摘要
應(yīng)對氣候變化的政策手段多種多樣,市場機(jī)制手段是目前應(yīng)用廣泛的政策工具之一。國際碳交易的實(shí)踐尤其是歐盟ETS的運(yùn)行效果顯示,電力及一些能源加工轉(zhuǎn)換行業(yè)通常會因?yàn)槌袚?dān)了碳交易的成本,而會導(dǎo)致其下游產(chǎn)品價(jià)格的發(fā)生變動,一般表現(xiàn)在下游電力價(jià)格的增加,因此會使得其他行業(yè)的生產(chǎn)成本受電力價(jià)格的上漲而增加。因此碳價(jià)格機(jī)制的引入對于整個經(jīng)濟(jì)發(fā)展的成本產(chǎn)生一定的影響,而我國目前以出口貿(mào)易為導(dǎo)向的經(jīng)濟(jì)現(xiàn)狀,勢必使得碳價(jià)格影響到出口貿(mào)易的產(chǎn)品成本上。本文主要利用我國2005年和2007年的投入產(chǎn)出表,測算我國出口貿(mào)易產(chǎn)品能源成本的變化。結(jié)果顯示我國出口產(chǎn)品的能源成本占每年出口額比重約為13%,若扣除掉消耗進(jìn)口中間產(chǎn)品的因素,僅僅考慮國內(nèi)中間投入產(chǎn)品的能源成本,則出口產(chǎn)品中的能源成本比重下降至9%-10%左右,其中電力的成本約占整個能源成本的60%以上,若由于碳價(jià)格機(jī)制的引入導(dǎo)致電力成本上漲50%,則使得我國出口能源成本的至少上漲一半以上,這將大幅度降低我國出口產(chǎn)品的國際競爭力。因此我國出口貿(mào)易的主要部門一方面需要不斷加強(qiáng)技術(shù)研發(fā)投入,提升其生產(chǎn)技術(shù)水平,降低能源成本的比重,提高單位產(chǎn)品的能源效率;另一方面由于我國外貿(mào)存在較大的順差,也要不斷調(diào)整出口產(chǎn)品的結(jié)構(gòu),配合國內(nèi)產(chǎn)業(yè)政策的調(diào)整,降低能源成本較高產(chǎn)品的出口,優(yōu)化出口產(chǎn)品的結(jié)構(gòu),提高出口產(chǎn)品的科技含量和附加值,整個貿(mào)易政策調(diào)整優(yōu)先向競爭力導(dǎo)向轉(zhuǎn)變。
關(guān)鍵詞碳價(jià)格;傳遞率;進(jìn)出口貿(mào)易;能源成本;氣候變化
中圖分類號X196文獻(xiàn)標(biāo)識碼A文章編號1002-2104(2015)01-0040-06doi:103969/jissn1002-2104201501006
工業(yè)化以來由于化石燃料的大量使用,導(dǎo)致全球溫室氣體濃度持續(xù)升高,使得氣候變化問題成為全球可持續(xù)發(fā)展面臨的重大挑戰(zhàn),因此,減少二氧化碳排放和應(yīng)對氣候變化成為各國政府和國際社會關(guān)注的焦點(diǎn)。限制和削減碳排放需要運(yùn)用多種管理手段和政策工具,主要可分為管制手段和市場經(jīng)濟(jì)手段,前者通過政府法規(guī)、自愿項(xiàng)目、質(zhì)量標(biāo)準(zhǔn)等實(shí)施,后者通過稅收、補(bǔ)貼和價(jià)格機(jī)制等手段實(shí)行。碳定價(jià)是以某種方式把溫室氣體的排放成本納入企業(yè)、政府及個人的決策,包括總量管制及貿(mào)易體系、基準(zhǔn)與排放額度、碳稅和項(xiàng)目機(jī)制等[1],其實(shí)質(zhì)就是通過將碳排放的外部成本內(nèi)部化,實(shí)現(xiàn)溫室氣體的減排[2]。
我國在“十二五”規(guī)劃綱要中,提出了要逐步建立碳排放交易市場。2011年11月,北京、上海、廣東、深圳、湖北、天津和重慶7省市被國家發(fā)改委正式批準(zhǔn)為國家首批碳排放權(quán)交易試點(diǎn)。各試點(diǎn)地區(qū)加強(qiáng)組織領(lǐng)導(dǎo),建立專職隊(duì)伍,安排試點(diǎn)工作專項(xiàng)資金,抓緊組織編制碳排放權(quán)交易試點(diǎn)實(shí)施方案,明確總體思路、工作目標(biāo)、主要任務(wù)、保障措施及進(jìn)度安排。截止到2013年年底,除了湖北省和重慶市以外,其他5個碳交易市場均展開了排放權(quán)的交易,目前碳交易價(jià)格區(qū)間為30元/tCO2-100元/tCO2。我國碳排放交易試點(diǎn),是我國碳定價(jià)機(jī)制邁出的第一步,能在全國較廣范圍內(nèi)深化節(jié)能減排意識和碳定價(jià)機(jī)制的理念,并在制度設(shè)計(jì)方面深化相關(guān)碳減排制度建設(shè)的研究。
通常認(rèn)為引入碳價(jià)格機(jī)制對于能源密集型行業(yè)的影響最大,一方面能源密集型行業(yè),如電力、水泥、鋼鐵、鋁、造紙印刷等是CO2等溫室氣體的排放主體;另一方面,碳定價(jià)機(jī)制通常會引起電力價(jià)格的上漲,因此使得這些行業(yè)的生產(chǎn)成本受電力價(jià)格的影響。因此碳價(jià)格機(jī)制的引入對于整個經(jīng)濟(jì)發(fā)展的成本產(chǎn)生一定的影響,而我國目前以出口貿(mào)易為導(dǎo)向的經(jīng)濟(jì)現(xiàn)狀,勢必使得碳價(jià)格影響到出口貿(mào)易的產(chǎn)品成本上。本文主要利用我國2005年和2007年的投入產(chǎn)出表,測算我國出口貿(mào)易產(chǎn)品能源成本的變化以及燃料構(gòu)成,討論了電力碳成本向下游傳遞的影響。
1我國出口貿(mào)易現(xiàn)狀
近年來,隨著我國經(jīng)濟(jì)的快速增長,對外開放不斷擴(kuò)大,我國對外貿(mào)易取得了突飛猛進(jìn)的發(fā)展。圖1顯示隨著近年來對外貿(mào)易進(jìn)出口額的增加,占比GDP也逐年增加,即使經(jīng)過了世界金融危機(jī)也接近50%,顯示進(jìn)出口貿(mào)易對于我國整個經(jīng)濟(jì)的發(fā)展起到了重要的作用。在我國對外貿(mào)易中,加工貿(mào)易是其重要組成部分。2012年,我國出口加工貿(mào)易總額為8 627.8億美元,占出口總額的比重達(dá)到42%,接近半壁江山。與此同時,我國能源消耗總量也隨著我國經(jīng)濟(jì)的發(fā)展而增加,“十一五”期間我國能源消費(fèi)彈性系數(shù)約為0.6,作為發(fā)展和貿(mào)易大國,我國的碳排放問題也顯得尤為突出,近年來相當(dāng)多的文獻(xiàn)研究結(jié)果顯示[3-16],我國自從2002年到2007年,出口內(nèi)涵排放量從481-881 MtCO2增加到1 428-2 634 MtCO2,占總排放量的百分比從14%-23%增加到27%-35%,顯示我國進(jìn)出口貿(mào)易額的增長增加了我國國內(nèi)的能源消耗和排放量,意味著出口產(chǎn)品的能源成本也會有一定的增加。
顧阿倫:引入碳價(jià)格后中國出口貿(mào)易成本的變化
中國人口·資源與環(huán)境2015年第1期
圖1我國近年GDP、進(jìn)出口總額以及能源消耗總量
Fig.1GDP, value of export and import,
and energy consumption in China
2模型方法和數(shù)據(jù)
分析我國出口貿(mào)易產(chǎn)品的碳價(jià)格影響,首先需要測算出口貿(mào)易產(chǎn)品中的能源成本,本文分析的能源成本包括煤油氣的直接成本以及間接的電力消耗成本,進(jìn)而在假設(shè)碳成本向下傳遞的基礎(chǔ)上,分析碳價(jià)格對于外貿(mào)出口產(chǎn)品成本的影響。
投入產(chǎn)出分析方法可以追溯最終需求產(chǎn)品的所有直接和間接的消耗,則出口貿(mào)易產(chǎn)品的煤炭、石油天然氣以及電力總成本計(jì)算公式如(1)-(3)所示:
TCcoal,ex=∑jbcoal,jEX′j+∑jacoal,jEX″j (1)
TCoil&gas,ex=∑jboil&gas,jEX′j+∑jaoil&gas,jEX″j (2)
TCPower,ex=∑jbPower,jEX′j+∑jaPower,jEX″j ?(3)
其中:EX′為非來料加工的出口向量;EX″為來料加工的出口向量;bij表示第j部門產(chǎn)品對第i部門產(chǎn)品的完全消耗系數(shù),aij為其直接消耗系數(shù),TCcoal,ex為出口產(chǎn)品的煤炭成本,TCoil&gas,ex為出口產(chǎn)品的油氣成本,TCPower,ex為出口產(chǎn)品的電力成本。
由于各部門對于電力的需求中,電力部門的電價(jià)已經(jīng)包括了其購買煤炭的成本,因此在煤炭部門要進(jìn)行相應(yīng)的扣除,扣除方法就是將電力部門對于煤炭部門的消耗設(shè)定為0,這樣也就避免了對于煤炭部門成本的重復(fù)計(jì)算,也就是令直接消耗系數(shù)acoal,Power=0。
由于我國進(jìn)出口貿(mào)易的特殊性質(zhì),每年進(jìn)口的商品中,有較大比例作為中間投入?yún)⑴c了國內(nèi)的生產(chǎn),如圖2所示。因此,需要對消耗系數(shù)進(jìn)行修正。令Λ為進(jìn)口系數(shù)矩陣,假定部門i對部門j的投入中進(jìn)口非加工貿(mào)易中間投入的比例相同,則Λ為一個對角矩陣,反映了部門i對進(jìn)口非加工貿(mào)易產(chǎn)品的依賴程度,其主對角線上的每一個分量 瘙 窞 i=LX′i/(Xi+LX′i-EXi),LX′進(jìn)口非加工貿(mào)易向量,Xi為部門i的總產(chǎn)出,則有修正后的直接消耗系數(shù)與完全消耗系數(shù)矩陣分別如公式(4)和(5)所示:
A′=(I-Λ)A ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (4)
? ?B′=(I-(I-Λ)A)-1-I ? ? ? ? ? ? ? ? ? ? ?(5)
圖2我國進(jìn)口產(chǎn)品修正消耗系數(shù)
Fig.2Import correction coefficient in China
因此出口產(chǎn)品的國內(nèi)能源成本(扣除參與中間投入的進(jìn)口中間產(chǎn)品)如公式(6)-(8)所示:
TC′coal,ex=∑jb′coal,jEX′j+∑jacoal,jEX″j (6)
TC′oil&gas,ex=∑jb′oil&gas,jEX′j+∑jaoil&gas,jEX″j (7)
TC′Power,ex=∑jb′Power,jEX′j+∑jaPower,jEX″j ?(8)
而出口貿(mào)易產(chǎn)品的分部門能源總成本如公式(9)所示:
TCex=∑i(∑kbik[EX′]k+∑kaik[EX″]k (9)
其中[EX′]與[EX″]分別表示非來料加工出口向量和來料加工出口向量對角化后的矩陣。
本文所使用的數(shù)據(jù)資料包括,2005年全國62部門投入產(chǎn)出表以及2007年全國42部門投入產(chǎn)出表。我國各年進(jìn)出口數(shù)據(jù)的統(tǒng)計(jì)口徑為海關(guān)統(tǒng)計(jì)數(shù)據(jù),為了便于計(jì)算,根據(jù)中國統(tǒng)計(jì)局公布的“行業(yè)分類標(biāo)準(zhǔn)”,本文將主要出口貨物歸類為我國的62個部門。
對于出口參與加工貿(mào)易的商品,本文直接利用統(tǒng)計(jì)年鑒中公布的出口貨物參與加工貿(mào)易的數(shù)據(jù)進(jìn)行測算。我國海關(guān)統(tǒng)計(jì)年鑒中,直接將參與加工貿(mào)易的出口商品進(jìn)行了分類,可以進(jìn)行部門歸類后直接應(yīng)用。
每年進(jìn)口的大部分商品均參加國內(nèi)的生產(chǎn)過程,本計(jì)算中直接利用統(tǒng)計(jì)年鑒公布的進(jìn)口商品參與加工貿(mào)易的數(shù)據(jù)進(jìn)行測算。我國海關(guān)統(tǒng)計(jì)年鑒中,直接將參與加工貿(mào)易的進(jìn)口商品進(jìn)行了分類,可以進(jìn)行部門歸類后直接應(yīng)用。
3模型結(jié)果
2005-2007年,我國出口產(chǎn)品成本中的能源成本占每年出口額比重約為13%,若扣除掉消耗進(jìn)口中間產(chǎn)品的因素,僅僅考慮國內(nèi)中間投入產(chǎn)品的能源成本,則出口產(chǎn)品中的能源成本比重下降至9%-10%左右。同時,表1的數(shù)據(jù)結(jié)果顯示,每年出口產(chǎn)品消耗的能源成本中,大約1/3來自我國的進(jìn)口產(chǎn)品,也就是說,我國高比例的加工貿(mào)易消耗國內(nèi)資源的同時也消耗了一定的國外資
源,因此若消耗的進(jìn)口產(chǎn)品的能源成本比重較高,則當(dāng)
國際能源價(jià)格上調(diào)就會導(dǎo)致我國出口產(chǎn)品的能源成本增加,從而降低我國出口產(chǎn)品的國際競爭力。
在以上能源成本構(gòu)成中,如果分別考慮煤炭,油氣和電力的成本比重,結(jié)果見表2和圖3所示。結(jié)果顯示電力的成本約占整個能源成本的60%以上,因此電力價(jià)格的變動會對出口產(chǎn)品的能源成本產(chǎn)生一定的影響。
設(shè)EXj/∑jEXJ表示該部門的出口額占總出口額的比重,權(quán)重越大則說明該部門在我國出口貿(mào)易中的比重也越
大,設(shè)TCEX,j/EXj表示該部門出口產(chǎn)品的能源成本占該部
大一些,距離
較大的點(diǎn)包括化學(xué)原料、金屬制品以及紡織業(yè)等部門,這些部門也是出口加工貿(mào)易比重較高的行業(yè)。
圖5則顯示了2007年部門出口比重以及能源成本比重的散點(diǎn)圖,結(jié)果顯示紡織業(yè)的能源成本與整體出口貿(mào)易的能源成本水平相當(dāng),大約為13%左右,而服裝、計(jì)算機(jī)、通信及其他電子設(shè)備制造業(yè)等其整體的能源成本占比并不高,一方面是因?yàn)槠涑隹陬~本身較高,另一方面也是因?yàn)檫@些行業(yè)的加工貿(mào)易比重高,在國內(nèi)僅僅進(jìn)行簡單的加工與包裝生產(chǎn)。而傳統(tǒng)的石油、煉焦、肥料以及化學(xué)工業(yè)等高耗能的部門其能源成本比重較高,因此預(yù)計(jì)容易受到碳價(jià)格成本傳遞的影響與沖擊。
國內(nèi)建立碳交易機(jī)制面臨著諸多的挑戰(zhàn),其中電力企業(yè)能否將其碳成本向下游傳遞就是一個重要的問題,按照經(jīng)濟(jì)學(xué)的理論,上游生產(chǎn)企業(yè)額外碳排放生產(chǎn)成本的增加附加到原來的生產(chǎn)成本當(dāng)中,而這種“附加成本”通過商品與服務(wù)價(jià)格變動的內(nèi)在機(jī)制傳遞到下游產(chǎn)品上,從而導(dǎo)致下游產(chǎn)品價(jià)格的變動。但是目前國內(nèi)電力的價(jià)格是管制的,并不受上游成本的增加而變化,但是按照目前運(yùn)行的EU ETS碳市場的經(jīng)驗(yàn),碳成本的增加是會傳遞到下游的,雖然成本不會100%傳遞到下游產(chǎn)品,但是模型和實(shí)證分析顯示,碳成本傳遞率介于0到1之間,大多集中在70%-90%,取決于國情、市場結(jié)構(gòu)及需求等多方面因素[17-20]。本文假設(shè)碳價(jià)和價(jià)格傳遞率分為三種情況,并在此假設(shè)的基礎(chǔ)上,測算出口能源成本的上漲率,結(jié)果如表3所示,顯示如果國內(nèi)電力的碳成本可以向下游傳遞的話,則預(yù)計(jì)能源成本上漲,其上漲幅度與傳遞率以及碳價(jià)相關(guān),導(dǎo)致能源成本至少上漲一半。
4結(jié)論及建議
從2005年到2007年,我國出口產(chǎn)品成本中的能源成本占每年出口額比重約為13%,若扣除掉消耗進(jìn)口中間產(chǎn)品的因素,僅僅考慮國內(nèi)中間投入產(chǎn)品的能源成本,則出口產(chǎn)品中的能源成本比重下降至9%-10%左右。同時,每年出口產(chǎn)品消耗的能源成本中,大約1/3來自我國的進(jìn)口產(chǎn)品,也就是說,我國高比例的加工貿(mào)易消耗國內(nèi)資源的同時也消耗了一定的國外資源,因此若消耗的進(jìn)口產(chǎn)品的能源成本比重較高,則當(dāng)國際能源價(jià)格上調(diào)就會導(dǎo)致我國出口產(chǎn)品的能源成本增加,從而降低我國出口產(chǎn)品的國際競爭力。
另一方面,隨著國內(nèi)推進(jìn)碳市場機(jī)制進(jìn)程的加快,勢必將各個行業(yè)廣泛地加入到溫室氣體減排行列中,盡管我國國情與歐洲存在明顯差異,但是開展國內(nèi)碳交易體系同樣將提高電力企業(yè)生產(chǎn)成本,然而由于國內(nèi)電價(jià)仍然在管控范圍內(nèi),因此目前其碳成本難以向下傳遞。而若國內(nèi)電力的碳成本可以向下游傳遞的話,則預(yù)計(jì)能源成本上漲,其上漲幅度與傳遞率以及碳價(jià)相關(guān),測算結(jié)果顯示導(dǎo)致能源成本至少上漲一半,也會導(dǎo)致我國出口產(chǎn)品的國際競爭力。傳統(tǒng)的紡織業(yè)是我國進(jìn)出口大戶,其能源成本與整體出口貿(mào)易的能源成本水平相當(dāng),大約為13%左右,而服裝、計(jì)算機(jī)、通信及其他電子設(shè)備制造業(yè)等部門的整體能源成本占比并不高,一方面是因?yàn)槠涑隹陬~本身較高,另一方面也是因?yàn)檫@些行業(yè)的加工貿(mào)易比重高,在國內(nèi)僅僅進(jìn)行簡單的加工與包裝生產(chǎn)。而傳統(tǒng)的石油、煉焦、肥料以及化學(xué)工業(yè)等高耗能的部門其能源和碳成本比重較高,因此容易受到碳價(jià)格成本傳遞的影響與沖擊。
因此無論是國際和國內(nèi)的因素均會導(dǎo)致出口產(chǎn)品能源成本的增加,相比較而言,國內(nèi)成本的影響會更大一些,隨著國際國內(nèi)節(jié)能減排的雙重壓力,我國出口產(chǎn)品的國際競爭力勢必會受到一定的影響,因此需要我國出口貿(mào)易的主管部門一方面不斷加強(qiáng)技術(shù)研發(fā)投入,提升其生產(chǎn)技術(shù)水平,降低能源成本的比重,提高單位產(chǎn)品的能源效率;另一方面由于我國外貿(mào)存在較大的順差,需要不斷調(diào)整出口產(chǎn)品的結(jié)構(gòu),配合國內(nèi)產(chǎn)業(yè)政策的調(diào)整,降低能源成本較高產(chǎn)品的出口,優(yōu)化出口產(chǎn)品的機(jī)構(gòu),提高出口產(chǎn)品的科技含量和附加值,整個貿(mào)易政策調(diào)整優(yōu)先向競爭力導(dǎo)向轉(zhuǎn)變。
同時國內(nèi)碳市場機(jī)制的建立,如果不觸及現(xiàn)行電力體制的情況下,則不能實(shí)現(xiàn)電力行業(yè)碳成本的有效傳遞,需要建立及完善終端電價(jià)與購電成本的聯(lián)動機(jī)制,體現(xiàn)電力行業(yè)的外部成本,改善現(xiàn)有發(fā)電利益的重新分配機(jī)制,通盤兼顧電價(jià)改革與碳市場機(jī)制制度的構(gòu)建。
(編輯:徐天祥)
參考文獻(xiàn)(References)
[1]楊帆.國際碳定價(jià)機(jī)制研究及其啟示[J]. 商業(yè)時代,2012,(4):7-8.[Yang Fan. Research of International Carbon Pricing Mechanism and Implications[J]. Commercial Times, 2012,(4):7-8.]
[2]彭本利,李摯萍. 碳交易主體法律制度研究[J]. 中國政法大學(xué)學(xué)報(bào),2012,(2):47- 53.[Peng Benli, Li Zhiping. On the Subjects Legal System of Chinas Carbon Trading[J]. Journal of CUPL, 2012,(2):47- 53.]
[3]魏本勇. 中國國際貿(mào)易中的碳轉(zhuǎn)移及減排潛力[D].北京:北京師范大學(xué),2010. [Wei Benyong. Embodiment Transfer and Reduction Potential of Carbon Emissions in Chinese International Trade[D]. Beijing: Beijing Normal University, 2010.]
[4]Yan Y F, Yang L K. Chinas Foreign Trade and Climate Change: A Case Study of CO2 Emissions [J]. Energy Policy, 2010, 38(1):350-356.
[5]Liu X B, Masanobu I, Can W, et al. Analyses of CO2 Emissions Embodied in JapanChina Trade[J]. Energy Policy, 2010, 38(3): 1510-1518.
[6]Du H B, Guo J H, Mao G Z. CO2 Emissions Embodied in ChinaUS Trade: InputOutput Analysis Based on the Emergy/Dollar Ratio[J]. Energy Policy, 2011, 39: 5980-5987.
[7]Weber C L, Peters G P, Guan D, et al. The Contribution of Chinese Exports to Climate Change [J]. Energy Policy, 2008, 36(9): 3572-3577.
[8]Liu H T, Xi Y M, Guo J E, et al. Energy Embodied in the International Trade of China: An Energy InputOutput Analysis[J]. Energy Policy, 2010, 38: 3957-3964.
[9]Liu X, Ishikawab M, Wang C, et al. Analyses of CO2 Emissions Embodied in JapanChina Trade[J]. Energy Policy, 2010, 38 (3): 1510-1518.
[10]顧阿倫, 何建坤, 周玲玲, 等. 中國進(jìn)出口貿(mào)易中的內(nèi)涵能源及轉(zhuǎn)移排放分析[J]. 清華大學(xué)學(xué)報(bào):自然科學(xué)版, 2010, 50(9): 1456-1459. [Gu Alun, He Jiankun, Zhou Lingling, et al. Analysis of Embodied Energy and Transfer Emissions of Chinas Import and Export Trade[J]. Journal of Tsinghua University: Science and Technology, 2010,50(9): 1456-1459.]
[11]方芳,徐化愚. 中國進(jìn)出口貿(mào)易的內(nèi)涵CO2排放:基于多區(qū)域投入產(chǎn)出法的測算及分析[J]. 國際貿(mào)易問題,2013,(9):82-91.[ Fang Fang, Xu Huayu. Carbon Dioxide Emissions Embodied in Chinas International Trade: Estimation and Analysis Based on MultiRegional InputOutput Model[J]. Journal of International Trade, 2013,(9):82-91.]
[12]方修琦, 王媛, 魏本勇, 等. 中國進(jìn)出口貿(mào)易碳轉(zhuǎn)移排放測算方法分析與評價(jià)[J]. 地球科學(xué)進(jìn)展, 2011, 26(10): 1101-1108.[Fang Xiuqi, Wang Yuan, Wei Benyong, et al. Analysis and Evaluation of Calculation Methods of Carbon Transfer Emissions in Import and Export of China[J]. Advances in Earth Science, 2011, 26(11):1101-1108.]
[13]劉紅光, 劉衛(wèi)東, 范曉梅. 貿(mào)易對中國產(chǎn)業(yè)能源活動碳排放的影響[J]. 地理研究, 2011, 30(4): 590-600. [Liu Hongguang, Liu Weidong, Fan Xiaomei. The Impact of Foreign Trade on CO2 Emissions Induced by Industrial Activities in China[J]. Geographical Research. 2011, 30(4): 590-600.]
[14]Davis S J, Caldeira K. ConsumptionBased Accounting of CO2 Emissions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(12): 5687-5692.
[15]Fei L, et al. Energy ConsumptionEconomic Growth Relationship and Carbon Dioxide Emissions in China[J]. Energy Policy,2011,39(2): 568-574.
[16]Minx J C, Baiocchi G, Peters G P, et al. A “Carbonizing Dragon”: Chinas Fast Growing CO2 Emissions Revisited[J]. Environmental Science & Technology, 2011, 45 (21): 9144-9153.
[17]Lise W, Sijm J, Hobbs B F. The Impact of the EU ETS on Prices, Profits and Emissions in the Power Sector: Simulation Results with the competes EU20 Model[J]. Environment Resource Economic,2010,47(1):23-44.
[18]趙盟,姜克雋,徐華清,等. EU ETS對歐洲電力行業(yè)的影響及對我國的建議. 氣候變化研究進(jìn)展. 2012, 8(6):462-468. [Zhao Meng, Jiang Kejuan, Xu Huaqing. et al. Impacts of EU ETS on European Power Industry and Its Implications[J]. Advances in Climate Change Research. 2012, 8(6):462-468.]
[19]Sijm J, Neuhoff K, Chen Y. CO2 Cost PassThrough and Windfall Profits in the Power Sector[J]. Climate Policy, 2006, 6(1): 49-72.
[20]Bonenti F, Oggioni G, Allevi E, et al. Evaluating the EU ETS Impacts on Profits, Investments and Prices of the Italian Electricity Market[J]. Energy Policy, 2013, 59:242-256.
Impacts of Carbon Price on Energy Cost in China International Trade
GU Alun
(Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100084, China)
AbstractAmong the diverse policy instruments to address climate change, market mechanism is most widely used. International carbon trading practices, especially the EU Emissions Trading Scheme (ETS), indicate that carbon trading costs in power and other energy processing and conversion sectors bring change to downstream product prices. Typically reflected in increased tariff of downstream electricity, the change subsequently pushes up the cost of production in other sectors. Hence, the introduction of a carbon pricing mechanism will influence the cost of the overall economic development. For an exportoriented economy in China, it is bound to affect the product costs of export trade. Based on the inputoutput tables in 2005 and 2007, this paper examines the energy costs of export trade products in China, and finds that energy costs account for about 13% of the annual export value. If only domestic intermediate inputs are considered and imported ones deducted, the proportion falls to 9%-10%, while electricity cost takes up over 60% of the whole energy costs. Given an increase of electricity costs by 50% with the introduction of the carbon pricing mechanism, the energy costs will be at least doubled, which will massively cut the international competitiveness of Chinas export products. Export trade sectors therefore need to step up the R & D input to enhance their technological strength, and thereby lower energy costs by increasing energy efficiency per unit of product. Meanwhile, in view of the large foreign trade surplus, it is necessary to constantly adjust the structure of export products. In line with the adjustment of domestic industrial policy, the export structure should be optimized by reducing energyintensive products, so as to improve the technological content and added value of exports, while the overall adjustment of trade policies is oriented to competitiveness.
Key wordscarbon price; cost pass through rate; export and import trade; energy cost; climate change
GU Alun
(Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100084, China)
AbstractAmong the diverse policy instruments to address climate change, market mechanism is most widely used. International carbon trading practices, especially the EU Emissions Trading Scheme (ETS), indicate that carbon trading costs in power and other energy processing and conversion sectors bring change to downstream product prices. Typically reflected in increased tariff of downstream electricity, the change subsequently pushes up the cost of production in other sectors. Hence, the introduction of a carbon pricing mechanism will influence the cost of the overall economic development. For an exportoriented economy in China, it is bound to affect the product costs of export trade. Based on the inputoutput tables in 2005 and 2007, this paper examines the energy costs of export trade products in China, and finds that energy costs account for about 13% of the annual export value. If only domestic intermediate inputs are considered and imported ones deducted, the proportion falls to 9%-10%, while electricity cost takes up over 60% of the whole energy costs. Given an increase of electricity costs by 50% with the introduction of the carbon pricing mechanism, the energy costs will be at least doubled, which will massively cut the international competitiveness of Chinas export products. Export trade sectors therefore need to step up the R & D input to enhance their technological strength, and thereby lower energy costs by increasing energy efficiency per unit of product. Meanwhile, in view of the large foreign trade surplus, it is necessary to constantly adjust the structure of export products. In line with the adjustment of domestic industrial policy, the export structure should be optimized by reducing energyintensive products, so as to improve the technological content and added value of exports, while the overall adjustment of trade policies is oriented to competitiveness.
Key wordscarbon price; cost pass through rate; export and import trade; energy cost; climate change
GU Alun
(Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100084, China)
AbstractAmong the diverse policy instruments to address climate change, market mechanism is most widely used. International carbon trading practices, especially the EU Emissions Trading Scheme (ETS), indicate that carbon trading costs in power and other energy processing and conversion sectors bring change to downstream product prices. Typically reflected in increased tariff of downstream electricity, the change subsequently pushes up the cost of production in other sectors. Hence, the introduction of a carbon pricing mechanism will influence the cost of the overall economic development. For an exportoriented economy in China, it is bound to affect the product costs of export trade. Based on the inputoutput tables in 2005 and 2007, this paper examines the energy costs of export trade products in China, and finds that energy costs account for about 13% of the annual export value. If only domestic intermediate inputs are considered and imported ones deducted, the proportion falls to 9%-10%, while electricity cost takes up over 60% of the whole energy costs. Given an increase of electricity costs by 50% with the introduction of the carbon pricing mechanism, the energy costs will be at least doubled, which will massively cut the international competitiveness of Chinas export products. Export trade sectors therefore need to step up the R & D input to enhance their technological strength, and thereby lower energy costs by increasing energy efficiency per unit of product. Meanwhile, in view of the large foreign trade surplus, it is necessary to constantly adjust the structure of export products. In line with the adjustment of domestic industrial policy, the export structure should be optimized by reducing energyintensive products, so as to improve the technological content and added value of exports, while the overall adjustment of trade policies is oriented to competitiveness.
Key wordscarbon price; cost pass through rate; export and import trade; energy cost; climate change