石月蓮
(晉中學(xué)院 數(shù)學(xué)學(xué)院,山西 晉中 030619)
關(guān)于一類捕食-食餌模型恢復(fù)率的研究
石月蓮
(晉中學(xué)院 數(shù)學(xué)學(xué)院,山西 晉中 030619)
研究食餌具有常數(shù)投放率及受食餌最大容量影響下捕食者的捕獲率,引用參考文獻(xiàn)所提到的“恢復(fù)率”和“預(yù)警長度”這兩個(gè)概念,通過理論計(jì)算,繪制圖像及算例,得出:本模型的預(yù)警長度較長,生態(tài)工作者可以有足夠的時(shí)間采取措施應(yīng)對轉(zhuǎn)移,有較好的預(yù)警效果.
捕食-食餌模型;恢復(fù)率;均衡點(diǎn)
[6]中,對食餌定義了具有常數(shù)投放率,討論了該模型中的恢復(fù)率與食餌最大容量之間的關(guān)系,本文在文獻(xiàn)[6]的基礎(chǔ)上,考慮了捕獲率受食餌數(shù)量最大容量的影響,使模型加以改進(jìn),討論了系統(tǒng)的恢復(fù)率與食餌最大容量之間的關(guān)系及此系統(tǒng)下對預(yù)警長度的影響.
記V(t)表示食餌種群的數(shù)量大小,P(t)表示捕食者種群的數(shù)量大小,r表示食餌V的增長率,k表示食餌種群P的增長率,J表示平衡時(shí)食餌的數(shù)量.A表示捕食者-食餌的轉(zhuǎn)化率,K表示食餌的最大容量[7],文獻(xiàn)[6]研究了:
(1)
本文在文獻(xiàn)[6]的基礎(chǔ)上添加了捕獲率受被捕者數(shù)量最大容量的影響,模型改進(jìn)為:
(2)
(3)
經(jīng)計(jì)算,可知(3)式中有兩個(gè)平衡點(diǎn).
(4)
當(dāng)K=J時(shí),tra(Γ)<0,
tra(Γ)是Γ的增函數(shù).
類似于參考文獻(xiàn)[6][7],把恢復(fù)率定義為穩(wěn)定的平衡點(diǎn)處雅克比矩陣主特征值的實(shí)部的絕對值,記λdom為Jacobian的主特征值.
恢復(fù)率ρ為:ρ=|Re(λdom)|
此時(shí),當(dāng)Kr 該模型中的參數(shù)A,r,k對Kc-Kr的影響與文獻(xiàn)[6]中的相同,而當(dāng)K→∞時(shí),Kr→Kc. 圖1 ρ的圖像,其中黑色a和紅色b分別對應(yīng)A=0.1和A=0.5時(shí)的恢復(fù)率 經(jīng)計(jì)算可知本模型中系統(tǒng)發(fā)生轉(zhuǎn)移的臨界點(diǎn)Kc=92.31.由圖1可知,當(dāng)A=0.1時(shí),Kr=49.83.當(dāng)A=0.5,時(shí)Kr=38.60.Kc-Kr比文獻(xiàn)[6]大,說明本模型預(yù)警的時(shí)間比文獻(xiàn)[6]的長,生態(tài)工作者可以有足夠的時(shí)間采取措施應(yīng)對轉(zhuǎn)移,因而本文有較好的預(yù)警效果. 參考文獻(xiàn): [1] Scheffer M.Catastrophic shifts in ecosystems[J].Nature,2001,413:591-596 [2] Brok,W.A.,Carpenter,S.R.Variance as a leading indicator of reging shift in ecosystem services[J].Ecology and Society,2006,11(6):9 [3] Scheffer M,Carpenter S R.Catastrophic regime shifts in ecosystems:linking theory to observation[J].Trends in Ecology P Evolution,2003,18(11):648-656 [4] Holling,C.S.Resilience and stability of ecological systems[J].Annual Review of Ecology and Systematics,1973,4(2):1-23 [5] Van Nes E H,Scheffer M.Slow recovery form perturbations as a generic indicator of a nearby catastrophic shift[J].American Naturalist,2007,169:738-747 [6] 李方方,李偉,賀明峰,戴永賢.一類食餌具有常數(shù)投放率系統(tǒng)的恢復(fù)率[J].生物數(shù)學(xué)報(bào),2011,26(2):303-310 [7] Chisholm R A,Filotas E.Critical slowing down as an indicator of transitions in two-species models[J].Journal of Theoretical Biology,2009,257(7):142-149 A Study on a Class of Predator Prey Model Recovery Rate Shi Yuelian (Jinzhong University College of Mathematics, Jinzhong 030619, China) To study the specy has a constant rate and the maximum capacity under the influence of predator predator-prey system capture rate and the relationship between the maximum capacity, predator-prey system USES the recovery rate of reference to define and warning length, through theoretical analysis, and the image is drawn example, concluded that: the model of early warning length is longer, the ecological workers can have enough time to take measures to deal with transfer, this paper has good warning effect. predator-prey system; recovery rate; equilibrium 2014-11-25 石月蓮(1980-),女,山西朔州人,晉中學(xué)院助教,主要從事生物學(xué)研究. 1672-2027(2015)01-0009-04 O29 A 0 引言 在現(xiàn)實(shí)生活中,許多生態(tài)系統(tǒng)在沒有警告下會(huì)發(fā)生一種現(xiàn)象,那就是遷移.“遷移”是在生態(tài)系統(tǒng)中原本互相對立的狀態(tài)發(fā)生突然的變化[1],很早就有科研人員對此現(xiàn)象進(jìn)行了研究. 人們很難預(yù)測遷移,隨著空間和時(shí)間長度的不同,造成遷移的因素有可能表現(xiàn)為非線性[2].系統(tǒng)發(fā)生遷移的條件是在溫度的變化,水的提供,營養(yǎng)的水平達(dá)到一個(gè)臨界值時(shí)[3].生態(tài)恢復(fù)力[4]是指系統(tǒng)客服不利因素維持特定平衡的能力,生態(tài)的恢復(fù)力是很難被直接衡量的,人們可以用一個(gè)間接的指標(biāo)來描述它,那就是下降的恢復(fù)率[5].3 結(jié)論