邱璇 李曉艷
綜 述
MicroRNA與心肌纖維化
邱璇 李曉艷
心肌纖維化; MicroRNA
心肌纖維化是多種心血管疾病發(fā)展到一定階段的共同病理改變。一些研究表明,某些microRNA可以調(diào)節(jié)心臟功能并參與心血管疾病的發(fā)生發(fā)展。本文對(duì)部分參與心肌纖維化的microRNA及其作用機(jī)制進(jìn)行綜述。
心肌纖維化以心肌間質(zhì)中細(xì)胞外基質(zhì)蛋白的過度積累為特征[1],也稱為細(xì)胞外基質(zhì)重塑,是多種病理刺激(如高血壓、心肌梗死等)所造成的心肌適應(yīng)性反應(yīng)[2],主要表現(xiàn)為心肌間質(zhì)膠原濃度升高及膠原特性構(gòu)型的改變,進(jìn)而導(dǎo)致心肌僵硬度增加、心室收縮和舒張功能障礙、冠狀動(dòng)脈儲(chǔ)備異常,是多種心血管疾?。ㄈ绺哐獕?、心肌梗死、心衰、心律失常)發(fā)展到一定階段的共同病理改變[3]。
腎素-血管緊張素-醛固酮(RASS)系統(tǒng)的激活是心肌纖維化的主要病理機(jī)制。目前,對(duì)于心肌纖維化的治療除了阻斷RASS系統(tǒng)外,缺乏其他有效治療方法[4-6]。最近,參與心肌纖維化的microRNA引起了廣泛關(guān)注,這為心肌纖維化的治療提供了一個(gè)新方法。
MicroRNA是長(zhǎng)21~26個(gè)核苷酸的內(nèi)源性單鏈非編碼RNA,通過識(shí)別靶基因mRNA的3′-UTR的相應(yīng)序列,抑制靶基因的翻譯或直接介導(dǎo)mRNA的降解,是基因表觀調(diào)控的重要途徑,幾乎涉及到血管生成,新陳代謝,細(xì)胞生長(zhǎng)、存活、死亡、分化等所有生物過程[7]。目前,對(duì)心肌纖維化的基因治療處于起步階段,microRNAs作為能調(diào)控多個(gè)靶點(diǎn)的上游調(diào)控因子,受到越來越多的關(guān)注。心肌纖維化的過程已被證實(shí)與一系列細(xì)胞信號(hào)通路和最近發(fā)現(xiàn)的一些非編碼RNA有關(guān),如microRNAs。已有研究證實(shí)miR-21促進(jìn)心肌纖維化,而miR-24、miR-29、miR-101、miR-133等可以抑制心肌纖維化的進(jìn)展[8]。本文對(duì)部分參與心肌纖維化的microRNAs及其作用機(jī)制進(jìn)行綜述,無論他們對(duì)心肌纖維化是起促進(jìn)作用或是抑制作用。
研究證實(shí),miR-21參與腫瘤、心肌肥厚及心肌纖維化等病理整理過程。Thum等[9]認(rèn)為,miR-21不僅高表達(dá)于心肌細(xì)胞,在心肌成纖維細(xì)胞中也有表達(dá),且其表達(dá)強(qiáng)度和心功能不全的嚴(yán)重程度相關(guān)。心肌纖維化的心衰大鼠高表達(dá)miR-21,而且miR-21能通過增加成纖維生長(zhǎng)因子2(fibroblast growth factor-2,F(xiàn)GF-2)的分泌促進(jìn)心肌肥厚、心肌纖維化及抑制心肌成纖維細(xì)胞(cardiac fibroblasts,CFs)凋亡[10]。這些研究表明,miR-21可能是心肌纖維化過程中的重要調(diào)節(jié)因子,而且可能是通過作用于CFs發(fā)揮作用。Roy等[11]認(rèn)為,miR-21在缺血再灌注模型大鼠的心肌纖維化中發(fā)揮重要作用。他們的研究認(rèn)為,磷酸酶和張力蛋白同源物(Pten)是心肌成纖維細(xì)胞中miR-21的直接調(diào)控目標(biāo),Pten過上調(diào)基質(zhì)金屬蛋白酶2(MMP-2)的表達(dá)促進(jìn)心梗后心肌纖維化。Liu等[12]認(rèn)為,miR-21直接控制特異性雙磷脂酶 8(Dual Specific Phosphatase 8,DUSP8),通過p38和c-Jun氨基末端激酶(JNK)/應(yīng)激活化蛋白激酶(SAPK)信號(hào)通路調(diào)節(jié)心肌成纖維細(xì)胞的增殖及膠原合成,促進(jìn)高糖水平下的心肌纖維化。Dong等[13]證實(shí),miR-21通過上調(diào)Bcl-2促進(jìn)左室射血分?jǐn)?shù)正常的心力衰竭大鼠心肌纖維化。然而,Patrick等[14]卻得出了相反的結(jié)論,使得miR-21對(duì)心肌纖維化的治療成為一個(gè)爭(zhēng)論性的話題。
總的來說,這些研究表明,miR-21在調(diào)節(jié)心肌纖維化中起重要作用。雖然抑制miR-21的表達(dá)被普遍認(rèn)為可以抑制心肌纖維化,但也有研究表明miR-21對(duì)心梗后心肌纖維化無明顯影響。因此,抑制miR-21的表達(dá)對(duì)心肌纖維化的治療是否有效,仍需要進(jìn)一步研究。
MiR-29家族包含 3個(gè)成員:miR-29a、miR-29b和miR-29c。MiR-29主要由成纖維細(xì)胞產(chǎn)生,其家庭成員是纖維化的關(guān)鍵調(diào)節(jié)因子,調(diào)節(jié)膠原及其他細(xì)胞外基質(zhì)的表達(dá)水平[15-17]。此外,miR-29被發(fā)現(xiàn)在肝臟[18]、肺[19]、腎臟纖維化[20]及系統(tǒng)性硬化癥[21]中起重要作用。Van Rooij等[15]證明,上調(diào)miR-29的表達(dá)可以通過減少細(xì)胞外基質(zhì)的形成抑制心肌纖維化。他們分析調(diào)控細(xì)胞外基質(zhì)蛋白合成基因的3′非編碼序列,發(fā)現(xiàn)其中包括彈性蛋白(elastin,ELN)、微纖維蛋白-1(fibrillin-1,F(xiàn)BN-1)、Ⅰ型膠原(collagen typeⅠ)和Ⅲ型膠原(collagen typeⅢ)等,而miR-29中存在這幾種編碼序列中的一個(gè)或幾個(gè)。Zhou等[22]也證明了miR-29在心肌梗死后心肌纖維化中的作用。他們的研究顯示,下調(diào)miR-29的表達(dá),可以通過Smad 2和Smad 3途徑促進(jìn)TGF-β過表達(dá),促進(jìn)轉(zhuǎn)錄因子把TGF-β從細(xì)胞膜上轉(zhuǎn)移到細(xì)胞質(zhì)中,促進(jìn)心肌纖維化。Melo等[23]的研究表明,游泳訓(xùn)練可以上調(diào)心肌梗死大鼠miR-29的表達(dá),抑制Ⅰ型和Ⅲ型膠原的表達(dá),抑制心肌纖維化。Yang等[24]證明,丹參酮通過上調(diào)miR-29b的表達(dá)抑制心肌梗死大鼠心肌纖維化,主要是通過TGF-β-Smad3途徑實(shí)現(xiàn)。這些研究都為miR-29抑制心肌纖維化提供了證據(jù)。然而,有研究[25-27]表明,miR-29可以通過負(fù)性調(diào)節(jié)抗凋亡基因(如Bcl-2、CDC42、Tcl-1等)促進(jìn)心肌細(xì)胞凋亡。這表明與miR-29相關(guān)的治療可能對(duì)構(gòu)成心肌組織的兩種主要細(xì)胞(心肌細(xì)胞和成纖維細(xì)胞)產(chǎn)生生物學(xué)影響。
總的來說,這些研究表明miR-29家族具有雙重功能,既可以抑制膠原表達(dá),抑制心肌纖維化,又可以誘導(dǎo)心肌細(xì)胞凋亡,進(jìn)而可能導(dǎo)致心力衰竭。
MiR-24家族是由miR-23、miR-24和miR-27組成。MiR-23和miR-27高表達(dá)于心肌梗死后的心肌組織中,且能影響毛細(xì)血管的形成及纖維化。MiR-23a可以調(diào)節(jié)心肌細(xì)胞的生長(zhǎng)[28],miR-23b的調(diào)控目標(biāo)是E2F1(真核細(xì)胞中的調(diào)節(jié)因子,具有促進(jìn)血管生成的作用)[29]。此外,有報(bào)道稱miR-23可以抑制TGF-β介導(dǎo)的內(nèi)皮細(xì)胞向間質(zhì)細(xì)胞的轉(zhuǎn)化,這表明miR-23有潛在的抗纖維化作用[30]。MiR-27則被發(fā)現(xiàn)與腫瘤的發(fā)生密切相關(guān),它能調(diào)控細(xì)胞的增殖、分化及腫瘤的形成過程[31,32],也可以調(diào)節(jié)心肌缺血后心肌血管的形成,主要是通過調(diào)節(jié)3′末端的6A蛋白信號(hào)抑制轉(zhuǎn)化生長(zhǎng)因子,進(jìn)而誘導(dǎo)血管新生[33]。MiR-24也是一種在心肌組織中高表達(dá)的miRNA。研究證實(shí),miR-24與心肌纖維化有直接關(guān)系,在心臟成纖維細(xì)胞中過表達(dá)miR-24則能減少細(xì)胞外基質(zhì)膠原的合成,減少心臟成纖維細(xì)胞向肌樣成纖維細(xì)胞的分化,并減少血清誘導(dǎo)的心臟成纖維細(xì)胞的遷移過程,減少細(xì)胞增殖,且其可能是通過調(diào)控Furin蛋白進(jìn)而調(diào)控TGF-β1的表達(dá)水平,最終調(diào)控膠原代謝過程。Wang等[34]的研究顯示,miR-24在心肌梗死后1周的小鼠心肌組織中表達(dá)達(dá)到高峰,同時(shí)伴有Ⅰ型膠原和TGF-β表達(dá)的下降,表明miR-24過度表達(dá)可以抑制心肌梗死后心肌纖維化。
MiR-133a是另一種高表達(dá)于心肌組織中的miRNA,其在心肌細(xì)胞的生長(zhǎng)、肥厚及凋亡等過程中發(fā)揮重要作用[35-37]。MiR-133家族包括miR-133a-l、miR-133a-2和 miR-133b。早期對(duì) miR-133的研究集中在心臟發(fā)育方面,如miR-133a能促進(jìn)胚胎干細(xì)胞向成肌細(xì)胞分化和增殖,但會(huì)抑制成肌細(xì)胞進(jìn)一步向心肌細(xì)胞分化,因此胚胎期miR-133a的表達(dá)變化異常將會(huì)影響心臟的正常發(fā)育[38,39]。近年研究發(fā)現(xiàn),miR-133a基因缺陷小鼠在出現(xiàn)室間隔缺損、心腔擴(kuò)大、心室壁變薄等心臟結(jié)構(gòu)發(fā)育異常的同時(shí)伴有嚴(yán)重的心肌纖維化和心力衰竭[40]。而在多種心肌肥厚病理模型中,心肌miR-133a表達(dá)水平下降,而上調(diào)miR-133a表達(dá)水平能改善心肌肥厚等病理進(jìn)程。Chen等[7]證實(shí)miR-133a可以促進(jìn)糖尿病大鼠心肌纖維化。他們研究發(fā)現(xiàn),糖尿病大鼠心肌組織中miR-133a表達(dá)下降,下調(diào)的miR-133a可以促進(jìn)TGF-β1、結(jié)締組織生長(zhǎng)因子、血管緊張素的表達(dá),通過Smad2途徑促進(jìn)糖尿病大鼠心肌纖維化。Feng等[41]證實(shí),miR-133a過度表達(dá)可以抑制壓力負(fù)荷誘導(dǎo)的心肌肥厚動(dòng)物模型的心肌纖維化。Guo等[42]證實(shí),高鹽飲食通過抑制miR-133a的表達(dá),誘導(dǎo)Ⅰ型膠原和結(jié)締組織生長(zhǎng)因子的合成,促進(jìn)高血壓導(dǎo)致的心肌纖維化。Dakhlallah等[43]證實(shí),miR-133a轉(zhuǎn)染骨髓間充質(zhì)干細(xì)胞具有改善心肌梗死大鼠心功能及抑制心肌纖維化的作用。這些研究表明,miR-133a參與心肌纖維化過程,對(duì)心肌纖維化產(chǎn)生調(diào)控作用。
綜上所述,microRNA廣泛參與心肌纖維化的發(fā)生與發(fā)展,對(duì)多種microRNA參與心肌纖維化的信號(hào)通路充分理解能有助于給臨床提供新的治療方法。但是目前我們對(duì)microRNA的生物作用缺乏充分認(rèn)識(shí),各種microRNA之間的相互作用也不明確,而且部分microRNA對(duì)心肌纖維化的作用仍存在爭(zhēng)議,因此microRNA對(duì)心肌纖維化的治療仍需要進(jìn)一步研究。
[1]Kong P,Christia P,F(xiàn)rangogiannis NG.The pathogenesis of cardiac fibrosis.Cellular and Molecular Life Sciences,2014,71:549-574.
[2]Pan ZW,Lu YJ,Yang BF.MicroRNAs:a novel class of potential therapeutic targets for cardiovascular diseases.Acta Pharmacologica Sinica,2010,31:1-9.
[3]Lammey ML,Baskin GB,Gligliotti AP,et al.Interdtitial myocardial fibrosis in a captive chimpanzee(Pan troglodytes) population.Comp Med,2008,58:389-394.
[4]González A,Ravassa S,Beaumont J,et al.New targets to treat the structural remodeling of the myocardium.J Am Coll Cardiol,2011,58:1833-1843.
[5]Maejima Y,Okada H,Haraguchi G,et al.Telmisartan,a unique ARB,improves left ventricular remodeling of infarcted heart by activating PPAR gamma.Lab Invest,2011,91:932-944.
[6]Azibani F,Benard L,Schlossarek S,et al.Aldosterone inhibits antifibrotic factors in mouse hypertensive heart.Hypertension,2012,59:1179-1187.
[7]Chen S,Puthanveetil P,F(xiàn)eng B,et al.Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes.Cell Mol Med,2014,18:415-421.
[8]Fiedler J,Batkail S,Thum T.MicroRNA-based therapy in cardiology.Herz,2014,39:194-200.
[9]Thum T,Galuppo P,Wolf C,et al.MicroRNA in the human heart:a clue to fetal gene reprogramming in heart failure.Circulation,2007,116:258-267.
[10]Thum T,Gross C,F(xiàn)iedler J,et al.MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signaling in fibroblasts.Nature,2008,456:980-984.
[11]Roy S,Khanna S,Hussain SR,et al.MicroRNA expression in response to murine myocardial infarction:miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue.Cardiovasc Res,2009,82:21-29.
[12] Liu S,Li WI,Xu M,et al.Micro-RNA 21Targets dual specific phosphatase 8 to promote collagen synthesis in high glucose-treated primary cardiac fibroblasts.Can J Cardiol,2014,30:1689-1699.
[13]Dong S,Ma W,Hao B,et al.microRNA-21 promotes cardiac fibrosis and development of heart failure with preserved left ventricular ejection fraction by up-regulating Bcl-2.Int J Clin Exp Pathol,2014,15:565-574.
[14]Patrick DM,Montgomery RL,Qi X,et al.Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice.Clin Invest,2010,120:3912-3916.
[15]Van Rooij E,Sutherland LB,Thatcher JE,et al.Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis.Proc Natl Acad Sci USA,2008,105:13027-13032.
[16]Boon RA,Seeger T,Heydt S,et al.MicroRNA-29 in aortic dilation: implications for aneurysm formation.Circ Res,2011,109:1115-1119.
[17]Zhang P,Huang A,F(xiàn)erruzzi J,et al.Inhibition of microRNA-29 enhances elastin levels in cells haploinsufficient for elastin and in bioengineered vessels-brief report.Arterioscler Thromb Vasc Biol,2012,32:756-759.
[18]Roderburg C,Urban GW,Bettermann K,et al.Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis.Hepatology,2011,53:209-218.
[19] Cushing L,Kuang PP,Qian J,et al.miR-29 is a major regulator of genes associated with pulmonary fibrosis.Am J Respir Cell Mol Biol,2011,45:287-294.
[20] Qin W,Chung AC,Huang XR,et al.TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29.Am Soc Nephrol,2011,22:1462-1474.
[21]Maurer B,Stanczyk J,Jungel A,et al.MicroRNA-29,a key regulator of collagen expression in systemic sclerosis.Arthritis Rheum,2010,62:1733-1743.
[22]Zhou L,Wang L,Lu L,et al.Inhibition of miR-29 by TGF-beta-Smad3 signaling through dualmechanisms promotes transdifferentiation of mouse myoblasts into myofibroblasts.PLoSOne,2012,7:e33766.
[23] Melo SF,F(xiàn)ernandes T,Baraúna VG,et al.Expression of MicroRNA-29 and Collagen in Cardiac Muscle after Swimming Training in Myocardial-Infarcted Rats.Cell Physiol Biochem,2014,33:657-669.
[24]Yang F,Li P,Li H,et al.microRNA-29b Mediates the Antifibrotic Effect of TanshinoneⅡA in Postinfarct Cardiac Remodeling.J Cardiovasc Pharmacol,2015,65:456-464.
[25]Pekarsky Y,Santanam U,Cimmino A,et al.Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181.Cancer Res,2006,66:11590-11593.
[26]Mott JL,Kobayashi S,Bronk SF,et al.mir-29 regulates Mcl-1 protein expression and apoptosis.Oncogene,2007,26:6133-6140.
[27]Wang H,Garzon R,Sun H,et al.NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma.Cancer Cell,2008,14:369-381.
[28]Van Rooij E,Sutherland LB,Liu N,et al.A signature pattern ofstress-responsive microRNAs thatcan evoke cardiac hypertrophyand heartfailure.ProcNatlAcad SciUSA,2006,103:18255-18260.
[29]Sun A,Bagella L,Tutton S,et al.From G0 to S phase:a view of the roles played by the retinoblastoma (Rb) family members in the Rb-E2F pathway.J Cell Biochem,2007,102:1400-1404.
[30]Lagendijk AK,Goumans MJ,Burkhard SB,et al.MicroRNA-23 restricts cardiac valve formation by inhibiting Has2 and extracellular hyaluronic acid production.Circ Res,2011,109:649-657.
[31]Chhabra R,Dubey R,Saini N.Cooperative and individualistic functions of the microRNAs in the miR-23a~27a~24-2 cluster and its implication in human iseases.Mol Cancer,2010,9:232.
[32] Ben-Ami O,Pencovich N,Lotem J,et al.A regulatory interplay between miR-27a and Runx1 during megakaryopoiesis.Proc Natl Acad Sci USA,2009,106:238-243.
[33] Urbich C,Kaluza D,F(xiàn)romel T,et al.MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A.Blood,2012,119:1607-1616.
[34]Wang J,Huang W,Xu R,et al.MicroRNA-24 regulates cardiac fibrosis after myocardial infarction.J Cell Mol Med,2012,16:2150-2160.
[35]Bostjancic E,Zidar N,Stajer D,et al.MicroRNAs miR-1,miR-133a,miR-133b and miR-208 are dysregulated in human myocardialinfarction.Cardiology,2010,115:163-169.
[36]Matkovich SJ,Wang W,Tu Y,et al.MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressureoverloaded adult hearts.Circulation Res,2010,106:166-175.
[37]Torella D,Iaconetti C,Catalucci D,et al.MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo.Circulation Res,2011,109:880-893.
[38]Ivey KN,Muth A,Arnold J,et al.MicroRNA regulation of cell lineages in mouse and human embryonic stem cells.Cell Stem Cell,2008,2:219-229.
[39] Chen JF,Mandel EM,Thomson JM,et al.The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentialion.Nat Genet,2006,38:228-233.
[40]Liu N,Bezprozvannaya S,Williams AH,et al.microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart.GenesDev,2008,22:3242-3254.
[41] Feng B,Chen S,George B,et al.miR-133a regulates cardiomyocyte hypertrophy in diabetes.Diabetes Metab Res Rev,2010,26:40-49.
[42]Guo TS,Zhang J,Mu JJ,et al.High-salt intake suppressed microRNA-133a expression in Dahl SS rat myocardium.Int J Mol Sci,2014,15:10794-1805.
[43] Dakhlallah D, Zhang J, Yu L, et al.MicroRNA-133a engineered mesenchymal stem cells augment cardiac function and cell survival in the infarct heart.J Cardiovasc Pharmacol,2015,65:241-251.
MicroRNAs in myocardial fibrosis
Myocardial fibrosis; MicroRNAs
430060 湖北省武漢市,武漢大學(xué)人民醫(yī)院心內(nèi)科
李曉艷,E-mail:xy.li@whu.edu.cn
10.3969/j.issn.1672-5301.2015.10.001
R542.2+3
A
1672-5301(2015)10-0865-04
2015-06-18)