王思照,張儀萍
(1.浙江大學(xué)建筑工程學(xué)院,浙江杭州310058;2.浙江省水利水電勘測(cè)設(shè)計(jì)院,浙江杭州310002)
基于T5單元的體積不可壓縮問題光滑有限元法
王思照1,2,張儀萍1
(1.浙江大學(xué)建筑工程學(xué)院,浙江杭州310058;2.浙江省水利水電勘測(cè)設(shè)計(jì)院,浙江杭州310002)
提出5節(jié)點(diǎn)的四面體單元(T5),將無(wú)網(wǎng)格法的面積權(quán)重應(yīng)變光滑法和光滑有限元法應(yīng)用于該5節(jié)點(diǎn)四面體單元,提出用于解決三維體積不可壓縮線彈性體的算法:基于節(jié)點(diǎn)光滑域的選擇性體積權(quán)重應(yīng)變光滑模型(T5-p NVW/NVW).數(shù)值算例顯示,四節(jié)點(diǎn)四面體單元采用基于節(jié)點(diǎn)的光滑有限元法(T4-NS)無(wú)法完美解決體積鎖定,相比于T4-NS法,利用提出的T5-p NVW/NVW模型能夠較精確地解決體積鎖定問題,并完美解決應(yīng)力的棋盤式波動(dòng).
體積鎖定;體積權(quán)重應(yīng)變光滑;5節(jié)點(diǎn)的四面體單元(T5);αFEM;壓力波動(dòng)
體積鎖定是有限元分析的一個(gè)難點(diǎn),它是指當(dāng)處理材料不可壓縮問題時(shí)(即當(dāng)材料泊松比趨于0.5或體積模量與切變模量比趨于無(wú)窮時(shí)),有限元方程的位移解出現(xiàn)病態(tài)和棋盤式的壓力解[1-3].自有限元發(fā)展以來(lái),諸多學(xué)者對(duì)其進(jìn)行研究,其中頗具代表性的解決方案有:一致降階積分法[4-7]、B-bar法[2]、u/p混合元法[2,8]、平均節(jié)點(diǎn)壓力法[9-12]等.
為了提高有限元法三角單元的計(jì)算效率,Liu等[13-17]結(jié)合了無(wú)網(wǎng)格法的應(yīng)變光滑法[18-20],提出一系列基于不同積分子域的光滑有限元法,包括:基于單元子域的CS-FEM[13]、基于邊域的ES-FEM[21]、基于節(jié)點(diǎn)光滑域的NS-FEM[22]、基于三維面域的FS-FEM[23](三維四面體單元)等.其中,采用一個(gè)光滑子單元域的CS-FEM具有免于鎖定的特性,該特性類似于采用一點(diǎn)高斯積分的FEM,雖然能夠得到較精確的位移解,但是存在額外零能模態(tài)和不均勻的壓力分布等缺陷.基于光滑子單元域的選擇性積分法(selective cell-based SFEM)[24-25]雖然能夠解決體積鎖定和額外的零能模態(tài),但其解鎖本質(zhì)是基于一個(gè)單元子域的光滑有限元法(CS-FEM),無(wú)法解決壓力解的波動(dòng)問題;另一個(gè)天然的免于體積鎖定的光滑算法是NS-FEM[26-27],不存在額外的零能模態(tài),無(wú)法解決壓力的棋盤式分布,當(dāng)采用較規(guī)則網(wǎng)格時(shí),采用該算法能夠給出問題的應(yīng)變能上限.還有一些光滑算法包括:αFEM[28-29]和基于不同光滑域的選擇性算法(a domain-based selective scheme)[21]均基于NS法的解鎖本質(zhì),無(wú)法解決壓力的棋盤式波動(dòng).
Nguyen-Xuan等[30]研究指出NS-FEM的解鎖特性不完美,通過二維模態(tài)分析[1-2,31-33]發(fā)現(xiàn),NSFEM法采用三角單元并無(wú)法解決沙漏模態(tài),在解決一些對(duì)約束條件較苛刻的體積不可壓縮問題時(shí),NS-FEM法的解鎖特性不徹底,既無(wú)法解決壓力的波動(dòng),而且會(huì)出現(xiàn)位移解的不精確.Nguyen-Xuan 等[30]通過在FEM法的三角單元內(nèi)增加一個(gè)節(jié)點(diǎn)并采用氣泡型形函數(shù)[34](bubble function),結(jié)合ESFEM法提出bES-FEM[30]法用于解決二維體積鎖定問題,能夠較有效地解決體積鎖定和壓力的棋盤式振蕩.Wu等[35-37]提出一種新型的ME-FEM的無(wú)網(wǎng)格四面體單元,用于解決體積鎖定問題,能夠較好地解決壓力波動(dòng),但該單元使用的隱式形函數(shù)對(duì)于簡(jiǎn)單問題的計(jì)算效率沒有有限元法高.Zhang等[38]提出基于5節(jié)點(diǎn)的四邊形單元和9節(jié)點(diǎn)的六面體單元,用于解決二維和三維體積不可壓縮問題,均較好地解決了體積鎖定,獲得了較精確的位移解和壓力解.
本文通過在四面體單元(T4)內(nèi)部增加一個(gè)節(jié)點(diǎn),采用氣泡型形函數(shù)(bubble function)構(gòu)造出一種5節(jié)點(diǎn)四面體單元(T5).基于該T5單元,結(jié)合無(wú)網(wǎng)格法的面積權(quán)重應(yīng)變光滑技術(shù)和NS-FEM法,提出一種解決體積鎖定的算法,用于解決普遍算法中無(wú)法解決的應(yīng)力波動(dòng)問題.本文提出的T5-p NVW/NVW模型具有αFEM的特點(diǎn),能夠調(diào)節(jié)偏斜應(yīng)變能以達(dá)到提高解的準(zhǔn)確性的目的,通過一系列數(shù)值算例檢驗(yàn)了該單元在解決體積不可壓縮問題時(shí)的效能.
考慮一個(gè)四面體單元[39-41],中心加一節(jié)點(diǎn),第5節(jié)點(diǎn)形函數(shù)為
其中,xe(i)、ye(i)、ze(i)為四面體單元各角點(diǎn)的坐標(biāo)值.T5單元其他4個(gè)節(jié)點(diǎn)的形函數(shù)為
問題域ΩNVW的劃分是基于節(jié)點(diǎn)的,通過將第5節(jié)點(diǎn)與各個(gè)邊中點(diǎn)和面中心點(diǎn)相連,將T5單元?jiǎng)澐譃?個(gè)部分(見圖1),每個(gè)部分占用一個(gè)角節(jié)點(diǎn),因此各個(gè)節(jié)點(diǎn)光滑域?yàn)榕c相同節(jié)點(diǎn)k相鄰的所有部分的合集.基于節(jié)點(diǎn)的應(yīng)變光滑域有3類,包括內(nèi)部節(jié)點(diǎn)光滑域、邊節(jié)點(diǎn)光滑域和角節(jié)點(diǎn)光滑域.典型的內(nèi)部節(jié)點(diǎn)光滑域k的光滑域體積為
基于節(jié)點(diǎn)k的應(yīng)變光滑算子為
式中:dI為節(jié)點(diǎn)I的位移列向量,I為與節(jié)點(diǎn)k的光滑域相關(guān)的所有節(jié)點(diǎn),uh(x)為位移向量表示光滑后的應(yīng)變位移算子)為光滑的應(yīng)變位移矩陣,
圖1 基于節(jié)點(diǎn)的體積權(quán)重應(yīng)變光滑域(T5-Nv W)Fig.1 Illustration of node-based volume-weighted strain smoothing domain for T5-NVW
其中
總體剛度矩陣為
其中,nNVW為節(jié)點(diǎn)單元域總數(shù).
將三維線彈性問題材料矩陣D[21-22]分解為與形變和體積相關(guān)兩部分D1和D2.其中,μ=E/[2×(1+ν)]為切變模量,與D1相關(guān);λ=2νμ/(1-2ν)為體積模量,與D2相關(guān).對(duì)于三維問題,材料矩陣分解為
T5-p NVW/NVW模型的剛度矩陣為
4.1 三維懸臂梁
考慮一個(gè)一端固支頂部受均布荷載的三維懸臂梁例子,用于比較分析本文所提方法在解決體積鎖定問題的精確性.如圖2所示,懸臂梁尺寸為5×1×1,頂部受均布荷載的合力f=1,泊松比ν=0.499 999 9,彈性模量E=1000.
圖2 頂部受均布荷載的三維懸臂梁幾何尺寸及5節(jié)點(diǎn)四面體單元網(wǎng)格劃分Fig.2 Domain discretization using five-node tetrahedral element for three-dimensional cantilever beam subjected to uniform pressure at top
為了分析解的準(zhǔn)確性,本文加入4節(jié)點(diǎn)四面體單元(T4)采用NS-FEM法進(jìn)行比較分析.對(duì)于模型T5-p NVW/NVW,參數(shù)p的確定如圖3所示.圖中,Een為應(yīng)變能.采用3套網(wǎng)格(具有相同的劃分比例5∶1∶1)計(jì)算問題應(yīng)變能,根據(jù)αFEM法的計(jì)算原理可知,3條曲線的交點(diǎn)即為問題的估計(jì)最佳應(yīng)變能Een≈0.038 5,對(duì)應(yīng)最優(yōu)參數(shù)p=0.288.從確定參數(shù)p的3套曲線圖可以看出,參數(shù)p在定義域(0,1]范圍變化時(shí),只是進(jìn)行應(yīng)變能的微調(diào)搜索過程,未出現(xiàn)由“體積鎖定”引起的應(yīng)變能無(wú)界狀態(tài)(突變巨大且無(wú)界),這證明參數(shù)p對(duì)是否發(fā)生“體積鎖定”沒有任何影響.如表1所示為當(dāng)網(wǎng)格劃分精細(xì)時(shí),三維懸臂梁應(yīng)變能的收斂趨勢(shì).可見,相比于T4-NS法,T5-p NVW/NVW(p=0.288)模型能夠較快地找到精確應(yīng)變能解.如表2所示為三維懸臂梁頂部端節(jié)點(diǎn)A(見圖2)的z向位移uz(八節(jié)點(diǎn)六面體單元采用選擇性降階積分H8-SRI,計(jì)算得出參考值為uz=-0.19,其中負(fù)號(hào)表示方向?yàn)閦軸負(fù)方向,采用網(wǎng)格為100×20×20),T5-p NVW/NVW(p=0.288)相對(duì)于T4-NS法[22]得到較精確的位移解.如圖4所示為當(dāng)ν=0.499 999 9,位移放大倍數(shù)為5時(shí),三維懸臂梁的位移圖及壓力云圖.圖4顯示T5-p NVW/NVW模型和T4-NS法在解決體積鎖定問題時(shí),均能夠獲得較準(zhǔn)確的位移解.從壓力云圖可以發(fā)現(xiàn),T4-NS在端部的壓力偏高,T5-p NVW/NVW模型的壓力解比T4-NS法更光滑.
圖3 頂部受均布荷載的三維懸臂梁的參數(shù)p的確定(T5-p Nv W/Nv W)Fig.3 Parameter determination of three-dimensional cantilever beam subjected to uniform pressure at top for T5-p NVW/NVW
4.2 三維沖壓?jiǎn)栴}
考慮一三維沖壓(punch)問題,尺寸及網(wǎng)格劃分如圖5所示,E=1000.頂部1/4區(qū)域受z向位移uz=-0.03.
表1 頂部受均布荷載的三維懸臂梁應(yīng)變能(網(wǎng)格i≡i×10×2×2×6)Tab.1 Strain energy obtained using different methods for three-dimensional cantilever beam subjected to uniform pressure at top(mesh i represents i×10×2×2×6)
表2 頂部受均布荷載的三維懸臂梁節(jié)點(diǎn)A處的z向位移uz(網(wǎng)格i≡i×10×2×2×6)Tab.2 Tip deflection at point A obtained using different methods for three-dimensional cantilever beam subjected to uniform pressure at top(mesh i represents i×10×2×2×6)
圖6采用均勻10×10×5×6網(wǎng)格,比較分析T4-CS/NS法和T5-CS/NVW模型(為了方便對(duì)比分析,T5-p NVW/NVW模型參數(shù)直接采用p=1,因此退化為T5-CS/NVW法;由于T4-NS法的計(jì)算結(jié)果波動(dòng)較大,采用T4-CS/NS法進(jìn)行比較,T4-CS/NS法為采用基于T4單元的CS-FEM計(jì)算偏斜應(yīng)變能,NS-FEM計(jì)算體積應(yīng)變能)在材料近似不可壓縮問題下的位移變形圖和壓力云圖的光滑度.由圖6(a)、(b)可知,當(dāng)泊松比為0.49時(shí),采用2種方法均能夠得到位移解,不存在壓力波動(dòng).當(dāng)泊松比為0.499 999 9時(shí)(趨于0.5),T4-CS/NS法在處理體積鎖定問題時(shí)無(wú)法得到精確的位移解,頂部位移變形圖(見圖6(c))不如T5-CS/NVW法光滑(見圖6(d)),還出現(xiàn)了應(yīng)力的不均勻波動(dòng)現(xiàn)象;相比于T4-CS/NS法,T5-CS/NVW模型得到了較準(zhǔn)確的位移解和光滑的壓力解.
(1)本文基于無(wú)網(wǎng)格ME法和基于節(jié)點(diǎn)的NSFEM法,提出應(yīng)用于有限元法的T5單元,給出相應(yīng)的顯式形函數(shù).
(2)結(jié)合無(wú)網(wǎng)格法的面積權(quán)重應(yīng)變光滑法與光滑有限元法的CS法和NS法,提出基于節(jié)點(diǎn)光滑域的三維選擇性體積權(quán)重應(yīng)變光滑模型(T5-p NVW/NVW).數(shù)值算例顯示,采用該模型能夠很好地解決體積鎖定問題引起的位移解不準(zhǔn)確和棋盤式壓力波動(dòng).
(3)T5-p NVW/NVW具有類似αFEM的功能,通過參數(shù)p來(lái)調(diào)整系統(tǒng)的剛度使其更加接近系統(tǒng)的真實(shí)剛度,從而提高T5-p NVW/NVW法的解的準(zhǔn)確性.參數(shù)p的確定至少需要2套網(wǎng)格,在一定程度上降低了計(jì)算效率,高效、簡(jiǎn)便地確定參數(shù)p是下一步研究的重點(diǎn).采用高效準(zhǔn)確的FS-FEM法、三維ES-FEM法或其他算法代替p NVW計(jì)算偏斜應(yīng)變能是一種選擇.p的調(diào)節(jié)與體積鎖定沒有任何關(guān)系,p在定義域(0,1]內(nèi)變化均對(duì)是否發(fā)生“體積鎖定”沒有任何影響.實(shí)際工程問題時(shí),可以直接采用T5-CS/NAW計(jì)算,不需要確定p,也可以滿足工程要求.如果需要提高精度,在網(wǎng)格、載荷、結(jié)構(gòu)的幾何形式確定之后,可以采用本文方法確定參數(shù)p.
圖4 頂部受均布荷載的三維懸臂梁位移變形圖及壓力云圖Fig.4 Deformation and distribution of pressure for three-dimensional cantilever beam subjected to uniform pressure at top
圖5 三維沖壓?jiǎn)栴}的幾何尺寸及T5單元網(wǎng)格劃分Fig.5 Domain discretization using five-node tetrahedral element for three-dimensional punch problem
圖6 三維沖壓?jiǎn)栴}位移變形圖(放大倍數(shù)為50)及壓力云圖Fig.6 Deformation and distribution of pressure for three-dimensional punch problem in compressible and nearly incompressible case
(4)本文提出的T5單元采用三維四面體網(wǎng)格,適用于進(jìn)一步研究大變形及網(wǎng)格極不規(guī)則的問題.
(
):
[1]HUGHES T J R.The finite element method[M].New York:Dover Publications,2000.
[2]BATHE K J.Finite element procedures[M].New Jersey:Prentice-Hall,1996.
[3]李忠學(xué).梁板殼有限單元中的各種閉鎖現(xiàn)象及解決方法[J].浙江大學(xué)學(xué)報(bào):工學(xué)版,2007,41(7):1119-1125.
LI Zhong-xue.Strategies for overcoming locking phenomena in beam and shell finite element formulations [J].Journal of Zhejiang University:Engineering Science,2007,41(7):1119-1125.
[4]HUGHES T J R.Reduced and selective integration techniques in the finite element analysis of plates[J].Nuclear Engineering and Design,1978,46(1):203-222.
[5]FLANAGAN D P,BELYTSCHKO T.A uniform strain hexahedron and quadrilateral with orthogonal hourglass control[J].International Journal for Numerical Methods in Engineering,1981,17(5):679-706.
[6]BELYTSCHKO T,BACHRACH W E.Efficient implementation of quadrilaterals with high coarse-mesh accuracy[J].Computer Methods in Applied Mechanics and Engineering,1986,54(2):279-301.
[7]FREDRIKSSON M,OTTOSEN N S.Fast and accurate 4-node quadrilateral[J].International Journal for Numerical Methods in Engineering,2004,61(11):1809-1834.
[8]BREZZI F,F(xiàn)ORTIN M.Mixed and hybrid finite element methods[M].New York:Springer,1991.
[9]BONET J,BURTON A J.A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications[J].Communications in Numerical Methods in Engineering,1998,14(5):437-449.
[10]DOHRMANN C R,HEINSTEIN M W,JUNG J,et al.Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes[J].International Journal for Numerical Methods in Engineering,2000,47(9):1549-1568.
[11]KRYSL P,ZHU B.Locking-free continuum displacement finite elements with nodal integration[J].International Journal for Numerical Methods in Engineering,2008,76(7):1020-1043.
[12]LAMICHHANE B P.Inf-sup stable finite element pairs based on dual meshes and bases for nearly incompressible elasticity[J].IMA Journal of Numerical Analysis,2009,29(2):404-420.
[13]LIU G R,DAI K Y,NGUYEN-THOI T.A smoothed finite element for mechanics problems[J].Computer Methods in Applied Mechanics and Engineering,2007,39(6):859-877.
[14]LIU G R,NGUYEN-XUAN H,NGUYEN-THOI T.A theoretical study of S-FEM models:properties,accuracy and convergence rates[J].International Journal for Numerical Methods in Engineering,2010,84(10):1222-1256.
[15]LIU G R.A G space theory and weakened weak(W2)form for a unified formulation of compatible and incompatible methods.Part I:theory and Part II:application to solid mechanics problems[J].International Journal for Numerical Methods in Engineering,2010,81(9):1093-1156.
[16]NGUYEN-XUAN H,BORDAS S,NGUYEN-DANG H.Smooth finite element methods:convergence,accuracy and properties[J].International Journal for Numerical Methods in Engineering,2008,74(2):175-208.
[17]BORDAS S,RABCZUK T,NGUYEN-XUAN H,et al.Strain smoothing in FEM and XFEM[J].Computers and Structures,2010,80(23):1419-1443.
[18]HUERTA A,F(xiàn)ERNANDEZ-MENDEZ S.Locking in the incompressible limit for the element free-Galerkin method[J].International Journal for Numerical Methods in Engineering,2001,51(11):1361-1383.
[19]CHEN J S,WU C T,YOON S,et al.A stabilized conforming nodal integration for Galerkin mesh-free methods[J].International Journal for Numerical Methods in Engineering,2001,50(2):435-466.
[20]YOO J W,MORAN B,CHEN J S.Stabilized conforming nodal integration in the natural-element method [J].International Journal for Numerical Methods in Engineering,2004,60(5):861-890.
[21]LIU G R,NGUYEN-THOI T,LAM K Y.An edgebased smoothed finite element method(ES-FEM)for static,free and forced vibration analyses of solids[J].Journal of Sound and vibration,2009,320(4):1100-1130.
[22]LIU G R,NGUYEN-THOI T,NGUYEN-XUAN H,et al.A node-based smoothed finite element method for upper bound solution to solid problems(NS-FEM)[J].Computers and Structures,2008,87(1):14-26.
[23].NGUYEN-THOI T,LIU G R,LAM K Y,et al.A face-based smoothed finite element method(FS-FEM)for 3D linear and nonlinear solid mechanics problems using 4-node tetrahedral elements[J].International Journal for Numerical Methods in Engineering,2009,78(3):324-353.
[24]NGUYEN-THOI T,LIU G R,DAI K Y.Selective smoothed finite element method[J].Tsinghua Science and Technology,2007,12(5):497-508.
[25]NGUYEN-XUAN H,BORDAS S,NGUYEN-DANG H.Addressing volumetric locking and instabilities by selective integration in smoothed finite elements[J].Communications in Numerical Methods in Engineering,2009,25(1):19-34.
[26]王建明,張剛,戚放,等.基于光滑有限元法的體積鎖定研究[J].山東大學(xué)學(xué)報(bào):工學(xué)版,2012,42(3):94-99.WANG Jian-ming,ZHANG Gang,QI Fang,et al.Study of volumetric locking based on the smoothed finite element method[J].Journal of Shandong University:Engineering Science,2012,42(3):94-99.
[27]王建明,樊現(xiàn)行,裴信超,等.光滑節(jié)點(diǎn)域有限元法[J].山東大學(xué)學(xué)報(bào):工學(xué)版,2013,43(2):54-61.WANG Jian-ming,F(xiàn)AN Xian-xing,PEI Xin-chao,et al.Node-based smoothed cells based on finite element method[J].Journal of Shandong University:Engineering Science,2013,43(2):54-61.
[28]LIU G R,NGUYEN-THOI T,LAM K Y.A novel FEM by scaling the gradient of strains with scaling factorα(αFEM)[J].Computational Mechanics,2009,43(3):369-391.
[29]LIU G R,NGUYEN-THOI T.A novel alpha finite element method(αFEM)for exact solution to mechanics problems using triangular and tetrahedral elements [J].Computer Methods in Applied Mechanics and Engineering,2009,197(45):3883-3897.
[30]NGUYEN-XUAN H,LIU G R.An edge-based smoothed finite element softened with a bubble function(bES-FEM)for solid mechanics problems[J].Computers and Structures,2013,128(1):14-30.
[31]HUECK U,SCHREYER H,WRIGGERS P.On the incompressible constraint of the 4-node quadrilateral element[J].International Journal for Numerical Methods in Engineering,1995,38(18):3039-3053.
[32]HACKER W L,SCHREYER H L.Eigenvalue analysis of compatible and incompatible rectangular fournode quadrilateral elements[J].International Journal for Numerical Methods in Engineering,1989,28(3):687-704.
[33]KIDGER D J,SMITH I M.Eigenvalues and eigenmodes of 8-node brick elements[J].Communications in Applied Numerical Methods,1992,8(3):193-205.
[34]ARNOLD D,BREZZI F,F(xiàn)ORTIN M.A stable finite element for the stokes equations[J].Calcolo,1984,21(4):337-344.
[35]WU C T,HU W.Meshfree-enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids[J].Computer Methods in Applied Mechanics and Engineering,2011,200(45):2991-3010.
[36]WU C T,HU W,CHEN J S.A meshfree-enriched finite element method for compressible and near-incompressible elasticity[J].International Journal for Numerical Methods in Engineering,2012,90(7):805-938.
[37]WU C T,HU W.A two-level mesh repartitioning scheme for the displacement-based lower-order finite element methods in volumetric locking-free analyses [J].Computational Mechanics,2012,50(1):1-18.
[38]ZHANG Y P,WANG S Z,CHAN D.A new fivenode locking-free quadrilateral element based on smoothed FEM for near-incompressible linear elasticity [J].International Journal for Numerical Methods in Engineering,2014,100(9):633-668.
[39]TIMOSHENKO S P,GOODIER J N.Theory of elasticity[M].3rd ed.New York:McGraw-Hill,1970.
[40]羅伯特D.庫(kù)克.有限元分析的概念與應(yīng)用[M].關(guān)正西,譯.4版.西安:西安交通大學(xué)出版社,2007.
[41]徐芝綸.彈性力學(xué)簡(jiǎn)明教程[M].北京:高等教育出版社,2008.
Nearly incompressible linear elasticity using five-node tetrahedral element based on smoothed finite element method
WANG Si-zhao1,2,ZHANG Yi-ping1
(1.College of Civil Engineering and Architecture,Zhejiang University,Hangzhou 310058,China;2.Zhejiang Design Institute of Water Conservancy and Hydroelectric Power,Hangzhou 310002,China)
A new five-node tetrahedral element(T5)was proposed.The area-weighted strain smoothing technique and the smoothed finite element method were introduced into T5 element.A volumetric lockingfree scheme for three-dimensional tetrahedral meshes was proposed,which is the node-based selective domain-based strain smoothing scheme(T5-p NVW/NVW).The benchmark numerical examples show that the proposed method can solve the volumetric locking and the pressure oscillation compared to the node-based smoothed FEM using the four-node tetrahedral element(T4-NS).
volumetric locking;volume-weighted strain smoothing;five-node tetrahedral element(T5);αFEM;pressure oscillation
TB115;O 343
A
1008-973X(2015)10-1967-07
2014-08-21. 浙江大學(xué)學(xué)報(bào)(工學(xué)版)網(wǎng)址:www.journals.zju.edu.cn/eng
浙江省科技創(chuàng)新團(tuán)隊(duì)資助項(xiàng)目(2010R50037).
王思照(1989—),男,碩士生,從事軟土地基處理及有限元數(shù)值計(jì)算等的研究.ORCID:0000-0003-3091-026X.
E-mail:21212076@zju.edu.cn
張儀萍,男,教授.ORCID:0000-0001-8537-8181.E-mail:zhangyiping@zju.edu.cn