張 豐
(綏化學院 信息工程學院,黑龍江 綏化 152061)
基于模糊控制的全局滑模在機器人系統(tǒng)中的應用
張 豐
(綏化學院 信息工程學院,黑龍江 綏化 152061)
由于全局滑模控制方法對控制過程具有全程魯棒性,因此這種方法常用于消除摩擦遲滯現象。但在傳統(tǒng)方法的控制函數中,用于補償摩擦遲滯的增益只取了上界,這樣容易使輸入力矩產生抖振現象。通過模糊控制自適應調節(jié)切換增益的值,對于減小抖振現象有很好的效果。將此算法應用到機器人動力學模型中進行仿真驗證,仿真結果證明了該方法的可行性。
全局滑模;模糊控制;抖振
由于機械傳動過程中運動部件相互配合所造成的摩擦,或者機械加工、裝備上的缺陷,必然存在摩擦現象,進而影響系統(tǒng)的品質,嚴重會使系統(tǒng)出現自激振蕩或者發(fā)散現象[1]。因此降低摩擦因素的影響是很有必要的。很多專家學者對解決摩擦因素造成的影響提出了很多新思路、新方法。由于滑模變結構控制自身的特點,魯棒性較好,被越來越廣泛的應用于控制系統(tǒng)中。其中全局滑??刂品椒▽档湍Σ烈蛩氐挠绊懹休^好的效果。
傳統(tǒng)的全局滑模在有其優(yōu)點的同時也存在很大弊端,雖然能夠過濾摩擦因素的影響,卻增大了系統(tǒng)的抖振現象。本文在全局滑模的基礎上進行改進,消除了滑模控制中的趨近階段,并且通過模糊控制[2]器來確定切換增益,對抑制控制過程中的抖振現象具有明顯的效果。
全局滑??刂破鞯膬?yōu)點在于,它能使系統(tǒng)不必經過趨近過程,直接處于滑動狀態(tài)。設系統(tǒng)的狀態(tài)向量是xd,系統(tǒng)的誤差e=xd-x,切換函數形式為[3]
s(x,t)=e+ce-F(t),c>0
(1)
F(t)函數設計的目的是使全局滑動模態(tài)得以實現,F(t)=s(0)exp(-λt),λ>0。s(0)為初始時刻的s(t)。
(2)
穩(wěn)定性[5]的證明:
Lyapunov函數定義為
(3)
將式(2)代入式(3)得
(4)
由此證明,該滑??刂破鞔嬖谇曳€(wěn)定。
測量并記錄兩組患者HbAlc(糖化血紅蛋白)、FPG(空腹血糖)、2 hPG(餐后 2 h 血糖)[3]。
在式(2)中,K(t)為誤差上限,因此在控制過程中會造成抖振現象。在新控制器的設計中,將K(t)的取值通過模糊控制進行自適應調節(jié)??刂葡到y(tǒng)結構圖如圖1所示。
圖1 控制系統(tǒng)結構圖
對K(t)的最大值進行估計,取其積分:
(5)
則式(2)變?yōu)?/p>
(6)
N={NBNMZOPMPB}
(7)
圖2 模糊系統(tǒng)輸入量的隸屬函數
圖3 模糊系統(tǒng)輸出量的隸屬函數
LuGre摩擦模型:
(8)
式中:E(t)為摩擦遲滯;x是系統(tǒng)狀態(tài)向量;σ0、σ1為動態(tài)摩擦因數;α為粘性摩擦系數;M1為庫倫摩擦力;M2為靜摩擦力;υ為切換速度。
根據文獻[7],只考慮不確定因素影響時的機器人動力學模型:
(9)
式中:f(x1,x2,t)=(-0.03cos(x1)x2-mglcos(x1))0.1+0.06sin(x1);
g(x1,x2,t)=1/0.1+0.06sin(x1);
圖4a和圖4b分別為采用傳統(tǒng)方法和改進后的方法機械手對給定信號的跟蹤曲線。
(a)采用傳統(tǒng)全局滑模時
(b)采用改進后的全局滑模時
圖5a和圖5b分別為采用傳統(tǒng)方法和改進后方法的控制律u(即驅動力矩τ)的運動曲線。
(a)采用傳統(tǒng)全局滑模時
(b)采用改進后的全局滑模時
在圖5a中,滑模面參數c=31,λ=10。由于摩擦遲滯的存在,系統(tǒng)的控制律信號具有明顯抖動現象。在圖5b中,比例系數D=700,c=150,λ=10。從圖中可以看出新的控制器設計對摩擦因素具有很好的過濾效果,抖振現象得到控制,但沒有完全消除。效果優(yōu)于傳統(tǒng)全局滑??刂?。
圖6中切換函數s曲線可以看出,全局滑??刂破魅挑敯粜缘奶攸c,由于控制系統(tǒng)沒有趨近過程,調節(jié)時間很短,在0.2s時就進入了控制器的控制階段。
圖6 切換函數s
采用模糊控制方法改變了切換增益的值,對摩擦遲滯現象仍然具有過濾作用的同時,減小了機器人摩擦系統(tǒng)中控制信號的抖振現象,對信號跟蹤穩(wěn)定。雖然抖振現象明顯減小,但并沒有完全消除,仍需進一步研究。
[1]李春濤,譚永紅.遲滯非線性系統(tǒng)的建模與控制[J].桂林電子工業(yè)學院學報,2005,24(1):12-24.
[2]張昌凡.滑模變結構的智能控制理論與應用研究[M].北京:科學教育出版社,2004.
[3]Lu Y S,Chen J S.Design of a global sliding-mode controller for a motor drive withbounded control[J].International Journal of Control,1995,62(5):1001-1019.
[4]高為炳.變結構控制的理論及設計方法[M].北京:科學出版社,1996.
[5]王豐堯.滑模變結構控制[M].北京:機械工業(yè)出版社,2001.
[6]Jeong Ju Choi,Seong Ik Han,Jong Shik Kim.Development of a novel dynamic friction model and precise tracking control using adaptive back-stepping sliding modecontroller[J].Mechatronics,2006,62(5):97-104.
[7]熊有倫.機器人學[M].北京:機械工業(yè)出版社,1993:1-4,139-143.
[8]劉金琨.滑模變結構控制MATLAB仿真[M].北京:清華大學出版社,2005.
(責任編輯:馬金發(fā))
The Application of Global Sliding Mode Control Based on the Fuzzy Controller in Robot System
ZHANG Feng
(Suihua College,Suihua 152061,China)
The Global Sliding mode has Robust Features in the whole control process,so it is used to eliminate the friction.But the gain in the controller just takes the upper limit,so it can cause the chattering.A new method based on fuzzy controllor is applied to reduce the chattering.Simulation and experimental results in the Robot’s friction system show that the proposed method can reduce chattering effectively.
global sliding;fuzzy controllor;chattering
2015-03-05
張豐(1982—),女,助教,研究方向:控制理論及其應用,計算機控制系統(tǒng).
1003-1251(2015)04-0071-04
TP273
A