放| 免费在线观看视频国产中文字幕亚洲| 国产高清videossex| 色婷婷久久久亚洲欧美| 国产亚洲欧美在线一区二区| 欧美另类亚洲清纯唯美| 日本黄色视频三级网站网址| 国产成人精品在线电影| √禁漫天堂资源中文www| 91字幕亚洲| 欧美精品一区二区免费开放| 高清欧美精品videossex| 长腿黑丝高跟| 成人18禁在线播放| 色在线成人网| 亚洲一卡2卡3卡4卡5卡精品中文| 高清欧美精品videossex| 欧美激情 高清一区二区三区| 十分钟在线观看高清视频www| 亚洲精品中文字幕在线视频| 中亚洲国语对白在线视频| 国产伦一二天堂av在线观看| 99在线人妻在线中文字幕| www.熟女人妻精品国产| 国产男靠女视频免费网站| 日韩大码丰满熟妇| 一本大道久久a久久精品| 岛国视频午夜一区免费看| 免费不卡黄色视频| 变态另类成人亚洲欧美熟女 | 亚洲精品美女久久久久99蜜臀| 婷婷丁香在线五月| 亚洲精品在线观看二区| 国产av又大| 九色亚洲精品在线播放| 一个人免费在线观看的高清视频| av天堂久久9| 亚洲国产精品sss在线观看 | www国产在线视频色| 黄色 视频免费看| 18禁裸乳无遮挡免费网站照片 | 免费看a级黄色片| 亚洲精品中文字幕一二三四区| 亚洲欧美日韩高清在线视频| 久热这里只有精品99| 亚洲成国产人片在线观看| 午夜免费成人在线视频| 高清毛片免费观看视频网站 | 亚洲 国产 在线| 美女 人体艺术 gogo| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲人成伊人成综合网2020| 真人做人爱边吃奶动态| 免费在线观看影片大全网站| 久久99一区二区三区| 我的亚洲天堂| 水蜜桃什么品种好| 久久久久久大精品| 国产日韩一区二区三区精品不卡| 免费看a级黄色片| 如日韩欧美国产精品一区二区三区| 老司机深夜福利视频在线观看| 日韩欧美三级三区| 久久伊人香网站| 搡老岳熟女国产| 国产亚洲欧美98| 精品电影一区二区在线| 欧美乱妇无乱码| 女人爽到高潮嗷嗷叫在线视频| avwww免费| 黄色片一级片一级黄色片| 色老头精品视频在线观看| 日本黄色日本黄色录像| 成人亚洲精品av一区二区 | 国产精品av久久久久免费| 成人18禁高潮啪啪吃奶动态图| 日本欧美视频一区| 视频区图区小说| 午夜两性在线视频| 亚洲精品中文字幕一二三四区| 免费在线观看日本一区| 日韩欧美一区视频在线观看| 国产精品亚洲av一区麻豆| 精品国产超薄肉色丝袜足j| 欧美日韩乱码在线| 欧美乱码精品一区二区三区| 精品久久久久久久毛片微露脸| 精品国产乱子伦一区二区三区| 另类亚洲欧美激情| 91麻豆av在线| 999久久久国产精品视频| 十八禁人妻一区二区| 欧美性长视频在线观看| videosex国产| xxx96com| 国产主播在线观看一区二区| 国产精品亚洲av一区麻豆| 久久久久久免费高清国产稀缺| 精品福利永久在线观看| 免费在线观看视频国产中文字幕亚洲| 女性生殖器流出的白浆| 国产aⅴ精品一区二区三区波| 亚洲精品一区av在线观看| 欧美成狂野欧美在线观看| 欧美精品啪啪一区二区三区| 国产亚洲欧美在线一区二区| 级片在线观看| 午夜福利欧美成人| 亚洲一卡2卡3卡4卡5卡精品中文| 一二三四在线观看免费中文在| 日韩视频一区二区在线观看| 国产aⅴ精品一区二区三区波| avwww免费| 99久久综合精品五月天人人| 男人舔女人的私密视频| 人成视频在线观看免费观看| 欧美乱色亚洲激情| 成人亚洲精品一区在线观看| 夜夜躁狠狠躁天天躁| 久久精品国产亚洲av香蕉五月| 女警被强在线播放| 日韩中文字幕欧美一区二区| 99国产精品一区二区蜜桃av| 50天的宝宝边吃奶边哭怎么回事| 国产真人三级小视频在线观看| 桃色一区二区三区在线观看| 亚洲专区中文字幕在线| 久久久久九九精品影院| www日本在线高清视频| 五月开心婷婷网| 黄色a级毛片大全视频| 在线永久观看黄色视频| 99香蕉大伊视频| 在线观看免费视频日本深夜| 电影成人av| 午夜日韩欧美国产| 一二三四社区在线视频社区8| 在线播放国产精品三级| 午夜a级毛片| 自拍欧美九色日韩亚洲蝌蚪91| 麻豆久久精品国产亚洲av | 美女福利国产在线| 欧美黑人欧美精品刺激| 91老司机精品| 亚洲成人国产一区在线观看| 黄色a级毛片大全视频| 成年人免费黄色播放视频| 成人影院久久| av欧美777| 老司机福利观看| 国产成人欧美| 久久天躁狠狠躁夜夜2o2o| 欧美不卡视频在线免费观看 | 少妇裸体淫交视频免费看高清 | 欧美日韩一级在线毛片| 99久久久亚洲精品蜜臀av| 一进一出抽搐动态| 久久久久亚洲av毛片大全| 性少妇av在线| 悠悠久久av| 99国产精品一区二区蜜桃av| 国产精品99久久99久久久不卡| 久久亚洲真实| 国产精品免费视频内射| 这个男人来自地球电影免费观看| www日本在线高清视频|