• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    H-ZSM-5分子篩催化4-MBP與甲醇甲基化的反應(yīng)機(jī)理

    2015-01-04 05:22:35李玲玲JANIKMichael聶小娃宋春山郭新聞遼寧科技學(xué)院冶金工程學(xué)院遼寧本溪700大連理工大學(xué)化工學(xué)院精細(xì)化工國家重點(diǎn)實(shí)驗(yàn)室PSUDUT聯(lián)合能源研究中心遼寧大連60賓夕法尼亞州立大學(xué)能源與礦物工程系能源研究所PSUDUT聯(lián)合能源研究中心賓夕法尼亞680美國賓夕法尼亞州立大學(xué)化學(xué)工程系賓夕法尼亞680美國佐治亞理工學(xué)院化學(xué)與生物工程學(xué)院亞特蘭大0000美國
    物理化學(xué)學(xué)報(bào) 2015年1期
    關(guān)鍵詞:中國化學(xué)會(huì)膠體分子篩

    李玲玲 JANIK J.Michael 聶小娃 宋春山 郭新聞(遼寧科技學(xué)院冶金工程學(xué)院,遼寧本溪700;大連理工大學(xué)化工學(xué)院,精細(xì)化工國家重點(diǎn)實(shí)驗(yàn)室,PSU-DUT聯(lián)合能源研究中心,遼寧大連60;賓夕法尼亞州立大學(xué)能源與礦物工程系能源研究所,PSU-DUT聯(lián)合能源研究中心,賓夕法尼亞680,美國;賓夕法尼亞州立大學(xué)化學(xué)工程系,賓夕法尼亞680,美國;佐治亞理工學(xué)院化學(xué)與生物工程學(xué)院,亞特蘭大0-000,美國)

    H-ZSM-5分子篩催化4-MBP與甲醇甲基化的反應(yīng)機(jī)理

    李玲玲1,2JANIK J.Michael2,3,4,*聶小娃5宋春山2,3,4郭新聞2,*
    (1遼寧科技學(xué)院冶金工程學(xué)院,遼寧本溪117004;2大連理工大學(xué)化工學(xué)院,精細(xì)化工國家重點(diǎn)實(shí)驗(yàn)室,PSU-DUT聯(lián)合能源研究中心,遼寧大連116024;3賓夕法尼亞州立大學(xué)能源與礦物工程系能源研究所,PSU-DUT聯(lián)合能源研究中心,賓夕法尼亞16802,美國;4賓夕法尼亞州立大學(xué)化學(xué)工程系,賓夕法尼亞16802,美國;5佐治亞理工學(xué)院化學(xué)與生物工程學(xué)院,亞特蘭大30332-0100,美國)

    4,4?-二甲基聯(lián)苯(4,4?-DMBP)是生產(chǎn)高性能聚合物材料的重要前驅(qū)體,可以通過4-甲基聯(lián)苯(4-MBP)甲基化制得.本文采用“our own-N-layered integrated molecular orbital+molecular mechanics”(ONIOM)和密度泛函理論(DFT)方法研究H-ZSM-5分子篩孔內(nèi)4-MBP和甲醇擇形甲基化的反應(yīng)機(jī)理,考慮了分步和協(xié)同反應(yīng)機(jī)理.分步機(jī)理的活化能低于協(xié)同機(jī)理.在兩種反應(yīng)機(jī)理中,4,4?-DMBP為動(dòng)力學(xué)優(yōu)先生成產(chǎn)物.過渡態(tài)擇形的特征也使甲基化更容易生成4,4?-DMBP.在分子篩孔內(nèi),4-MBP異構(gòu)化生成3-甲基聯(lián)苯(3-MBP)的反應(yīng)被抑制.在分子篩外表面,4-MBP異構(gòu)化生成3-MBP比甲基化反應(yīng)更有動(dòng)力學(xué)優(yōu)勢,導(dǎo)致4,4?-DMBP選擇性降低.對(duì)外表面進(jìn)行改性將會(huì)抑制4-MBP異構(gòu)化反應(yīng),并使反應(yīng)在分子篩孔內(nèi)進(jìn)行,因此可以提高4,4?-DMBP的選擇性.H-ZSM-5催化擇形和非擇形反應(yīng)的計(jì)算結(jié)果與實(shí)驗(yàn)現(xiàn)象一致.

    ONIOM;甲基化;甲醇;4-MBP;H-ZSM-5

    1 Introduction

    The synthesis of 4,4'-dialkylbiphenyl(4,4'-DABP),an important precursor for advanced polymeric materials,can be achieved through shape-selective alkylation of polycyclic hydrocarbons.1-4ZSM-5 zeolite,with its specific pore topology structure and acid site characteristics,demonstrates excellent catalytic shape selectivity to 4,4'-dimethylbiphenyl(4,4'-DMBP) compared with HM,HY,and Hβ zeolites.5,64,4'-DMBP can be produced by two methylation steps from biphenyl(BP),or a single methylation step if 4-MBP is available.The dimethylation reaction is more difficult to selectively obtain 4,4'-DMBP than the monomethylation reaction at moderate experimental conditions.7-9Herein,we examine the 4-MBP methylation reaction using density functional theory(DFT)calculations.The preferred reaction path and the mechanistic source of selectivity to 4,4'-DMBP product are determined.

    In the parent H-ZSM-5 catalytic system,3,4'-dimethylbiphenyl (3,4'-DMBP)is the dominant product of the dimethylated DMBP isomers and the zeolite rapidly loses its catalytic efficiency.9To increase selectivity to 4,4'-DMBP,a number of treatments has been proposed.Treatments that target external zeolite surface sites can improve the desired selectivity to 4,4'-DMBP.10,11Guo et al.6,9reported that MgO modification and phosphorous modification could increase the selectivity to 4,4'-DMBP,and hydrothermal treatment together with increasing the amount of mesitylene solvent further improved catalyst stability and the 4,4'-DMBP selectivity up to approximately 90%.Despite the improvements in selectivity detailed above,increased conversion of 4-MBP and further increases in selectivity and stability of the zeolite are desired.

    Despite the substantial previous experimental work examining the catalytic selectivity and activity of ZSM-5(MFI)catalysts for 4-MBP methylation with methanol,the elementary electrophilic substitution reaction mechanism remains undetermined.For BP methylation with polymethylbenzenes,Brechtelsbauer and Emig8attributed high selectivity of the para-product to a supposed transition state selectivity for the bulky transition state structures over faujasite zeolite.Sugi et al.12studied the isopropylation of BP over HM and the experimental results implied that the isopropylation reaction occurred through a restricted transition state mechanism.We focus on shape-selective methylation of 4-MBP and non-selective reactions because mechanism determination is a necessary step towards rational design of more selective catalysts.DFT methods have been applied to similar electrophilic substitution reactions in zeolites,proving a useful tool for mechanism determination and evaluation of the impact of acid site strength and pore topology on reaction energetics.13-17

    Herein,DFT calculations are used to examine reactant and product adsorption stability,locate elementary reaction transition states,and compute elementary reaction energetics of the catalysis of the methylation,specifically to evaluate the H-ZSM-5 selectivity to 4,4'-DMBP.The“our own-N-layered integrated molecular orbital+molecular mechanics”(ONIOM)18,19method is employed to examine 4-MBP methylation with methanol.ONIOM2 is a auantum mechanics/molecular mechanics(QM/MM)embedded scheme,which combines the accuracy of QM methods for the acid site electronic interactions with longer range interactions in the MM region.A non-embedded cluster model is used to represent an external surface site,and the energetics of non-selective isomerization and methylation reactions are considered on these non-selective sites.For all models,a single-point energy with the ωB97X-D exchange-correlation functional is performed to include dispersion interactions between the bulky species and the zeolite structure.

    2 Computational model and methods

    A 128T cluster(Fig.1(a,b)),including a single Al atom,was generated from the lattice structure of MFI zeolite.20-26The 128T model has been previously used to represent the MFI structure.20-24The aluminum atom substitutes preferentially at the T12 silicon site,located at the intersection of the straight channel and the zigzag channel.27-30A hydrogen atom was introduced to balance the negative charge induced by Al substitution,creating a Br?nsted acid.The terminal Si―O bonds of the cluster were cut and saturated with hydrogen atoms.These Si―H bonds were fixed in the crystalline lattice direction with a distance of 0.147 nm.A 12T cluster(Fig.1(c,d)),neglecting the extended pore structure,was used to model a surface acid site of the H-ZSM-5 zeolite.22The Si/Al molar ratio of this model is 11 and the Si―O bonds were similarly substituted by Si―H bonds at the cluster boundary.The methods and model used herein are equivalent to that used in our previous studies.22-24

    The ONIOM2 approach,20-24,31-34partitioning the 128T cluster into a higher theory layer and a lower theory layer,was employed to describe reactant adsorption,transition state formation,and reaction energies.Considering the substantial size of the methylation reaction system and necessary extended zeolite model,the ONIOM2 method provides an inexpensive and efficient approach. The hydrocarbon species and the 12T active site,composed of the 10-membered-ring of the H-ZSM-5 pore and two Si atoms aroundthe Al atom,was considered at the B3LYP/6-31G(d,p)level of theory.The remaining model was computed by the universal force field(UFF).35During structural optimizations,the local 5T cluster within the 12T active region,[(≡(SiO)3Al(OH)Si≡],and the hydrocarbon species were allowed to relax,whereas the remaining zeolite framework was fixed at the crystallographic coordinates to avoid unrealistic distortions of the model during structural optimization.To prove the reasonable size of the QM region,we conducted structural optimization of bulky adsorbed states within a larger 31T QM model to compare with that obtained within the 12T QM model(Fig.1).The similar structural parameters illustrate that the 12T QM size within the 128T ONIOM model is adequate to reproduce the structure obtained within a larger QM model. UFF can well describe the confinement effects of the zeolite framework.36,37Nie et al.38and Sameera and Maseras39have also reported that QM/MM methods can provide a well description of relatively stable molecular structures with critical intramolecular or intermolecular non-covalent interactions.Thus considering the calculation cost,the 12T-128T ONIOM cluster was selected to describe the stable states throughout this work.The quadratic synchronous transit(QST)method within the framework of the ONIOM2(DFT:UFF)model was applied to locate transition states. Frequency calculations were performed at the same level of theory to ensure that transition states had a single imaginary frequency along the reaction coordinate.The quasi-intrinsic reaction coordinate(IRC)following structure optimization approach was applied to obtain initial reactant and product species toward reaction tendency.40,41

    Fig.1 128T ONIOM2 model including the internal H-ZSM-5 zeolite structure and 12T model

    Errors in the system energy are possible with the ONIOM combination of DFT(B3LYP)method with UFF,though configurations of stable species are well described.The S-value reported by Morokuma's group42,43was used to check the error of the ONIOM extrapolation.The ΔS-values show a large error of ONIOM2(DFT:UFF)method for the energy estimation.Therefore, a full single-point DFT calculation on the complete 128T cluster was employed at a ωB97X-D/6-31G(d,p)level,with zero-point energy(ZPE)corrections added.The ωB97X-D functional,a newly developed method for main group thermochemistry,kinetics and noncovalent interactions,was reported to provide an accurate description of the binding energies of adsorbates covalently and non-covalently interacting with the zeolite framework.41,44-46Free energies were computed at the same level of theory and included harmonic vibrational entropic terms.

    The structural optimization of all the states within the 12T cluster model of the external zeolite was performed with a full DFT calculation at the B3LYP/6-31G(d,p)level.The frontier electron densities[fr(E)]values were calculated at the same level. Single point energies based on the optimized structures were obtained with the ωB97X-D functional and ZPE corrections.All calculations were performed using the Gaussian 03 code47or Gaussian 09 code48.

    3 Results and discussion

    3.1 4-MBP methylation within the zeolite pore

    3.1.1 Stepwise mechanism

    3.1.1.1 Methoxide formation

    Previous studies of the electrophilic substitution mechanism catalyzed by a Br?nsted acid site have suggested stepwise and concerted alkylation mechanisms.21-23,31These two mechanisms differ in which reaction step produces a water molecule.This difference affects space constraints in the pore during reaction as well as possibly altering the reaction trajectory.

    Scheme 1(a)illustrates the stepwise mechanism for 4-MBP methylation by methanol.Fig.2(a)depicts the optimal methanol adsorption structure,including atom labels.A hydrogen bond of O3??H1 is formed,and the calculated adsorption energy(Eads) is-128.4 kJ·mol-1,in reasonable agreement with a measured experimental adsorption enthalpy((-115±5)kJ·mol-1)49.Following methanol adsorption,the stepwise mechanism proceeds through dehydration of methanol to form an adsorbed methoxy species.The initial methanol adsorbed state,referred to as Ads_Met shown in Fig.2(a),involves partial positive charge transfer from the acid site to methanol.This partial transfer is also evidenced in that the O1―H1 bond is lengthened by 0.009 nm compared with the isolate zeolite cluster and the interatomic distance of O3―H1 is 0.145 nm.The C1―O3 bond distance is 0.003 nm longer than that in the isolated methanol molecule (0.142 nm),which suggests that the C―O bond is weakened aftermethanol adsorption.At the dehydration transition state(Fig.2(b), TS_Met),the C1―O3 bond is cleaved and an O3―H1 bond is formed.Amethyl carbenium ion is formed in the typical trigonal planar configuration.The dehydration-generated water molecule as well as the zeolite negative charge stabilizes the carbenium ion through interaction between C1―O2(a framework O atom)and C1―O3(water).The interatomic distance of C1??O2 is 0.225 nm. The dehydration step is completed by formation of a covalent bond between C1 and a framework oxygen atom to form a surface methoxide.The generated water molecule remains hydrogenbound to the zeolite adjacent to the surface methoxide intermediate.The methanol dehydration product is exhibited in Fig.2(c).

    Scheme 1 Proposed reaction paths for methylation of 4-MBPwith methanol over H-ZSM-5

    Fig.2 Adsorbed species and transition states in the stepwise mechanism of 4-MBPmethylation with methanol in the 128T model

    The relative energies of all the equilibrium and transition states in the methanol dehydration process,referenced to the gas phase methanol and isolated zeolite,are included in Fig.3.The activation energy(Ea)of the methanol dehydration step to a surface methoxide and a water molecule is 120.9 kJ·mol-1.The dehydration step within the stepwise mechanism is completed by endothermic (47.2 kJ·mol-1)water desorption.The key bond parameters of the species in methanol dehydration step are given in Fig.2.

    Fig.3 Reaction energy profile for the stepwise mechanism of 4-MBP methylation with methanol

    Table 1 Key structural parameters of intermediate andtransition state species involved in the methylation step within the stepwise mechanism over 128T H-ZSM-5 zeolite

    3.1.1.2 Methylation step

    Within the stepwise mechanism,a 4-MBP molecule adsorbs nearby the methoxide through a σ-π interaction between the methyl group and the π electrons of the phenyl ring.Structures for the methylation step are presented in Fig.2 with key structural parameters in Table 1.The adsorption energy of 4-MBP is-123.4 kJ·mol-1.The conformation of the two aromatic rings of adsorbed 4-MBPis deformed relative to the gas phase structure due to steric restraints within the zeolite pore.In Int_Met_4-MBP(Fig.2(d)), attack of the C1 atom on the aromatic ring at the C3 position will form 3,4'-DMBP and attack at the C4 position will form 4,4'-DMBP.The methylation transition state is formed by the cleavage of the C1―O2 bond and the partial formation of the C1―C4-MBPbond.In the methylation transition state(TS_3,4',Fig.2(e),Eact= 141.8 kJ·mol;TS_4,4'(Fig.2(f),Eact=105.0 kJ·mol),the C1 conformation is trigonal planar,illustrating that the C1―Ozeolitebond is completely ruptured.The C1―C3 and C1―C4 bonds remain only partially formed at the transition states.

    Methylation to form the 4-4'-DMBP is kinetically preferred relative to 3,4'-DMBP,as indicated by the lower methylation barrier for C1 attack at the C4 position.The higher barrier for C1―C3 formation may occur due to differences in strain of the torsional angle between the two phenyl rings necessary to accommodate the transition state structure.The dihedral angle between the two phenyl rings at the transition state is used to quantify the structural distortion.These dihedral angles in the isolated 4-MBP species,TS_3,4',and TS_4,4'are 37.8°,69.7°, and 39.6°,respectively.Relative to the gaseous 4-MBP,this dihedral angle is substantially altered in TS_3,4',whereas in TS_4,4' there is only a slight perturbation.To evaluate whether the 4-MBP structural distortion at the transition state may account for the higher barrier to methylation at the 3-position,we calculated the single point energies of isolated 4-MBP in the transition state conformations using the ωB97X-D/6-31G(d,p)method.Relative to the optimized isolated 4-MBP molecule,the 4-MBP portion of the transition state is 86.7 kJ·mol?1higher in energy for TS_3,4'and 61.6 kJ·mol-1higher in energy for TS_4,4'.The 25.1 kJ·mol-1energy difference between the two transition state 4-MBP conformations is smaller than the activation energy increase(36.8 kJ· mol-1)between C1―C4 and C1―C3 formations.The 11.7 kJ· mol-1energy difference may be due to an unidentified electronic difference in the interaction of the adding methyl group and the biphenyl species.The calculated fr(E)values at the C3 and C4 sites are 0.024 and 0.158,respectively,which illustrating that the formation of 4,4'-DMBPis also electronically preferred over 3,4'-DMBP formation.The ring torsional strain differences between the two transition states,a symptom of the specific zeolite pore structure,enhances the difference in kinetic selectivity between 4,4'-DMBP formation and 3,4-DMBP formation.

    The concerted nature of proton donation back to the zeolite also puts a structural constraint on the methylation transition state that contributes to the observed torsional strain.Following the methylation transition state,a highly unstable DMBP carbenium ion is produced.Due to the instability of this species and the proximity of the intermediate to the acid site,proton donation back to the zeolite O1 atomis concerted with the C1―C3 or C1―C4 bond formation.Completion of acid site regeneration is downhill in energy following the methylation transition state.The desorption of the DMBP products accounts for the termination of the stepwise path.The desorption energies for 4,4'-DMBP and 3,4'-DMBPare123.5 and 152.0 kJ·mol-1,respectively.4,4'-DMBP desorbs easier from the acid site,as reflected by a 28.5 kJ·mol-1less endothermic desorption energy than 3,4'-DMBP.

    Fig.3 presents the reaction energy diagram for methylation of 4-MBP with methanol through the stepwise mechanism.The activation energies for the overall stepwise 4-MBP methylation with methanol for formation of 3,4'-DMBP and 4,4'-DMBP are 141.8 and 120.9 kJ·mol-1,respectively.The data above suggestthat the stepwise mechanism is a transition state selective path in the H-ZSM-5 pore,which kinetically prefers formation of the desired 4,4'-DMBP product.3,4'-DMBP(Ads_3,4')is a thermodynamically more stable product,28.8 kJ·mol-1lower in energy than 4,4'-DMBP(Ads_4,4').The difference in desorption energies between 4,4'-DMBP and 3,4'-DMBP is 28.5 kJ·mol-1, which illustrates that the DMBP desorption process may also impact the selective formation of 4,4'-DMBP in the stepwise path of 4-MBP methylation with methanol.

    Selectivity of the target product,4,4'-DMBP,is estimated in conjunction with Boltzmann statistics in the methylation step of the stepwise path as Eqs.(1,2):

    where n4,4'and n3,4'represent the populations of the co-adsorption complex of methoxide with 4-MBP to form 4,4'-DMBP and 3,4'-DMBP,respectively.R and T are the ideal gas constant and the experimental reaction temperature(573.15 K).ΔG3,4'and ΔG4,4'denote the complexation free energies for the initial adsorption structure. As the initial co-adsorption structure is the same for both products, the population ratio of the initial state is unity.P4,4'and P3,4'are the formation probabilities of the 4,4'-DMBP and the 3,4'-DMBP, respectively.ΔG3,4'and ΔG4,4'represents the free energy barriers of the methylation step in both paths at the experimental temperature 573.15 K.ΔG#3,4'and ΔG#4,4'for the methylation step are 139.2 and 107.6 kJ·mol-1,respectively.The selectivity value of 4,4'-DMBP in the stepwise path is approximate 99.9%.

    Fig.4 Adsorbed species and transition states in the concerted mechanism of 4-MBP methylation with methanol within the 128T model

    3.1.2 Concerted mechanism

    For the concerted path,Scheme 1(b),the methanol dehydration step is concerted with the methylation step without formation of the methoxide intermediate.Fig.4 illustrates the initial adsorption complex and the transition state structures along the reaction path. Structural parameters are given in Table 2 and the reaction energy diagram for the concerted mechanism is given in Fig.5.

    Methanol and 4-MBP species initially co-adsorb at the active site of H-ZSM-5 zeolite.Experimental evidence indicates the possible existence of the H-π interaction between the alcohol and the benzene ring.50In the optimized co-adsorption complex,a hydrogen bond is formed between the acidic Ozeolite―H1 and the alcohol oxygen atom,lengthening the Ozeolite―H1 bond from 0.097 to 0.104 nm.The hydroxyl H atom of methanol forms an H-π interaction with the π electrons of the benzene ring of 4-MBP.The Calcohol―Oalcoholbond is stretched by 0.002 nm compared with the isolated methanol molecule.The co-adsorption energy is-257.3 kJ·mol-1relative to sum of the energies of the gas phase 4-MBP molecule,the gas phase methanol molecule,and the 128T clusterof the zeolite.

    Table 2 Structural parameters for intermediate and transition states involved in 3-and 4-methylation in the concerted mechanism over H-ZSM-5

    The methylation reaction occurs with transfer of the acidic proton to the methanol molecule.At the transition state,the geometry about the CH3methyl group is trigonal planar,indicating the carbenium ion nature of the transition state.Awater molecule is formed via the cleavage of the C1―O3 bond and the formation of the H1―O3 bond.The carbenium ion is stabilized by the water O3 atom and the π electrons of the aromatic ring as well as through a Coulombic interaction with the anionic zeolite site.The transition states in 4-MBP methylation are shown in Fig.4(b,c). In the TS_3,4'state,the C1―O3 bond length changes from 0.144 nm in the initial Co_ads structure to 0.208 nm,indicating this bond is dissociated at the transition state.In the TS_4,4'state,the C1―O3 distance is 0.213 nm.The dihedral angle between the two phenyl rings within 4-MBP is 56.6°in TS_3,4'and 53.4°in TS_ 4,4'.The single point energies of the 4-MBP part of the two transition state structures are 21.7 and 20.2 kJ·mol-1less stable than the optimized isolated 4-MBP molecule.The torsional distortion and the isolated 4-MBPsingle-point energies from the TS_ 3,4'and TS_4,4'states are similar,and a smaller kinetic difference is observed between methylation at the two positions in the concerted mechanism.The activation barriers for the concerted methylation to form 3,4'-DMBP and 4,4'-DMBP are 141.8 and 139.1 kJ·mol-1,respectively.

    Fig.5 Reaction energy profile for the concerted mechanism of 4-MBPmethylation with methanol over H-ZSM-5

    Following this concerted transition state,an aromatic carbenium ion intermediate and a water molecule(Ads_3,4'-int orAds_ 4,4'-int)are generated.A hydrogen bond is formed between the aromatic carbenium ion and an oxygen atom of the zeolite site, and the methylation reaction is completed by donation of this proton to regenerate the acid site.The proton-donation transition states are shown in Fig.4(d,e).The proton-donation step has a relatively low activation energy of 47.3 kJ·mol-1for 3,4'-DMBP formation and 31.5 kJ·mol-1for 4,4'-DMBP formation.The 15.8 kJ·mol-1difference shows a significant kinetic selectivity for 4,4'-DMBP formation.

    The desorption energy is 173.3 kJ·mol-1for 4,4'-DMBP to diffuse from the reaction site,whereas the desorption energy is 207.1 kJ·mol-1for 3,4'-DMBP.These desorption energies are significant enough to impact the overall methylation rate,and again show a selectivity to methylation at the 4-position.These desorption energies include both the DMBP desorption and H2O desorption.Were these to occur in successive steps,their individual desorption energies would be less.Further considering the entropy increase of the desorption step,and that a desorption transition state would not require the complete loss of adsorbatepore interactions,we conclude that desorption is not likely the rate determining step.The ΔG#3,4'andΔG#4,4'for the methylation step in the concerted path are 157.5 and 154.9 kJ·mol-1,respectively.The selectivity value of 4,4'-DMBP estimated by Eqs.(1,2)is 64.9%, which is lower than that calculated in the stepwise path.If the methylation reaction of 4-MBP with methanol occurs in the pores of H-ZSM-5 without side reactions,the range of the selectivity value of 4,4'-DMBP can be between 64.9%and 99.9%,which agrees well with the experimental observations.6,9-11

    3.1.3 Comparison of the stepwise and concerted mechanisms

    We have examined the methylation of 4-MBP with methanol along either the stepwise path or the concerted path.In the stepwise path,water is assumed to be removed before the methylation step,whereas the transition states in the concerted path allow for the formed water molecule to stabilize the positively charged carbenium ion.In the stepwise mechanism,the activation energies are 141.8 and 120.9 kJ·mol-1for formation of 3,4'-DMBP and 4,4'-DMBP,respectively.The structural restraint extends the difference in Eactof the methylation step for formation 3,4'-DMBP and 4,4'-DMBP in the stepwise path.The activation energies of overall concerted mechanism are 141.8 and 139.1 kJ·mol-1for formation of 3,4'-DMBP and 4,4'-DMBP,respectively.The stepwise path has a larger selectivity difference between formation of 4,4'-DMBP and 3,4'-DMBP and a lower activation barrier to form the kinetically favorable 4,4'-DMBP product than the concerted path.We therefore conclude that 4-MBP methylation with methanol occurs preferentially through the stepwise path.In both paths,the desorption process plays an important role in affecting the overall selectivity of the products.4,4'-DMBP with lower desorption energy is easier to diffuse from the active site com-pared with 3,4'-DMBP,therefore improving the desired 4-methylation reaction.

    Although 4,4'-DMBP is kinetically preferred,the proportion of 3,4-DMBP constitutes a big percentage in 4-MBP methylation with methanol over H-ZSM-5 zeolite.The secondary reactions of 4-MBP isomerization in the internal zeolite or non-selective methylation and isomerization on the external zeolite surface can also affect the selectivity.These factors are discussed in the next section.

    3.2 4-MBP isomerization within the zeolite pore

    Though we showed above that the 4-MBP methylation reaction kinetically prefers to form the 4,4'-DMBP product,isomerization to 3-MBP followed by methylation can form the undesired 3,4'-DMBP product in the internal zeolite.We therefore examine the possibility of 4-MBP isomerization to 3-MBP.The isomerization reaction involves the following elementary steps:protonation, isomerization,and deprotonation.51The energetics of the key states in the isomerization reaction are listed in Fig.6 including the isomerization transition state structure.

    A4-MBP molecule adsorbs at the Br?nsted acid site by a H-π interaction between the acid site and the phenyl ring with an adsorption energy of-113.0 kJ·mol-1.This adsorption structure is labeled asAds_4-MBP.The H atom then attacks the C4-position via a protonation transition state with a 4-MBP carbenium intermediate(Ads_4-MBPint)as the product.The activation barrier is 23.6 kJ·mol-1.The Cmethyl―C4 bond between the methyl group and the phenyl ring is weakened by the positive charge.In the isomerization step,the methyl group shifts from the 4-position to the 3-position,which is a slightly more stable gas phase species (by-0.3 kJ·mol-1).The isomerization transition state,TS_3-MBPint(Fig.6),shows asymmetric bond distances of C1―C4 and C1―C3.The former is 0.196 nm and the latter is 0.191 nm,exhibiting a stronger C1??C3 interaction than C1??C4.The activation energy of the isomerization step is 131.3 kJ·mol-1.Following the isomerization step,a new 3-MBP carbenium intermediate labeled asAds_3-MBPint is formed.The 3-MBP carbenium intermediate is unstable and motivated to donate the proton back to the basic site of the zeolite.The deprotonation activation energy is 10.5 kJ·mol-1.The adsorbed 3-MBP(Ads_3-MBP)is then formed to complete the isomerization reaction.The activation energy of the overall isomerization from 4-MBP to 3-MBP is 144.4 kJ·mol-1referred toAds_4-MBP.

    Fig.6 Reaction energy profile and the transition state in the isomerization step for the isomerization path of 4-MBP to 3-MBPwithin the 128T model

    The activation energy of the 4-MBP isomerization reaction is 23.5 kJ·mol-1higher compared with the preferred stepwise path of 4-MBP methylation to produce 3,4'-DMBP and 4,4'-DMBP. The 4-MBP isomerization activation barrier is also higher than the barrier for concerted methylation.We conclude that 4-MBP methylation is kinetically preferred over 4-MBP isomerization to 3-MBP in the zeolite pore.Based on the discussion of 4-MBP methylation and isomerization reactions,the H-ZSM-5 pore structure has a positive effect on selectively obtainingthe 4,4'-DMBP product.

    3.3 4-MBP methylation and isomerization at surface sites

    3.3.1 Surface methylation

    Selective formation of 4,4'-DMBP is observed experimentally after zeolite treatments that may be expected to decrease or passivate external surface sites of H-ZSM-5.6,9,10Our computational results above are in agreement that acid sites within the zeolite pore offer selective production of the desired 4,4'-DMBP product. We therefore examined the surface methylation and intramolecular isomerization reactions of 4-MBP without the steric constraints of the extended pore structure.The 12T cluster,including one aluminum atom,is employed to represent a surface site.

    Similar with the methylation reaction in the zeolite pore,the 4-MBP surface methylation reaction may occur via either the stepwise mechanism or the concerted mechanism.Fig.7(a)illustrates the reaction energy diagram for the stepwise methylation reaction on the 12T cluster,with key transition state structures illustrated.Most salient features of the reaction path are similar between the 128T and 12T clusters.The adsorbed methanol first dehydrates to methoxide by the transition state TS_M with the activation energy of 157.5 kJ·mol-1.The higher dehydration barrier compared with that in the internal zeolite(120.9 kJ·mol-1) implies the stronger stabilizing effect on the carbocation of the pore structure.A water molecule is generated and then desorbs from the zeolite surface.Without the space constraints of the zeolite pore,the phenyl rings of 4-MBP are not distorted relative to their gas phase configuration when adsorbed to the methoxide state or at the methylation transition states.The activation energies of overall stepwise path are 194.2 and 191.6 kJ·mol-1for formation of 3,4'-DMBP and 4,4'-DMBP,respectively.The products have similar adsorption stability following donation of a proton back to the O site of the zeolite.

    The reaction energy diagram for the concerted mechanism on the zeolite 12T cluster is illustrated in Fig.7(b).On the external zeolite surface,the methylation step and deprotonation step occur in a concerted step in the concerted path of 4-MBP methylation. The activation energies of the overall concerted path are 191.7 and 183.8 kJ·mol-1for formation of 3,4'-DMBP and 4,4'-DMBP,respectively.Compared with the stepwise path,the concerted path shows lower activation barriers and more stable transition states for the methylation reaction.4-MBP methylation occurs via a concerted path on the external zeolite.The stepwise and concerted methylation reactions occurring on the external zeolite both have smaller activation barrier of methylation at the 4-position than that at the 3-position.

    Fig.7 Reaction energy profiles for 4-MBP surface methylation and isomerizaton over 12T cluster model

    3.3.2 Surface isomerization

    4-MBP isomerization to 3-MBP has similar key steps on the zeolite external surface as that catalyzed by internal zeolite acid sites.The protonation step of adsorbed 4-MBPovercomes 78.8 kJ· mol-1to form the 4-MBP carbenium intermediate.The activation energy of the isomerization step is 79.1 kJ·mol-1.After this step, the protonated 3-MBP carbenium intermediate(Ads_3-MBPint) is formed,which then donates the proton back to the basic framework oxygen site overcoming a 26.3 kJ·mol-1activation energy.The activation energy of the whole process for 4-MBP isomerization to 3-MBP is 157.7 kJ·mol-1.All the relative energies of the stationary points are given in the energy profile of Fig.7 (c).

    The activation barrier of 4-MBPisomerization to 3-MBPon the surface site is lower than the barriers to concerted methylation (183.8 kJ·mol-1to form 4,4'-DMBP),which implies that intramolecular isomerization of 4-MBP will occur more rapidly than the methylation reaction over the zeolite surface.The relative reaction rate constant of 4-MBP surface isomerization and concerted methylation is estimated by Eqs.(3,4):

    where h is Planck's constant,kbis Boltzmann's constant,Q is the partition function,Ea,1and Ea,2are the activation energies of 4-MBP surface isomerization and concerted methylation.The rate constant ratio of kisomerization/k4,4',concertedis 34:1 at 573.15 K.As surface sites will catalyze the intramolecular isomerization of 4-MBP to 3-MBP better,which can further methylate to form 3,4'-DMBP, surface sites will decrease the selectivity to the target 4,4'-DMBP product and increase the selectivity to the undesired 3,4'-DMBP product of the parent H-ZSM-5 catalyst.After modification treatments,undesirable non-selective reactions can be reduced by decreasing the availability of external surface acid sites,therefore, higher selectivity of 4,4'-DMBP can be obtained within zeolite pore.These computational results are in qualitative agreement with experimental observations.

    4 Conclusions

    The reaction mechanisms for methylation of 4-MBP with methanol over the 128T H-ZSM-5 zeolite have been studied by the ONIOM2(B3LYP/6-31G(d,p):UFF)approach and followed by pure-DFT calculations with a functional containing dispersion corrections.The methylation reaction to form 4,4'-DMBP occurs over a lower activation barrier for the stepwise path within the zeolite pore than the conceted path.Both stepwise and concerted paths show selectivity toward 4,4'-DMBP formation,though the former path has more significant selectivity difference between 4,4'-DMBP and 3,4'-DMBP.The concerted path has larger desorption difference between these two DMBP products,which also plays an important role in selectively obtaining 4,4'-DMBP and the further motivating 4-methylation.4-MBP isomerization to 3-MBPreaction is space restricted in the internal zeolite.On the external zeolite surface,the isomerization reaction of 4-MBP to 3-MBPis faster than the 4-MBPmethylation reaction,and therefore decreases the selectivity to the target product 4,4'-DMBP.The suppression of the secondary surface isomerization reaction will increase the desired selectivity.

    References

    (1) Song,C.;Schobert,H.H.Fuel Process.Technol.1993,34,157.doi:10.1016/0378-3820(93)90098-O

    (2) Song,C.;Graces,J.M.;Sugi,Y.ACS Symp.Ser.1999,738, 248.doi:10.1021/symposium

    (3) Lee,G.S.;Maj,J.J.;Rocke,S.C.;Garces,J.M.Catal.Lett.1989,2,243.doi:10.1007/BF00766213

    (4) Sugi,Y.;Kubota,Y.;Nakajima,K.;Kunimori,K.;Hanaoka,H.; Matsuzaki,T.Am.Chem.Soc.Div.Petrol.Chem.Prepr.1998,43,264.

    (5) Aguilar,J.;Melo,F.V.;Sastre,E.Appl.Catal.A:Gen.1998,175,181.doi:10.1016/S0926-860X(98)00215-4

    (6) Guo,X.W.;Wang,X.S.;Shen,J.P.;Song,C.S.Catal.Today2004,93-95,411.

    (7) Wang,Y.N.;Guo,X.W.;Zhang,C.;Song,F.L.;Wang,X.S.; Liu,H.O.;Xu,X.C.;Song,C.S.;Zhang,W.P.;Liu,X.M.; Han,X.W.;Bao,X.H.Catal.Lett.2006,107,209.doi: 10.1007/s10562-006-0004-3

    (8) Brechtelsbauer,C.;Emig,G.Appl.Catal.A:Gen.1997,161,79. doi:10.1016/S0926-860X(96)00382-1

    (9) Guo,X.W.;Shen,J.P.;Song,C.;Wang,X.Appl.Catal.A:Gen.2004,261,183.doi:10.1016/j.apcata.2003.11.001

    (10) Dubuis,S.;Doepper,R.;Renken,A.Stud.Surf.Sci.Catal.1999,122,359.doi:10.1016/S0167-2991(99)80167-0

    (11) Tawada,S.;Sugi,Y.;Kubota,Y.;Imada,Y.;Hanaoka,T.; Matsuzaki,T.;Nakajima,K.;Kunimori,K.;Kim,J.H.Catal. Today2000,60,243.doi:10.1016/S0920-5861(00)00341-2

    (12) Sugi,Y.;Sugimura,T.;Tawadaa,S.;Kubota,Y.;Hanaoka,T.; Matsuzaki,T.Catal.Lett.2001,77,1.doi:10.1023/A: 1012754319273

    (13) Hohenberg,P.;Kohn,W.Phys.Rev.B1964,136,864.doi: 10.1103/PhysRev.136.B864

    (14)Andzelm,J.;Wimmer,E.J.Chem.Phys.1992,96,1280.doi: 10.1063/1.462165

    (15) Stephens,P.J.;Devlin,F.J.;Frisch,M.J.;Chabalowski,C.F.J.Phys.Chem.1994,98,11623.doi:10.1021/j100096a001

    (16) Liu,S.B.Acta Phys.-Chim.Sin.2009,25,590. [劉述斌.物理化學(xué)學(xué)報(bào),2009,25,590.]doi:10.3866/PKU.WHXB20090332

    (17) Wang,Y.;Yang,G.;Zhou,D.H.;Bao,X.H.J.Phys.Chem.B2004,108,18228.doi:10.1021/jp049384w

    (18) Maseras,F.;Morokuma,K.J.Comput.Chem.1995,16,1170.

    (19) Dapprich,S.;Komáromi,I.;Byun,K.S.;Morokuma,K.; Frisch,M.J.J.Mol.Struct.-Theochem1999,461-462,1.

    (20) Namuangruk,S.;Meeprasert,J.;Khmthong,P.;Faungnawakij, K.J.Phys.Chem.C2011,15,11649.

    (21) Maihom,T.;Boekfa,B.;Sirijaraensre,J.;Nanok,T.;Probst,M.; Limtrakul,J.J.Phys.Chem.C2009,113,6654.doi:10.1021/ jp809746a

    (22) Nie,X.W.;Janik,M.J.;Guo,X.W.;Liu,X.;Song,C.S.J.Phys.Chem.C2012,116,4071.doi:10.1021/jp209337m

    (23) Li,L.L.;Janik,J.M.;Nie,X.W.;Song,C.S.;Guo,X.W.ActaPhys.-Chim.Sin.2013,29,1467. [李玲玲,Janik,J.M.,聶小娃,宋春山,郭新聞.物理化學(xué)學(xué)報(bào),2013,29,1467.]doi: 10.3866/PKU.WHXB201304262

    (24) Li,L.L.;Nie,X.W.;Song,C.S.;Guo,X.W.Acta Phys.-Chim. Sin.2013,29,754.[李玲玲,聶小娃,宋春山,郭新聞.物理化學(xué)學(xué)報(bào),2013,29,754.]doi:10.3866/PKU.WHXB201302063

    (25) Olson,D.H.;Kokotailo,G.T.;Lawton,S.L.;Meier,W.M.J.Phys.Chem.1981,85,2238.doi:10.1021/j150615a020

    (26) Kokotailo,G.T.;Lawton,S.L.;Olson,D.H.;Meier,W.M.Nature1978,272,437.doi:10.1038/272437a0

    (27) Vankoningsveld,H.;Vanbekkum,H.;Jansen,J.C.Acta Crystallogr.Sect.B-Struct.Sci.1987,43,127.doi:10.1107/ S0108768187098173

    (28) Zhang,J.;Zhou,D.H.;Ni,D.Chin.J.Catal.2008,29,715. [張 佳,周丹紅,倪 丹.催化學(xué)報(bào),2008,29,715.]

    (29) Li,J.H.;Zhou,D.H.;Ren,J.Acta Phys.-Chim.Sin.2011,27,1393. [李驚鴻,周丹紅,任 玨.物理化學(xué)學(xué)報(bào),2011,27,1393.]doi:10.3866/PKU.WHXB20110631

    (30) Zuo,S.Y.;Zhou,D.H.;Ren,J.;Wang,F.J.Chin.J.Catal.2012,33,1367.[左士穎,周丹紅,任 玨,王鳳嬌.催化學(xué)報(bào),2012,33,1367.]

    (31) Jansang,B.;Nanok,T.;Limtrakul,J.J.Phys.Chem.C2008,112,540.doi:10.1021/jp077246b

    (32) Kumsapaya,C.;Bobuatong,K.;Khongpracha,P.; Tantirungrotechai,Y.;Limtrakul,J.J.Phys.Chem.C2009,113,16128.doi:10.1021/jp904098t

    (33)Chu,Y.Y.;Han,B.;Zheng,A.M.;Deng,F.J.Phys.Chem.C2012,116,12687.doi:10.1021/jp302960w

    (34) Zheng,A.M.;Chen,L.;Yang,J.;Zhang,M.J.;Su,Y.C.;Yue, Y.;Ye,C.H.;Deng,F.J.Phys.Chem.B2005,109,24273.doi: 10.1021/jp0527249

    (35) Rappe,A.K.;Upton,T.H.J.Am.Chem.Soc.1992,114,7507. doi:10.1021/ja00045a026

    (36) Derouane,E.G.J.Catal.1986,100,541.doi:10.1016/0021-9517(86)90127-2

    (37) Derouane,G.;Andre,J.M.;Lucas,A.A.J.Catal.1988,110,58.doi:10.1016/0021-9517(88)90297-7

    (38) Nie,X.W.;Janik,J.M.;Guo,X.W.;Song,C.S.Phys.Chem. Chem.Phys.2012,14,16644.doi:10.1039/c2cp41824j

    (39) Sameera,W.M.C.;Maseras,F.Phys.Chem.Chem.Phys.2011,13,10520.doi:10.1039/c0cp02957b

    (40) Van Speybroeck,V.;Van der Mynsbrugge,J.;Vandichel,M.; Hemelsoet,K.;Lesthaeghe,D.;Ghysels,A.;Marin,B.G.; Waroquier,M.J.Am.Chem.Soc.2011,133,888.

    (41) Van der Mynsbrugge,J.;Visur,M.;Olsbye,U.;Beato,P.; Bj?rgen,M.;Van Speybroeck,V.;Svelle,S.J.Catal.2012,292,201.doi:10.1016/j.jcat.2012.05.015

    (42) Morokuma,K.Bull.Korean Chem.Soc.2003,24,797.doi: 10.5012/bkcs.2003.24.6.797

    (43) Vreven,T.;Morokuma,K.J.Comput.Chem.2000,21,1419.

    (44) Chai,J.D.;Head-Gordon,M.Phys.Chem.Chem.Phys.2008,10,6615.doi:10.1039/b810189b

    (45) Goerigk,L.;Grimme,S.Phys.Chem.Chem.Phys.2011,13,6670.doi:10.1039/c0cp02984j

    (46) Van der Mynsbrugge,J.;Hemelsoet,K.;Vandichel,M.; Waroquier,M.;Van Speybroeck,V.J.Phys.Chem.C2012,116,5499.doi:10.1021/jp2123828

    (47) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03, RevisionA.01;Gaussian Inc.:Pittsburgh,PA,2003.

    (48) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 09,Revision A.02;Gaussian Inc.:Wallingford,CT,2009.

    (49) Lee,C.C.;Gorte,R.J.;Farneth,W.E.J.Phys.Chem.B1997,101,3811.doi:10.1021/jp970711s

    (50) Mirth,G.;Lercher,J.A.J.Phys.Chem.1991,95,3736.doi: 10.1021/j100162a055

    (51) Rozanska,X.;van Santen,R.A.;Hutschka,F.;Hafner,J.J.Am. Chem.Soc.2001,123,7655.doi:10.1021/ja0103795

    第一屆中國軟物質(zhì)研究杰出貢獻(xiàn)獎(jiǎng)評(píng)選通知

    宗旨

    為促進(jìn)我國膠體與界面化學(xué),特別是軟物質(zhì)相關(guān)研究領(lǐng)域的發(fā)展,在英國皇家化學(xué)會(huì)Soft Matter雜志的支持下,中國化學(xué)會(huì)膠體與界面化學(xué)專業(yè)委員會(huì)經(jīng)研究決定,自2015年起設(shè)立中國軟物質(zhì)研究杰出貢獻(xiàn)獎(jiǎng)(The Awards of Soft Matter Research in China),以鼓勵(lì)、表彰中國(內(nèi)地)軟物質(zhì)研究領(lǐng)域的創(chuàng)新進(jìn)取和全面進(jìn)展。

    申請(qǐng)資格與范圍

    全國(內(nèi)地不含港澳臺(tái)地區(qū))范圍內(nèi)各大學(xué)、科研機(jī)構(gòu)內(nèi)具有中國國籍的膠體與界面化學(xué)研究人員(不含博士后)均有資格申請(qǐng)。申請(qǐng)人應(yīng)在軟物質(zhì)領(lǐng)域取得突出的創(chuàng)新性結(jié)果,申請(qǐng)人的科研成果應(yīng)在國內(nèi)完成(學(xué)術(shù)論文、??@獎(jiǎng)等科研成果的第一單位為國內(nèi)教學(xué)、科研機(jī)構(gòu))。申請(qǐng)人應(yīng)積極參加全國膠體與界面化學(xué)專業(yè)委員會(huì)組織的學(xué)術(shù)活動(dòng)(如全國膠體與界面化學(xué)會(huì)議和中國化學(xué)會(huì)膠體與界面化學(xué)分會(huì)等)并在國際軟物質(zhì)研究的相關(guān)期刊(如Soft Matter)上發(fā)表相關(guān)科研論文。本獎(jiǎng)項(xiàng)每兩年評(píng)審一次,每次評(píng)出兩個(gè)在軟物質(zhì)研究方面做出突出貢獻(xiàn)的學(xué)者(可共享或空缺)接受獎(jiǎng)勵(lì)。

    評(píng)選程序

    (1)本人申請(qǐng):申請(qǐng)人需將提交個(gè)人簡歷(含聯(lián)系方式、照片、身份證號(hào)碼及復(fù)印件或電子掃描件),兩年內(nèi)在軟物質(zhì)研究領(lǐng)域的學(xué)術(shù)論文發(fā)表及已接受目錄(含全部作者的正確順序、期刊、期(卷)、頁),科研工作自評(píng);已接受文章須具備期刊的接收函(含Email);應(yīng)說明參加膠體與界面化學(xué)專業(yè)委員會(huì)組織的學(xué)術(shù)會(huì)議的情況。特別要注明在Soft Matter期刊上發(fā)表文章的情況。

    (2)專家評(píng)審:由膠體與界面化學(xué)專業(yè)委員會(huì)組織專家進(jìn)行評(píng)審,確定獲獎(jiǎng)名單。其中一名獲獎(jiǎng)?wù)邽閮赡陜?nèi)在Soft Matter上發(fā)表文章最多的學(xué)者。若出現(xiàn)并列情況,按唯一通訊作者、共同通訊作者的數(shù)量順序依次排列。若仍出現(xiàn)并列情況,則由多人共享此獎(jiǎng)項(xiàng)。另一名獲獎(jiǎng)?wù)邔⒂稍u(píng)審委員會(huì)根據(jù)申請(qǐng)者的研究貢獻(xiàn),經(jīng)評(píng)定產(chǎn)生。

    關(guān)于2015年評(píng)選

    本次評(píng)選的時(shí)間范圍為2013年1月1日至2015年3月31日。申請(qǐng)者應(yīng)于2015年4月20日前遞交個(gè)人申請(qǐng)與推薦材料(含電子版);經(jīng)專家評(píng)審后確定獲獎(jiǎng)名單,于2015年7月中國化學(xué)會(huì)第15屆全國膠體與界面化學(xué)會(huì)議(武漢大學(xué)承辦)上頒獎(jiǎng)。

    聯(lián)系人:黃建濱 Tel:010-62753557 Email:JBHuang@pku.edu.cn

    郵寄地址:北京大學(xué)化學(xué)與分子工程學(xué)院 郵政編碼:100871

    本獎(jiǎng)項(xiàng)設(shè)立獲得了英國皇家化學(xué)會(huì)Soft Matter期刊的大力支持與北京朗迪森科技有限公司的獨(dú)家贊助。本獎(jiǎng)項(xiàng)評(píng)選工作的最終解釋權(quán)在中國化學(xué)會(huì)膠體與界面化學(xué)專業(yè)委員會(huì)。

    中國化學(xué)會(huì)膠體與界面化學(xué)專業(yè)委員會(huì)

    2014年12月

    Reaction Mechanism of Methylation of 4-Methylbiphenyl with Methanol over H-ZSM-5 Zeolite

    LI Ling-Ling1,2JANIK J.Michael2,3,4,*NIE Xiao-Wa5SONG Chun-Shan2,3,4GUO Xin-Wen2,*
    (1Department of Metallurgical Engineering,Liaoning Institute of Science and Technology,Benxi 117004,Liaoning Province,P.R. China;2State Key Laboratory of Fine Chemicals,PSU-DUT Joint Center for Energy Research,School of Chemical Engineering, Dalian University of Technology,Dalian 116024,Liaoning Province,P.R.China;3EMS Energy Institute,PSU-DUT Joint Center for Energy Research and Department of Energy&Mineral Engineering,Pennsylvania State University,University Park, PA 16802,USA;4Department of Chemical Engineering,Pennsylvania State University,University Park,PA 16802,USA;5School of Chemical&Biomolecular Engineering,Georgia Institute of Technology,Atlanta,GA 30332-0100,USA)

    Themethylationof 4-methylbiphenyl(4-MBP)canyield 4,4?-dimethylbiphenyl(4,4?-DMBP),animportant precursor for advanced polymers.The reaction mechanism of the shape-selective methylation of 4-MBP with methanol within the pores of H-ZSM-5 zeolite was studied,using“our own-N-layered integrated molecular orbital+molecular mechanics”(ONIOM)and density functional theory(DFT)methods.Stepwise and concerted mechanisms were considered,with the former having a lower activation energy.4,4?-DMBP is kinetically favored by both mechanisms.Transition state selectivity accounts for the preferential methylation to 4,4?-DMBP.Theisomerization of 4-MBP to 3-methylbiphenyl(3-MBP)is restricted within the zeolite.The isomerization of 4-MBP to 3-MBP is kinetically favored over methylation on the external zeolite surface,which causes a decrease in 4, 4?-DMBP selectivity.Passivating the external surface will suppress 4-MBP isomerization,therefore increasing 4,4?-DMBP selectivity by restricting reaction within the zeolite.The computational results of shape-selective and non-selective reactions over H-ZSM-5 zeolite well account for the experimental observations.?Editorial office ofActa Physico-Chimica Sinica

    ONIOM;Methylation;Methanol;4-MBP;H-ZSM-5

    O641

    10.3866/PKU.WHXB201411052www.whxb.pku.edu.cn

    Received:September 16,2014;Revised:November 5,2014;Published on Web:November 5,2014.

    ?Corresponding authors.GUO Xin-Wen,Email:guoxw@dlut.edu.cn;Tel:+86-411-84986133.

    JANIK J.Michael,Email:mjanik@engr.psu.edu;Tel:+1-814-863-9366.

    The project was supported by Scientific Research Foundation for the General Program of Department of Education of Liaoning Province,China

    (L2014503),Research Fund for the Doctoral Program of Liaoning Institute of Science and Technology,China(1406B08),Program for New Century Excellent Talent in Universities,China(NCET-04-0268),Plan 111 Project of the Ministry of Education of China,and High Performance Computing Department of Network and Information Center,Dalian University of Technology,China.

    遼寧省教育廳科學(xué)研究一般項(xiàng)目基金(L2014503),遼寧科技學(xué)院博士科研啟動(dòng)基金項(xiàng)目(1406B08),新世紀(jì)優(yōu)秀人才項(xiàng)目(NCET-04-0268)及教育部111計(jì)劃工程基金和大連理工大學(xué)網(wǎng)絡(luò)與信息化中心高性能計(jì)算部資助

    猜你喜歡
    中國化學(xué)會(huì)膠體分子篩
    微納橡膠瀝青的膠體結(jié)構(gòu)分析
    石油瀝青(2022年2期)2022-05-23 13:02:36
    沸石分子篩發(fā)展簡述
    云南化工(2021年10期)2021-12-21 07:33:24
    黃河水是膠體嗎
    中國化學(xué)會(huì)2015年部分學(xué)術(shù)會(huì)議計(jì)劃
    康惠爾水膠體敷料固定靜脈留置針對(duì)靜脈炎的預(yù)防效果
    中國化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)
    中國化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)第一輪通知
    康惠爾水膠體敷料聯(lián)合泡沫敷料預(yù)防褥瘡的療效觀察
    ZSM-5分子篩膜制備方法的研究進(jìn)展
    簡述ZSM-5分子篩水熱合成工藝
    超碰97精品在线观看| 久久亚洲精品不卡| 欧美精品一区二区免费开放| 久久精品亚洲熟妇少妇任你| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品av麻豆狂野| 伦理电影免费视频| 18禁黄网站禁片午夜丰满| 日本av免费视频播放| 亚洲精品久久久久久婷婷小说| 母亲3免费完整高清在线观看| 成人亚洲精品一区在线观看| 一本一本久久a久久精品综合妖精| 久久亚洲精品不卡| 美女午夜性视频免费| 亚洲全国av大片| 岛国在线观看网站| 亚洲自偷自拍图片 自拍| 午夜福利在线观看吧| 美女中出高潮动态图| 精品人妻一区二区三区麻豆| 黄色 视频免费看| 国产野战对白在线观看| 捣出白浆h1v1| 亚洲国产看品久久| 精品人妻一区二区三区麻豆| 欧美日韩亚洲高清精品| 一边摸一边抽搐一进一出视频| 又黄又粗又硬又大视频| 国产免费一区二区三区四区乱码| 久久 成人 亚洲| 久久国产亚洲av麻豆专区| 国产成人啪精品午夜网站| 人妻久久中文字幕网| 国产亚洲欧美精品永久| 自拍欧美九色日韩亚洲蝌蚪91| 国产97色在线日韩免费| 国产精品秋霞免费鲁丝片| 久久99一区二区三区| 亚洲一码二码三码区别大吗| 男女之事视频高清在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲av美国av| 午夜福利一区二区在线看| 久久精品aⅴ一区二区三区四区| 久久久欧美国产精品| 18禁国产床啪视频网站| 久久天堂一区二区三区四区| 国产精品久久久人人做人人爽| 巨乳人妻的诱惑在线观看| 精品人妻1区二区| 伊人久久大香线蕉亚洲五| 亚洲精品国产区一区二| 亚洲熟女毛片儿| 国产日韩欧美视频二区| 亚洲欧美精品综合一区二区三区| 秋霞在线观看毛片| 亚洲熟女毛片儿| 飞空精品影院首页| 性色av一级| 国产无遮挡羞羞视频在线观看| 国产精品一二三区在线看| 国产精品国产三级国产专区5o| 亚洲成人免费电影在线观看| 亚洲欧美日韩另类电影网站| 亚洲va日本ⅴa欧美va伊人久久 | 18禁黄网站禁片午夜丰满| 欧美日韩视频精品一区| 午夜福利视频在线观看免费| 自线自在国产av| 午夜视频精品福利| www.自偷自拍.com| 亚洲欧美色中文字幕在线| 国产成人av激情在线播放| 午夜精品久久久久久毛片777| 午夜精品久久久久久毛片777| 色婷婷av一区二区三区视频| 久久ye,这里只有精品| 午夜日韩欧美国产| 9热在线视频观看99| 亚洲精品第二区| 亚洲精品中文字幕在线视频| 少妇粗大呻吟视频| 狠狠精品人妻久久久久久综合| 午夜免费成人在线视频| 丝瓜视频免费看黄片| 老汉色∧v一级毛片| 亚洲 国产 在线| 国产亚洲av片在线观看秒播厂| 亚洲伊人色综图| 一个人免费看片子| 午夜福利乱码中文字幕| av欧美777| 国产欧美日韩精品亚洲av| 性高湖久久久久久久久免费观看| 国产欧美亚洲国产| 天堂中文最新版在线下载| 电影成人av| 91国产中文字幕| 美女主播在线视频| 一区二区av电影网| 亚洲第一欧美日韩一区二区三区 | 国产xxxxx性猛交| 人人妻人人爽人人添夜夜欢视频| 国产成人精品在线电影| 国产成人精品无人区| 国产成人影院久久av| 国产色视频综合| 国产一区二区在线观看av| 2018国产大陆天天弄谢| 日本猛色少妇xxxxx猛交久久| 黄色怎么调成土黄色| 又黄又粗又硬又大视频| 精品少妇一区二区三区视频日本电影| 精品国产乱子伦一区二区三区 | 伊人久久大香线蕉亚洲五| 免费黄频网站在线观看国产| 18禁国产床啪视频网站| 美女高潮到喷水免费观看| 免费观看人在逋| 最新的欧美精品一区二区| 欧美日韩福利视频一区二区| 狂野欧美激情性xxxx| 男女高潮啪啪啪动态图| av国产精品久久久久影院| 搡老熟女国产l中国老女人| 777久久人妻少妇嫩草av网站| 999精品在线视频| 欧美精品高潮呻吟av久久| 亚洲精品久久成人aⅴ小说| 久久久久精品人妻al黑| 欧美xxⅹ黑人| 两性夫妻黄色片| 亚洲天堂av无毛| 高清av免费在线| 两个人看的免费小视频| 在线观看舔阴道视频| 亚洲专区国产一区二区| 女人被躁到高潮嗷嗷叫费观| 国产在线观看jvid| 99国产精品免费福利视频| 男女免费视频国产| 久久九九热精品免费| 首页视频小说图片口味搜索| 久久久久精品国产欧美久久久 | 精品国产超薄肉色丝袜足j| 每晚都被弄得嗷嗷叫到高潮| 亚洲欧美色中文字幕在线| 人人妻人人爽人人添夜夜欢视频| 老司机影院毛片| 国产精品 国内视频| 欧美人与性动交α欧美精品济南到| 自拍欧美九色日韩亚洲蝌蚪91| 精品国产乱子伦一区二区三区 | 久久精品aⅴ一区二区三区四区| 男女床上黄色一级片免费看| 欧美激情高清一区二区三区| 欧美亚洲 丝袜 人妻 在线| 亚洲第一欧美日韩一区二区三区 | 别揉我奶头~嗯~啊~动态视频 | 在线观看一区二区三区激情| 久久av网站| 精品免费久久久久久久清纯 | 纯流量卡能插随身wifi吗| 日韩电影二区| 国产av精品麻豆| 嫁个100分男人电影在线观看| 99久久精品国产亚洲精品| 欧美另类一区| 国产成+人综合+亚洲专区| 另类精品久久| 在线观看免费视频网站a站| 天天添夜夜摸| 中文字幕另类日韩欧美亚洲嫩草| 桃红色精品国产亚洲av| 免费高清在线观看视频在线观看| 欧美一级毛片孕妇| 亚洲av片天天在线观看| 亚洲精品在线美女| 80岁老熟妇乱子伦牲交| 香蕉丝袜av| 黄色片一级片一级黄色片| 9色porny在线观看| 欧美日韩精品网址| 日本91视频免费播放| 女人久久www免费人成看片| 在线观看免费日韩欧美大片| 老司机福利观看| 青青草视频在线视频观看| 老司机在亚洲福利影院| 久久人人97超碰香蕉20202| 日本黄色日本黄色录像| 最近最新免费中文字幕在线| 精品一区二区三区四区五区乱码| 青春草亚洲视频在线观看| 一本综合久久免费| 亚洲专区中文字幕在线| 午夜福利一区二区在线看| 51午夜福利影视在线观看| 黄色片一级片一级黄色片| 亚洲精品久久午夜乱码| 一边摸一边做爽爽视频免费| 啦啦啦免费观看视频1| 久久国产精品大桥未久av| 国产成人av教育| 久久 成人 亚洲| 女人被躁到高潮嗷嗷叫费观| 国产欧美日韩精品亚洲av| 中文欧美无线码| 一级片'在线观看视频| 一本久久精品| 自线自在国产av| www.av在线官网国产| 亚洲五月婷婷丁香| 国产亚洲午夜精品一区二区久久| av不卡在线播放| 自线自在国产av| 免费在线观看完整版高清| 伊人亚洲综合成人网| 高清av免费在线| 99九九在线精品视频| 999久久久国产精品视频| 欧美激情 高清一区二区三区| 免费观看av网站的网址| 后天国语完整版免费观看| 一级片'在线观看视频| 超碰成人久久| 国产精品麻豆人妻色哟哟久久| 国产亚洲欧美在线一区二区| 亚洲精品自拍成人| 午夜成年电影在线免费观看| 女人爽到高潮嗷嗷叫在线视频| 纯流量卡能插随身wifi吗| 日本黄色日本黄色录像| 国产黄频视频在线观看| 久久久久精品国产欧美久久久 | 日韩 欧美 亚洲 中文字幕| 老司机影院毛片| 国产一区二区在线观看av| 国产1区2区3区精品| 女人被躁到高潮嗷嗷叫费观| 国产三级黄色录像| 久久精品久久久久久噜噜老黄| 人人澡人人妻人| 精品少妇一区二区三区视频日本电影| 精品视频人人做人人爽| 亚洲欧美一区二区三区黑人| 色婷婷av一区二区三区视频| 黄色毛片三级朝国网站| 好男人电影高清在线观看| 女性生殖器流出的白浆| 最黄视频免费看| 国产一区二区 视频在线| 岛国在线观看网站| 少妇精品久久久久久久| 久久人妻福利社区极品人妻图片| bbb黄色大片| 91精品国产国语对白视频| 热re99久久精品国产66热6| 深夜精品福利| 麻豆av在线久日| 欧美另类一区| 亚洲精品第二区| 欧美午夜高清在线| 18在线观看网站| 伦理电影免费视频| 又紧又爽又黄一区二区| 国产精品香港三级国产av潘金莲| 天堂中文最新版在线下载| 大码成人一级视频| 热re99久久国产66热| 国产精品久久久久久精品古装| 国产一卡二卡三卡精品| 久久性视频一级片| 国产精品一区二区免费欧美 | 久久精品人人爽人人爽视色| 国产精品偷伦视频观看了| 中国国产av一级| 一级a爱视频在线免费观看| 一区福利在线观看| 亚洲一区二区三区欧美精品| av天堂久久9| 亚洲精品国产区一区二| 91精品三级在线观看| 国产欧美日韩综合在线一区二区| 高潮久久久久久久久久久不卡| 国产日韩欧美视频二区| 黄片小视频在线播放| 久久精品亚洲av国产电影网| 淫妇啪啪啪对白视频 | 十八禁网站免费在线| 免费看十八禁软件| 亚洲精品国产色婷婷电影| 午夜两性在线视频| 中文字幕人妻丝袜一区二区| 18在线观看网站| 久久人人爽av亚洲精品天堂| 黄色 视频免费看| 老司机靠b影院| 精品视频人人做人人爽| av超薄肉色丝袜交足视频| √禁漫天堂资源中文www| 欧美激情久久久久久爽电影 | 50天的宝宝边吃奶边哭怎么回事| 999精品在线视频| 日韩,欧美,国产一区二区三区| 18禁黄网站禁片午夜丰满| 亚洲av片天天在线观看| 国产野战对白在线观看| 久久人妻熟女aⅴ| 成人国产av品久久久| 国产片内射在线| 国产精品1区2区在线观看. | 视频区图区小说| 久久久精品94久久精品| 一级黄色大片毛片| 亚洲成人国产一区在线观看| 在线观看免费日韩欧美大片| 日日摸夜夜添夜夜添小说| 日韩欧美国产一区二区入口| 性色av乱码一区二区三区2| 午夜激情久久久久久久| 国产精品免费视频内射| 99精品欧美一区二区三区四区| 精品熟女少妇八av免费久了| 美国免费a级毛片| 久久精品熟女亚洲av麻豆精品| 亚洲av国产av综合av卡| 久久久久久久久免费视频了| 欧美日韩亚洲高清精品| 叶爱在线成人免费视频播放| 亚洲国产欧美在线一区| 亚洲欧美日韩另类电影网站| 久久久水蜜桃国产精品网| 日韩制服骚丝袜av| 9191精品国产免费久久| 欧美av亚洲av综合av国产av| 母亲3免费完整高清在线观看| 我的亚洲天堂| 欧美+亚洲+日韩+国产| 天天操日日干夜夜撸| 午夜成年电影在线免费观看| 亚洲精品在线美女| 90打野战视频偷拍视频| av又黄又爽大尺度在线免费看| 777久久人妻少妇嫩草av网站| 久久av网站| 波多野结衣一区麻豆| 亚洲欧美一区二区三区久久| 国产精品麻豆人妻色哟哟久久| 精品免费久久久久久久清纯 | 国产精品国产av在线观看| 午夜精品久久久久久毛片777| 中文字幕高清在线视频| 精品一品国产午夜福利视频| 超色免费av| 亚洲国产欧美网| 久久久欧美国产精品| 亚洲色图 男人天堂 中文字幕| 在线观看免费高清a一片| 在线观看一区二区三区激情| 中亚洲国语对白在线视频| av在线播放精品| 国产xxxxx性猛交| 欧美亚洲 丝袜 人妻 在线| 午夜福利视频精品| 亚洲第一av免费看| 一级,二级,三级黄色视频| 黑人欧美特级aaaaaa片| 亚洲全国av大片| 满18在线观看网站| www.熟女人妻精品国产| 狠狠精品人妻久久久久久综合| 永久免费av网站大全| 色视频在线一区二区三区| 日本五十路高清| 亚洲精品自拍成人| 男男h啪啪无遮挡| 搡老岳熟女国产| 成人黄色视频免费在线看| 人妻人人澡人人爽人人| 热99久久久久精品小说推荐| 99精品久久久久人妻精品| 丁香六月欧美| 午夜福利乱码中文字幕| 久久久国产成人免费| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲精华国产精华精| 色视频在线一区二区三区| 无遮挡黄片免费观看| 国产黄频视频在线观看| 99久久99久久久精品蜜桃| 青春草视频在线免费观看| 制服诱惑二区| 老司机深夜福利视频在线观看 | av天堂久久9| 乱人伦中国视频| 久久精品成人免费网站| 99国产精品99久久久久| 亚洲成人免费av在线播放| 桃红色精品国产亚洲av| 99久久综合免费| 午夜免费观看性视频| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机深夜福利视频在线观看 | 搡老乐熟女国产| 女人高潮潮喷娇喘18禁视频| 大香蕉久久成人网| 一本久久精品| 99精品欧美一区二区三区四区| 在线av久久热| 动漫黄色视频在线观看| 久久女婷五月综合色啪小说| 亚洲国产欧美在线一区| 每晚都被弄得嗷嗷叫到高潮| 大型av网站在线播放| 日日爽夜夜爽网站| 久热这里只有精品99| 国产成人一区二区三区免费视频网站| 又紧又爽又黄一区二区| 国内毛片毛片毛片毛片毛片| 欧美另类一区| 亚洲精品成人av观看孕妇| 欧美日本中文国产一区发布| 精品久久久久久电影网| 大片免费播放器 马上看| avwww免费| 精品国产一区二区久久| 国产在视频线精品| 亚洲精品一卡2卡三卡4卡5卡 | 一本—道久久a久久精品蜜桃钙片| 性色av一级| 亚洲国产欧美网| 久久久精品免费免费高清| 99久久精品国产亚洲精品| 美女主播在线视频| 狂野欧美激情性xxxx| 欧美日韩亚洲高清精品| 母亲3免费完整高清在线观看| 99久久综合免费| 黄片小视频在线播放| 精品欧美一区二区三区在线| 日韩制服丝袜自拍偷拍| 最新的欧美精品一区二区| 国产精品久久久久成人av| 国产精品.久久久| 正在播放国产对白刺激| 国产精品久久久av美女十八| 久久精品久久久久久噜噜老黄| 欧美 亚洲 国产 日韩一| 国产精品.久久久| 国产精品一区二区免费欧美 | av片东京热男人的天堂| 热re99久久精品国产66热6| 亚洲国产精品一区二区三区在线| 久久人人爽av亚洲精品天堂| 一区福利在线观看| 99热网站在线观看| 亚洲精品国产区一区二| 久久久久久久久久久久大奶| 美国免费a级毛片| 国产精品一区二区在线观看99| 精品一区二区三区av网在线观看 | 一区二区三区激情视频| 在线看a的网站| 咕卡用的链子| 岛国毛片在线播放| 青春草亚洲视频在线观看| av在线app专区| 在线观看免费日韩欧美大片| 99国产精品一区二区三区| 女性生殖器流出的白浆| 我的亚洲天堂| 18禁国产床啪视频网站| av网站在线播放免费| 日本91视频免费播放| 亚洲伊人久久精品综合| 国产成人欧美| 麻豆av在线久日| 搡老熟女国产l中国老女人| 黄色视频不卡| 91老司机精品| 欧美黑人精品巨大| 爱豆传媒免费全集在线观看| 韩国精品一区二区三区| 中文欧美无线码| 99热全是精品| 亚洲av欧美aⅴ国产| 亚洲va日本ⅴa欧美va伊人久久 | 69精品国产乱码久久久| 50天的宝宝边吃奶边哭怎么回事| 久久精品aⅴ一区二区三区四区| 少妇的丰满在线观看| 好男人电影高清在线观看| 制服诱惑二区| 99热全是精品| 满18在线观看网站| 大片免费播放器 马上看| 精品少妇黑人巨大在线播放| 欧美精品av麻豆av| 一区二区日韩欧美中文字幕| av又黄又爽大尺度在线免费看| 亚洲少妇的诱惑av| 免费在线观看黄色视频的| 国产精品久久久久久精品古装| 麻豆av在线久日| 亚洲午夜精品一区,二区,三区| 叶爱在线成人免费视频播放| 国产1区2区3区精品| 亚洲精品粉嫩美女一区| 搡老乐熟女国产| 午夜福利一区二区在线看| 婷婷丁香在线五月| 免费黄频网站在线观看国产| 国产麻豆69| 老熟女久久久| 日韩有码中文字幕| 国产精品久久久久久精品古装| 这个男人来自地球电影免费观看| 国产精品99久久99久久久不卡| av超薄肉色丝袜交足视频| 久久久久国产精品人妻aⅴ院| 香蕉丝袜av| 国产精品亚洲美女久久久| 99国产综合亚洲精品| 人人妻人人看人人澡| 午夜福利免费观看在线| 国产探花在线观看一区二区| 国产91精品成人一区二区三区| 午夜成年电影在线免费观看| 日韩精品免费视频一区二区三区| 可以免费在线观看a视频的电影网站| 2021天堂中文幕一二区在线观| 国产视频内射| 黄色成人免费大全| 国产精品久久视频播放| 国语自产精品视频在线第100页| 亚洲精品中文字幕一二三四区| 国产伦一二天堂av在线观看| 国产精品爽爽va在线观看网站| 成人欧美大片| 国产一区二区激情短视频| 精品国内亚洲2022精品成人| 久久精品影院6| 亚洲 欧美一区二区三区| 亚洲熟妇熟女久久| 可以在线观看毛片的网站| 国产黄a三级三级三级人| 99精品在免费线老司机午夜| 免费高清视频大片| 一本精品99久久精品77| 久久精品国产清高在天天线| 欧美大码av| 中文字幕人妻丝袜一区二区| 50天的宝宝边吃奶边哭怎么回事| 1024香蕉在线观看| 亚洲人成网站高清观看| 国产成年人精品一区二区| 男女那种视频在线观看| 欧美黑人欧美精品刺激| 人妻丰满熟妇av一区二区三区| 亚洲激情在线av| 99热这里只有精品一区 | 久久人妻av系列| 中文字幕人妻丝袜一区二区| 高潮久久久久久久久久久不卡| 老汉色av国产亚洲站长工具| 脱女人内裤的视频| 亚洲国产欧美人成| 91在线观看av| 国产精品av久久久久免费| 国产熟女xx| 制服丝袜大香蕉在线| 欧美激情久久久久久爽电影| 啪啪无遮挡十八禁网站| 久久香蕉精品热| 麻豆一二三区av精品| 久久久久久国产a免费观看| 成人精品一区二区免费| 在线观看美女被高潮喷水网站 | 国产精品电影一区二区三区| 琪琪午夜伦伦电影理论片6080| 色综合婷婷激情| 少妇裸体淫交视频免费看高清 | 亚洲 欧美 日韩 在线 免费| 亚洲色图 男人天堂 中文字幕| 国产精品综合久久久久久久免费| 1024手机看黄色片| 嫩草影视91久久| 最新在线观看一区二区三区| 欧美av亚洲av综合av国产av| 国产单亲对白刺激| 久久这里只有精品中国| 亚洲天堂国产精品一区在线| 日本精品一区二区三区蜜桃| 丁香六月欧美| 91av网站免费观看| 色老头精品视频在线观看| 午夜福利在线观看吧| 国产精品一区二区三区四区免费观看 | 黄色丝袜av网址大全| 久久天堂一区二区三区四区| 黑人欧美特级aaaaaa片| 床上黄色一级片| 搡老熟女国产l中国老女人| 黄频高清免费视频| 婷婷精品国产亚洲av| 精品欧美国产一区二区三| 一区二区三区高清视频在线| 免费在线观看成人毛片| 国产在线观看jvid| www.熟女人妻精品国产| 天堂√8在线中文| 黑人操中国人逼视频| 18禁美女被吸乳视频|