• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    單一模板線性多胺一步合成多級孔ZSM-5沸石微球

    2015-01-04 05:22:59朱樹燕王一萌華東師范大學(xué)化學(xué)系上海市綠色化學(xué)與化工過程綠色化重點實驗室上海200062
    物理化學(xué)學(xué)報 2015年1期
    關(guān)鍵詞:化學(xué)系華東師范大學(xué)沸石

    陳 麗 薛 騰 朱樹燕 王一萌(華東師范大學(xué)化學(xué)系,上海市綠色化學(xué)與化工過程綠色化重點實驗室,上海200062)

    單一模板線性多胺一步合成多級孔ZSM-5沸石微球

    陳 麗 薛 騰 朱樹燕 王一萌*
    (華東師范大學(xué)化學(xué)系,上海市綠色化學(xué)與化工過程綠色化重點實驗室,上海200062)

    線性多胺模板劑(二乙烯三胺(DETA)、三乙烯四胺(TETA)、四乙烯五胺(TEPA))作為單一模板合成了均勻的10-15 μm的多級孔沸石ZSM-5微球.實驗發(fā)現(xiàn),在水熱過程中,50 nm納米的沸石晶體粒子自發(fā)地堆積成微球,并且這些微球具有較大的介孔體積,在傅-克烷基化反應(yīng)中具有高的催化活性.同時,我們發(fā)現(xiàn)線性多胺起到了模板劑和空隙填充劑的多重功能,這點明顯不同于以前我們報道的線性二胺作為模板劑在合成ZSM-5沸石時,主要是起模板劑的作用.

    多級孔沸石;聚集體;單一模板;線性多胺

    1 Introduction

    The hierarchical ZSM-5(MFI)zeolites possessing large surface area,bimodal porosity containing both micropore and mesopore and interconnected mesopores with zeolitic pore walls have been widely investigated in the synthesis and catalytic applications by many researchers.Therefore,significant efforts have been devoted to developing methods to introduce mesoporosity into zeolite materials.1-14Studies show that structure-directing agents/templates could influence the physicochemical properties,catalytic activity,and crystalline morphology,and so on.Generally,the templating approaches make it possible a priori to tailor the pore size of the mesopores by using mesopore template with a special size,which leaves mesopores with essentially the same size and shape as that of the mesopore template after the removal of template.In the multi-template synthesis strategies,crystalline zeolite containing both microporous and mesoporous structures in a single phase is difficult to be obtained,if the aluminosilicate gel is directly crystallized in the presence of ordinary template formesopore and molecular templates for zeolites.Only when both surfactants and molecular templates are not expelled from the aluminosilicate phase during the zeolite crystallization process,it is possible to synthesize mesoporous zeolite without the formation of physical mixture of bulk zeolites and mesoporous materials.1-7Recently,one-step synthesis of hierarchical zeolite aggregates with single template has attracted great attentions comparing with double template methods mentioned above,where the synthesis mechanism and the bimodal pore size can be easily controlled in the synthesis system using a single template.8-12

    ?Editorial office ofActa Physico-Chimica Sinica

    Ryoo and co-workers7directly synthesized mesoporous MFI and LTAzeolites using specifically designed amphiphilic organosilanes.Later,the same group reported that stable single-unit-cell nanosheets of zeolite MFI were synthesized with a specially designed bifunctional template that possesses two quaternary ammonium groups spaced by a C6alkyl linkage and a long chain alkyl group(C22)on the end.9In these two cases,the template for mesopore was directly connected with zeolitic template via covalent bond in a single molecule,which effectively prevented the formation of physical mixture of bulk zeolite and mesoporous materials.Fang et al.8firstly reported in-situ assembly of zeolite nanocrystals into mesoporous aggregate with single-crystal-like morphology using small organic molecule as single template but without secondary template.Furthermore,Ryoo and co-workers showed that cyclic diammonium as single template can direct the formation of zeolite structures on both mesoporous and microporous length scales simultaneously,where the formation of zeolites with nanocrystalline morphologies and intercrystalline mesoporosity could attribute to particularly high affinity of the molecular template having an organic cyclic diammonium(CDM) structure with silicate species.10,11Recently,house-of-cards-like ZSM-5 prepared by adding the N-methyl-2-pyrrolidone in zeolite synthetic mixture presented much better catalytic performances in the cracking of cumene and 1,3,5-triisopropylbenzene(TIPB) than conventional porous catalysts(ZSM-5,Y zeolite,and Al-MCM-41).12Chen et al.13reported that mesoporous zeolite aggregates can be synthesized using diamine with linear carbon chain as single template without secondary template by self-assembly of in-situ formed zeolite nanocrystals.Since large hierarchical zeolite aggregates not only have reduced diffusion limitation but also can be easily recovered by conventional filtration, the development of new methods to synthesize large ZSM-5 hierarchical zeolite aggregates with large mesopore volume,large surface area and high catalytic activity are still highly anticipated.

    Here,our work has been extended to linear alkyl-polyamines with different oligomerization degrees that were used to control the morphology,textual property,and catalytic property of hierarchical zeolite.Alkyl-polyamines have received important attentions since they were used in the synthesis of open-framework metal phosphates,membranes,and chelating resins and showed excellent properties for their active imino-nitrogen in host-guest charge balance,coordinative activity,and hydrogen bonding capability with the framework O atoms.15-17Meanwhile,they were widely used in the synthesis of ZSM-5 zeolite due that alkylpolyamines exhibited their strong structure-directing role because of the charge balance and hydrogen bonding capability of active imino-nitrogen with the framework O atoms,where the rectangular sheet conglomeration crystals in size of ca 15 μm×2.5 μm× 1 μm were obtained.18As we all know,the reduction of zeolite particle sizes could been employed as a means to reduce the intracrystalline diffusion path length,a hierarchical aggregates assembled by nanocrystallines have large surface area and the realtively large aggregates may also curtail the filtration difficulities in the preparation and catalytic applications to some extent.Adetailed study about synthesis and catalytic performance of the hierarchical microspheres assembled by nanocrystal aluminosilicate with the use of alkyl-polyamines as single template has not reported.

    In our work,we successfully synthesize hierarchical ZSM-5 microspheres using linear alkyl-polyamine as single template.The effects of different chain lengths of alkyl-polyamines,SiO2/Al2O3molar ratio,alkalinity,and H2O/SiO2molar ratio on the physical and catalytic properties were investigated.Furthermore,the role of the alkyl-polyamine templates in the synthesis of mesoporous zeolite aggregate was discussed.

    2 Experimental

    2.1 Reagent

    Sodium metasilicate nonahydrate(Na2SiO3·9H2O),hydrochloric acid(HCl),aluminum sulfate(Al2(SO4)3·18H2O)were purchased from Sinopharm Chemical Reagent Co.,Ltd.,China.All the chemicals were used directly without further purification.

    2.2 Synthesis of hierarchical ZSM-5 micropheres

    The mesoporous ZSM-5 zeolite material was hydrothermally synthesized as follows:the solution of Al2(SO4)3·18H2O dissolved in an aqueous HCl solution was added drop-by-drop to the aqueous solution of Na2SiO3·9H2O,which was kept under stirring until pH value lowered to 8.And then the fresh precipitated alumino-silica was recovered by filtration after being continuously stirred for 2 h.Subsequently the obtained solid was added into H2O and required linear alkyl-polyamines(such as diethylenetriamine (DETA),triethylenetetramine(TETA),tetraethylenepentamine (TEPA)).The molar composition of the synthetic mixtures was 60SiO2:xAl2O3:6Na2O:1440H2O:alkyl-polyamines(N/Si molar ratio is 0.42),where x=1,2,respectively.After being stirred for 2 h,the mixtures were transferred into Teflon-lined stainless steel autoclave,where they were heated under autogenous pressure for prescribed time at 448 K.The products obtained were filtered, washed and then dried overnight at 373 K.The obtained samples were denoted as M-ZSM-5-N,where M is the template;N refers to SiO2/Al2O3molar ratio.The organic component was removed by calcinations in air at 823 K for 6 h.Ion exchanges were carried out four times with 0.6 mol·L-1NH4NO3solution at 353 K each for 1 h,followed by calcination at 823 K in air for 6 h to give H-form products.

    2.3 Characterization

    The particle sizes and morphology of the mesoporous zeolitemicrosphere were characterized by scanning electron microscopy (SEM,type HITACHI S-4800)with an accelerating voltage of 3 kV.Transmission electron microscopy(TEM)characterization was carried on a JEM-2010 operating at 200 kV.For the TEM images the specimens were dispersed in ethanol and placed on holey copper grids.Powder X-ray diffraction patterns(XRD)of as-synthesized samples on a Bruker D8 Advance powder diffractometer using Cu Kαradiation(λ=0.154184 nm)over a 2θ range from 5°to 35°,the accelerating voltage and the applied current were 40 kVand 40 mA,respectively.Nitrogen adsorptiondesorption measurements were carried at 77 K on a nitrogen adsorption apparatus(Quantachrome Autosorb-3B).The surface area(SBET)was calculated using the Brunauer-Emmett-Teller (BET)method,the total pore volume was estimated from the amount of nitrogen adsorbed at the relative pressure(p/p0)of 0.99, and the micropore volume was calculated from the t-plot.Solidstate magic angle spinning(MAS)NMR spectra were recorded on a Bruker DSX300 spectrometer.And Infrared(IR)spectra were characterized by SpectrumTM GX.

    The alkylation of phenol with tert-butanol was carried out in an oil bath at 100°C for 4 h under stirring condition in a 50-mL round-bottomed flask immersed in a thermostatted water bath and equipped with a condenser.The stirring was sufficiently strong to rule out the effect of external diffusion on catalytic performance for all of the batches.In a typical batch,0.15 g of catalyst,7.78 g of cyclohexane as solvent,0.74 g of tert-butanol,0.47 g of phenol were used.The product was analyzed using a Shimadzu GC-2014 gas chromatograph equipped with a 30-m Wax capillary column and a flame ionization detector.

    3 Results and discussion

    The X-ray powder diffraction patterns of zeolites are shown in Fig.1.Diffraction peaks located at about 8°,9°,23°,24°,25°(2θ) clearly reveal that ZSM-5 zeolite had been synthesized19and no other peak could be observed,indicating that high purity of ZSM-5 products with MFI structure can be synthesized under the SiO2/ Al2O3molar composition of 30.However,when the SiO2/Al2O3molar ratio increased from 30 to 60 in the synthetic mixtures, some impurities ofα-quartz formed along with ZSM-5,which indicated that there was a relatively narrow range of SiO2/Al2O3molar ratio for the crystallization of ZSM-5 zeolite using alkylpolyamines as template.18This is different from our previous report,13where pure ZSM-5/ZSM-11 zeolites can be obtained with the SiO2/Al2O3molar ratios ranging from 30 to 100.Noticeably, TETAas structure-directing agent/template was more hydrophilic than 1,8-diaminoctane(DAOT)and showed a strong interact with hydrophilic framework aluminum,which is unfavorable for the formation of high silica zeolite.Moreover,ZSM-11 with MEL structure can be obtained when the DAOT acted as the structuredirecting agent/template,while the ZSM-5 structure with MFI can be synthesized when the TETAwas used as the structure-directing agent/template.This may be due that the configuration of DAOT is straight and it main located at the straight pore channel in the ZSM-11,while,the configuration of the TETAis a zigzag chain which was used to construct the ZSM-5 three-dimensional framework.18TETAexhibits stronger structure-directing role than DAOT because of its host-guest charge balance and hydrogen bonding capability with the framework O atoms,leading to the formation of highly crystalline ZSM-5 zeolite only after 7 days, while zeolite ZSM-11 well formed after 10 days in the presence of DAOT.

    Fig.1 Powder XRD patterns of the as-synthesized ZSM-5 microspheres synthesized by DETA-ZSM-5-60(a),

    As shown in the SEM images of Fig.2,the resulting materials were both composed of relatively uniform spherical particles of 10-15 μm in diameter,obviously larger than the spherical aggregates(5-7 μm)obtained in the literature.13The insets were the high magnification SEM images of a single microsphere,showing that the microsphere is built of small particles.Further increasing the magnification reveals that the small particles have regular crystal-like shapes and are in size of only~50 nm(Fig.2(a-c), inset),much smaller than that for ZSM-5 nanocrystals synthesized with the SiO2/Al2O3molar ratio of 60(Fig.2d,inset).These results suggest that the microspheres are aggregates of nanosized ZSM-5 crystals in present study,quite different from the shape of rectangular sheet conglomeration crystals with a size of about 15 μm×2.5 μm×1 μm,18which may attributed to the different nature and concentration of the ingredients and the different molar composition of synthetic mixture result in the different nuclei amount of ZSM-5 and crystalline rate despite same alkyl-polyamine used template.Relatively large size of the aggregates is apositive fact,in favor of easy recovery of the zeolite product by conventional filtration or centrifugation,otherwise it would be very difficult to separate and recover completely isolated or highly dispersed nanocrystals.The TEM image is in good agreement with SEM observation,showing a micrometer-sized particle with spherical morphology made of zeolite nanocrystals rather than amorphous silica,as shown in Fig.2f.

    Fig.2 SEM images of zeolite ZSM-5 microspheres DETA-ZSM-5-30(a),TETA-ZSM-5-30(b),TEPA-ZSM-5-30(c),and TEPA-ZSM-5-60(d);TEM image of a single microsphere TETA-ZSM-5-30(e);high-resolution TEM image taken at the edge of the microsphere TETA-ZSM-5-30(f)

    The effects of Na2O/SiO2and H2O/SiO2molar ratios in the synthesis mixture are presented in the SEM images of Fig.3. When Na2O/SiO2molar ratios range from 0.08 to 0.12,the size of primary particles in zeolite microspheres becomes non-uniform. However,the aggregates retain microspherical morphology with a similar size.Furthermore,the morphology of the TEPA-ZSM-5-30 samples is affected by the H2O/SiO2molar ratio.In case of n(H2O)/n(SiO2)=19,both the size of primary particle and the aggregate morphology are quite similar to those for TEPA-ZSM-5-30 synthesized under the conditions of n(Na2O)/n(SiO2)=0.08 in Fig.3a.With H2O/SiO2molar ratio increasing up to 50,a decreasing of alkalinity in the synthesis mixture results in slow crystallization rate and some amorphous silica was presented in the sample as shown in Fig.3d.The larger is the molar ratio of H2O/SiO2,the more amorphous silica is present in the product after the same crystallization time,as shown in the Fig.3d.

    Fig.3 SEM images of the as-synthesized TEPA-ZSM-5-30 zeolites synthesized at 428 K for 214 h at the molar ratios of

    N2adsorption-desorption isotherms measured at 77 K are shown in Fig.4,and the data of surface area,total volume,and micropore volumes of all the samples with different SiO2/Al2O3molar ratios are listed in Table 1.The isotherms show type IV isotherms with hysteresis loops in the relative pressure(p/p0)range of 0.5-0.9, indicating the presence of irregular mesopore.The insert of Fig.4B shows that the amount of physical adsorption increases continuously in the range of 2-50 nm,further proving the mesopore in these zeolites.All the samples have similar micropore volume of 0.10-0.13 cm3·g-1,while the mesopore volume varies from 0.09 to 0.16 cm3·g-1.The samples TEPA-ZSM-5-30 have quite a large mesopore volume of 0.16 cm3·g-1.These results prove that alkyl-polyamines as single template could also lead to hierarchical zeolite aggregates with rich mesopore volume. Compared with that of zeolite synthesized with DAOT,the mesopore volume of zeolite prepared by TETA template was low.13BET surface areas of these zeolite microspheres amount to 270-350 m2·g-1,similar to the hierarchical zeolite microsphere synthesized using diamines template,13slightly higher than the hierarchical zeolite microspheres prepared using F127 (EO106PO70EO106,EO:ethylene glycol,PO:propylene glycol) polymer as a secondary template20and slightly lower than the hierarchical ZSM-5 mciroshperes prepared in the presence of the urea-formaldehyde polymer.21The high BET surface areas and large mesopore volume of zeolites may favor the reaction of bulky molecular,resulting in the higher catalytic activity,22excellent anticoke formation ability,and anti-sulfur poisoning ability in the catalytic reaction.23,24

    Thermogravimetric(TG)analysis of the as-prepared zeolite microsphere was conducted in air.The TG plot showed three weight-loss steps with a total weight loss of 8.6%-12.0%ranging from room temperature to 800°C(Fig.5).The first step appearing below 200°C was associated with the desorption of water.And the peak appearing at 300-500°C come from the desorption of alkyl-polyamines in the micropore of zeolite varied with the linear chain length.18The weight loss step between 200 and 300°Cmight correspond to the decomposition of the alkyl-polyamines adsorbed on the surface and interstitial voids of the ZSM-5 microspheres.18This is obviously different from the thermogravimetric analysis of zeolites synthesized using diamines as template,13there are no any weight loss peaks appeared during the range of 200-300°C,indicating that there are no or a little diamines adsorbed on the surface and interstitial voids of the ZSM-5/ZSM-11 zeolite microspheres.And the last step between 500 and 800°C might correspond to the dehydroxylation of the zeolite microsphere.The weight loss of zeolites synthesized with alkyl-polyamines is more than that of the zeolites synthesized using diamine templates,indicating that there are possibly more hydroxyls in the zeolites synthesized using alkyl-polyamines as template.

    Fig.4 Nitrogen adsorption-desorption isotherms of the calcined mesoporous DETA-ZSM-5-60(a),TETA-ZSM-5-60(b),TEPAZSM-5-60(c),DETA-ZSM-5-30(d),TETA-ZSM-5-30(e), and TEPA-ZSM-5-30(f)zeolites

    Fig.6Ashows the27Al NMR spectra of the zeolites synthesized by the different alkyl-polyamines.In general,the resonance centered at 54 is commonly assigned to four-coordinated framework aluminum,while the peak at 0 is referred to non-framework octahedral aluminum.There is almost no peak at 0 in all the samples,indicating the absence of non-framework aluminum no matter what alkyl-polyamines and SiO2/Al2O3molar ratios were used,this is in agreement with that reported result.25

    As shown in Fig.6B,29Si MAS NMR spectra indicate a main peak at a chemical shift(δ)ca-114 from siloxane bridges(Q4) species with a shoulder centered at-106 from single silanol(Q3) entities in the all samples.The Q4/Q3intensity ratios calculated from the deconvoluted peaks(dashed lines)were 2.1,1.9,and 1.7 corresponding to the(a)DETA-ZSM-5-30,(b)TETA-ZSM-5-30, and(c)TEPA-ZSM-5-30 zeolites,and when increasing the SiO2/ Al2O3molar ratio to 60,the Q4/Q3intensity ratio calculated from the deconvoluted peaks(dashed lines)was changed to 3.1 corresponding to(d)TEPA-ZSM-5-60 zeolite,respectively.The higher percentage of Q3in all the samples than that of the samples prepared using diamines as template indicated that mesoporous ZSM-5 aggregates had more hydroxyl groups and thus a more hydrophilic surface,which resulted in an obvious loss peak during the temperature range of 500-800°C in the TG-DTG analysis (Fig.5 and Table 1).Almost no Q2signals are observed in either spectrum,suggesting high degree of condensation of the framework in the zeolites.

    Table 1 Textual properties and thermogravimetric analysis of the mesoporous ZSM-5 zeolite samples

    The SEM images and IR spectra of the TEPA-ZSM-5-30 prepared for different crystallization time of 1,3,5,and 7 days are shown in Fig.7.As shown in the SEM images,there are some irregularly-shaped gel lumps at early stage of the hydrothermal reaction(1-3 days).Some microspheres randomly dispersed in amorphous gel after 3 days as shown in Fig.7b SEM image. Correspondingly,a small band at 550 cm-1appears in IR spectra, indicating the formation of some 5-membered ring in pentasil zeolites.With the crystallization time increasing up to 5 days, more and more irregularly-shaped gels transform into microspheres with the diameter of~15 μm.Meanwhile,the band at 550 cm-1becomes larger and no well crystallized zeolites show in XRD.After 7 days,almost all amorphous gel disappears and well crystallized zeolite ZSM-5 microspheres in size of 15 μm.And the band at 550 cm-1becomes distinctly.The band at 550 cm-1is the characteristic of pentasil zeolites,including ZSM-5 and ZSM-11,with a five-membered ring.26-29The intensity ratio of the 550 to 450 cm-1bands has been used to assess the formation of ZSM-5 and is named as IR crystallinity.The band at 550 cm-1grows stronger and sharper gradually as the crystallization time is prolonged.As indicating by all SEM images and IR spectra with varied crystallization time,the formation of macroscopic morphology and zeolitic framework seem to go simultaneously.

    Fig.5 TG-DTG analyses of the DETA-ZSM-5-60(A),DETA-ZSM-5-30(B),TETA-ZSM-5-60(C),TETA-ZSM-5-30(D), TEPA-ZSM-5-60(E),and TEPA-ZSM-5-30(F)samples

    Fig.6 27Al NMR(A)and29Si NMR(B)spectra of the as-synthesized mesoporous(a)DETA-ZSM-5-30,(b)TETA-ZSM-5-30, (c)TEPA-ZSM-5-30,and(d)TEPA-ZSM-5-60 zeolites

    The liquid alkylation of phenol with tert-butyl alcohol is a typical Friedel-Crafts alkylation,which can be catalyzed by acid catalysts.The different acid sites and pore structures lead different distributions of products.30-32The catalytic activities of zeolite microspheres synthesized by alkyl-polyamines in the alkylation of phenol and tert-butyl alcohol are listed in Table 2.The zeolite microspheres exhibited high catalytic activity with a phenol conversion that reached 16.4%after a reaction time of 4 h at 373 K.The higher catalytic activity of TEPA-ZSM-5-30 is due to the higher mesoporous volume,indicating that the existence of mesopores resulted from nanoparticle aggregation reduced thediffusion limitation,although the catalytic activity was slightly lower than the early report.13Moreover,the larger size of zeolite aggregates than the zeolite ZSM-5 microshpere synthesized by diamines may further curtail the filtration difficulties during the synthesis and applications to some extent.

    Fig.7 SEM images and IR spectra of the TEPA-ZSM-5-30 with the crystallization time of 1(a),3(b),5(c),and 7(d)days

    Table 2 Catalytic activity and product distribution for alkylation reaction of phenol with tert-butanol

    Here,linear alkyl-polyamines as single template can be used to synthesize larger zeolite ZSM-5 microspheres with larger mesoporosity than the report.13This synthesis method is very simple and convenient,easy compared with those mesoporous ZSM-5 synthesized using a secondary template.20,21Similar to diamines, the alkyl-polyamines as template not only direct the formation of crystalline zeolite structure,but also favor the control of macroscopic morphology and tectonics of zeolite crystals.These results prove that non-amphiphilic organic molecules could also lead to hierarchical zeolite with both micro-and meso-porosity via a single hydrothermal treatment.Furthermore,the zeolites microspheres with mesoporosity could not only reduce diffusion limitation in catalytic reaction,but also curtail the recovery difficulties in the preparation and applications.

    4 Conclusions

    Alkyl-polyamine as a single template was used to prepare mesoporous zeolite ZSM-5 microspheres.The obtained hierarchical ZSM-5 zeolite microspheres have the bulky aggregate morphology and high catalytic activity in the Friedel-Crafts alkylation,similar to the zeolite synthesized using diamines as template.Furthermore,it is found that the diamine templates only act as the structure directing agent in the synthesis of zeolite, while the alkyl-polyamine templates act as both the structure directing agent and space filling agent in the mesoporous zeolites.

    (1) Wang,X.D.;Yang,W.L.;Tang,Y.;Wang,Y.J.;Fu,S.K.;Gao, Z.Chem.Commun.2000,2161.

    (2) Valtchev,V.Chem.Mater.2002,14,956.doi:10.1021/ cm010927d

    (3) Valtchev,V.Chem.Mater.2002,14,4371.doi:10.1021/ cm020579v

    (4) Tosheva,L.;Valtchev,V.;Sterte,J.Microporous Mesoporous Mat.2000,35-36,621.

    (5) Naydenov,V.;Tosheva,L.;Sterte,J.Chem.Mater.2002,14, 4881.doi:10.1021/cm0211507

    (6) Serrano,D.P.;Aguado,J.;Escola,J.M.;Rodrguez,J.M.;Peral, A.Chem.Mater.2006,18(10),2462.

    (7) Choi,M.;Cho,H.S.;Srivastava,R.;Venkatesan,C.;Choi,D.; Ryoo,R.Nat.Mater.2006,5,718.doi:10.1038/nmat1705

    (8) Fang,Y.M.;Hu,H.Q.;Chen,G.H.Chem.Mater.2008,20, 1670.doi:10.1021/cm703265q

    (9) Choi,M.;Na,K.;Kim,J.;Sakamoto,Y.;Terasaki,O.;Ryoo,R.Nature2009,461,246.doi:10.1038/nature08288

    (10) Choi,M.;Na,K.;Ryoo,R.Chem.Commun.2009,2845.

    (11) Na,K.;Choi,M.;Ryoo,R.J.Mater.Chem.2009,19,6713.doi: 10.1039/b909792a

    (12) Liu,L.J.;Wang,H.B.;Wang,R.W.;Sun,C.Y.;Zeng,S.J.; Jiang,S.;Zhang,D.L.;Zhu,L.K.;Zhang,Z.T.RSC Adv.2014,4,21301.doi:10.1039/c4ra02022g

    (13)Chen,L.;Zhu,S.Y.;Wang,Y.M.;He,M.Y.New J.Chem.2010,34,2328.doi:10.1039/c0nj00316f

    (14) Egeblad,K.;Christensen,C.H.;Kustova,M.;Christensen,C. H.Chem.Mater.2008,20,946.doi:10.1021/cm702224p

    (15) Li,G.;Feng,Y.Q.;Li,G.X.J.Mater.Sci.2007,42,4838.doi: 10.1007/s10853-006-0639-x

    (16) Wiebcke,M.;Bogershausen,A.;Koller,H.Microporous Mesoporous Mat.2005,78,97.doi:10.1016/j.micromeso. 2004.09.020

    (17) Yoshitake,H.;Koiso,E.;Horie,H.Microporous Mesoporous Mat.2005,85,183.doi:10.1016/j.micromeso.2005.06.009

    (18) Wei,B.;Sun,J.M.;Cao,H.Q.;Lü,Y.J.;Fang,L.Chem.Res.Chin.Univ.2009,25(3),286.

    (19) Persson,A.E.;Schoeman,B.J.;Sterte,J.Zeolites1995,15, 611.doi:10.1016/0144-2449(95)00070-M

    (20) Hua,J.;Han,Y.Chem.Mater.2009,21,2344.doi:10.1021/ cm803366k

    (21) Kang,Y.J.;Shan,W.;Wu,J.Y.;Zhang,Y.H.;Wang,X.Y.; Yang,W.L.;Tang,Y.Chem.Mater.2006,18,1861.doi: 10.1021/cm060084w

    (22) Shetti,V.N.;Kim,J.;Srivastava,R.;Choi,M.;Ryoo,R.J.Catal.2008,254,296.doi:10.1016/j.jcat.2008.01.006

    (23) Sang,S.Y.;Chang,F.X.;Liu,Z.M.;He,C.Q.;He,Y.L.;Xu, L.Catal.Today2004,93-95,729.

    (24) Grieken,R.V.;Sotelo,J.L.;Menendez,J.M.;Melero,J.A.Microporous Mesoporous Mat.2000,39,135.doi:10.1016/ S1387-1811(00)00190-6

    (25) Rollmann,L.D.;Schlenker,J.L.;Kennedy,C.L.;Kennedy,G. J.;Doren,D.J.J.Phys.Chem.B2000,104,721.doi:10.1021/ jp993561p

    (26) Jacobs,P.A.;Beyer,H.K.;Valyon,J.Zeolites1981,1,161.doi: 10.1016/S0144-2449(81)80006-1

    (27) Jansen,J.C.;van der Gaag,F.J.;van Bekkum,H.Zeolites1984,4,369.doi:10.1016/0144-2449(84)90013-7

    (28) Coudurier,G.;Naccache,C.;Vedrine,J.C.J.Chem.Soc.Chem. Commun.1982,1413.

    (29) Yue,M.B.;Sun,L.B.;Zhuang,T.T.;Dong,X.;Chun,Y.;Zhu, J.H.J.Mater.Chem.2008,18,2044.doi:10.1039/b717634a

    (30) Huang,J.;Li,G.;Wu,S.;Wang,H.;Xing,L.;Song,K.;Wu,T.; Kan,Q.J.Mater.Chem.2005,15,1055.doi:10.1039/b413906b

    (31) Huang,J.;Xing,L.;Wang,H.;Li,G.;Wu,S.;Wu,T.;Kan,Q.J.Mol.Catal.A2006,259,84.doi:10.1016/j.molcata. 2006.06.001

    (32) Sun,Y.Y.;Prins,R.Appl.Catal.A:Gen.2008,336,11.doi: 10.1016/j.apcata.2007.08.015

    One-Step Synthesis of Hierarchical ZSM-5 Zeolite Microspheres Using Alkyl-Polyamines as Single Templates

    CHEN Li XUE Teng ZHU Shu-Yan WANG Yi-Meng*
    (Shanghai Key Laboratory of Green Chemistry and Chemical Processes,Department of Chemistry, East China Normal University,Shanghai 200062,P.R.China)

    Diethylenetriamine(DETA),triethylenetetramine(TETA),and tetraethylenepentamine(TEPA)were used as single templates to synthesize mesoporous zeolite ZSM-5 microspheres.The obtained 10-15 μm hierarchical aggregates had a uniform spherical morphology,which was spontaneously assembled by primary zeolite nanocrystals of 50 nm in size during the hydrothermal synthesis.The ZSM-5 aggregates had a tunable textual porosity,large mesopore volume,and high catalytic activity in the Friedel-Crafts alkylation.Diamine templates only acted as structure directing agents in our previous work.The current alkyl-polyamine templates acted as structure directing agents and space fillers in the synthesis of the hierarchical zeolites.

    Hierarchical zeolite;Aggregate;Single template;Alkyl-polyamine

    O643

    10.3866/PKU.WHXB201411174www.whxb.pku.edu.cn

    Received:September 29,2014;Revised:November 14,2014;Published on Web:November 17,2014.

    ?Corresponding author.Email:ymwang@chem.ecnu.edu.cn;Tel:+86-21-62232251.

    The project was supported by the National Natural Science Foundation of China(20890122)and National Key Technology R&D Program of China (2012BAE05B02).

    國家自然科學(xué)基金(20890122)和國家科技支撐計劃(2012BAE05B02)資助

    猜你喜歡
    化學(xué)系華東師范大學(xué)沸石
    一種鎘基配位聚合物的合成及其對2,4,6-三硝基苯酚的熒光識別
    “綠色碳科學(xué)”專輯編委會
    華東師范大學(xué)學(xué)報(自然科學(xué)版)2022 年總目次(總第221—226 期)
    沸石分子篩發(fā)展簡述
    云南化工(2021年10期)2021-12-21 07:33:24
    5種沸石分子篩的吸附脫碳對比實驗
    煤氣與熱力(2021年9期)2021-11-06 05:22:56
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進展
    一個二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    沸石再生
    石油化工(2015年9期)2015-08-15 00:43:05
    多晶沸石膜的研究進展
    華東師范大學(xué)學(xué)報(自然科學(xué)版) 2014年總目次(總第173-178期)
    晚上一个人看的免费电影| 街头女战士在线观看网站| 亚洲综合色网址| 国产精品不卡视频一区二区| 蜜臀久久99精品久久宅男| 香蕉精品网在线| 久久久久精品人妻al黑| 欧美性感艳星| 国产精品人妻久久久久久| 啦啦啦啦在线视频资源| 国产精品久久久久久av不卡| 黄片无遮挡物在线观看| 午夜福利视频在线观看免费| 国产精品熟女久久久久浪| 人人澡人人妻人| 免费黄网站久久成人精品| 国国产精品蜜臀av免费| 国产免费现黄频在线看| 久久精品aⅴ一区二区三区四区 | 国产精品人妻久久久久久| 成年动漫av网址| 欧美97在线视频| av国产久精品久网站免费入址| 黑人欧美特级aaaaaa片| 在线观看国产h片| 久久国产精品大桥未久av| 亚洲,欧美,日韩| 亚洲av电影在线观看一区二区三区| 激情五月婷婷亚洲| 两个人看的免费小视频| videossex国产| a级毛片黄视频| 三级国产精品片| 水蜜桃什么品种好| 国产片特级美女逼逼视频| 国产精品久久久久久精品古装| 亚洲美女搞黄在线观看| 久久婷婷青草| 国产毛片在线视频| 人人妻人人爽人人添夜夜欢视频| 久热这里只有精品99| 亚洲精华国产精华液的使用体验| 欧美97在线视频| 亚洲三级黄色毛片| 男人舔女人的私密视频| 黄色 视频免费看| 激情视频va一区二区三区| 夜夜骑夜夜射夜夜干| 90打野战视频偷拍视频| 日本av手机在线免费观看| 亚洲av男天堂| 久久精品国产自在天天线| 看非洲黑人一级黄片| 街头女战士在线观看网站| 久久久久久久久久久久大奶| 欧美最新免费一区二区三区| 九九在线视频观看精品| 亚洲成色77777| 亚洲国产日韩一区二区| 欧美老熟妇乱子伦牲交| 色94色欧美一区二区| 亚洲av欧美aⅴ国产| 两性夫妻黄色片 | 18在线观看网站| 日本午夜av视频| 国产极品天堂在线| 日韩伦理黄色片| 桃花免费在线播放| 免费久久久久久久精品成人欧美视频 | av在线app专区| 国产精品麻豆人妻色哟哟久久| 久久久久久久亚洲中文字幕| 赤兔流量卡办理| 亚洲成av片中文字幕在线观看 | 老司机亚洲免费影院| 国产老妇伦熟女老妇高清| 亚洲欧美日韩另类电影网站| www日本在线高清视频| 2021少妇久久久久久久久久久| 国产精品久久久久成人av| 精品国产国语对白av| 少妇熟女欧美另类| 国产无遮挡羞羞视频在线观看| 久热久热在线精品观看| 午夜影院在线不卡| 久久鲁丝午夜福利片| 18在线观看网站| 十分钟在线观看高清视频www| 日韩精品有码人妻一区| 有码 亚洲区| 一级a做视频免费观看| 国产1区2区3区精品| 我要看黄色一级片免费的| 欧美日韩国产mv在线观看视频| a 毛片基地| 侵犯人妻中文字幕一二三四区| 欧美日韩国产mv在线观看视频| 精品第一国产精品| 国产精品欧美亚洲77777| www.熟女人妻精品国产 | 国产亚洲一区二区精品| 热99国产精品久久久久久7| 亚洲欧美一区二区三区国产| 欧美国产精品va在线观看不卡| 亚洲人与动物交配视频| 日韩 亚洲 欧美在线| 99九九在线精品视频| 大片免费播放器 马上看| 亚洲av男天堂| 日本vs欧美在线观看视频| 亚洲综合色网址| 99久久中文字幕三级久久日本| 一级片'在线观看视频| 免费播放大片免费观看视频在线观看| 国产成人精品福利久久| 少妇精品久久久久久久| 热re99久久精品国产66热6| 一级黄片播放器| 久久久久精品人妻al黑| 久久精品熟女亚洲av麻豆精品| 新久久久久国产一级毛片| 成年动漫av网址| 中文字幕免费在线视频6| 五月天丁香电影| 久久97久久精品| 狂野欧美激情性xxxx在线观看| 在线观看三级黄色| 日日撸夜夜添| 免费在线观看黄色视频的| 亚洲精品视频女| 日本免费在线观看一区| 欧美激情极品国产一区二区三区 | 国产片内射在线| 亚洲成人手机| 亚洲欧美一区二区三区国产| 久久精品久久久久久久性| 久久精品国产a三级三级三级| 极品少妇高潮喷水抽搐| 午夜影院在线不卡| 91精品三级在线观看| 日本免费在线观看一区| 国产熟女欧美一区二区| 久久鲁丝午夜福利片| 尾随美女入室| 欧美激情 高清一区二区三区| 国产免费现黄频在线看| 亚洲欧美一区二区三区黑人 | 中文字幕另类日韩欧美亚洲嫩草| 午夜日本视频在线| av免费观看日本| 最近最新中文字幕免费大全7| 国产精品一区二区在线不卡| 午夜福利视频精品| 亚洲国产色片| 三级国产精品片| 日本91视频免费播放| 久久久久久人妻| 久久精品熟女亚洲av麻豆精品| 深夜精品福利| 国产精品久久久久久久电影| 香蕉国产在线看| 在线观看三级黄色| 丰满迷人的少妇在线观看| 免费观看无遮挡的男女| 亚洲欧美中文字幕日韩二区| 亚洲国产欧美日韩在线播放| 日本91视频免费播放| 99re6热这里在线精品视频| 天堂中文最新版在线下载| 国产精品成人在线| 精品久久久久久电影网| 久久综合国产亚洲精品| 9191精品国产免费久久| 最近手机中文字幕大全| 97人妻天天添夜夜摸| 日韩制服丝袜自拍偷拍| 少妇被粗大的猛进出69影院 | 免费在线观看黄色视频的| 精品一区在线观看国产| 亚洲高清免费不卡视频| 亚洲五月色婷婷综合| 国产成人欧美| 国产亚洲av片在线观看秒播厂| 国产不卡av网站在线观看| 精品人妻熟女毛片av久久网站| 亚洲第一区二区三区不卡| 亚洲精品日韩在线中文字幕| 精品国产乱码久久久久久小说| 777米奇影视久久| 国产成人a∨麻豆精品| 妹子高潮喷水视频| 国产一区有黄有色的免费视频| 欧美日本中文国产一区发布| 欧美日韩一区二区视频在线观看视频在线| 99香蕉大伊视频| 亚洲欧洲精品一区二区精品久久久 | 大码成人一级视频| 中国美白少妇内射xxxbb| 欧美3d第一页| 亚洲丝袜综合中文字幕| 大香蕉久久网| 满18在线观看网站| 免费av不卡在线播放| 久久人人爽人人片av| 免费看av在线观看网站| 国产亚洲精品第一综合不卡 | 精品国产一区二区久久| 大片电影免费在线观看免费| 亚洲高清免费不卡视频| 欧美3d第一页| 日本欧美视频一区| 女人久久www免费人成看片| 日韩人妻精品一区2区三区| www.色视频.com| 国产亚洲午夜精品一区二区久久| 9色porny在线观看| 国产精品国产三级国产专区5o| 日韩视频在线欧美| 看十八女毛片水多多多| 人人妻人人澡人人爽人人夜夜| 亚洲av国产av综合av卡| 国产精品一区二区在线不卡| 亚洲欧美中文字幕日韩二区| 999精品在线视频| 久久毛片免费看一区二区三区| 精品国产露脸久久av麻豆| 一级片免费观看大全| 免费人妻精品一区二区三区视频| 美女国产视频在线观看| 久久国产亚洲av麻豆专区| 国产精品99久久99久久久不卡 | 五月伊人婷婷丁香| 精品国产一区二区久久| 国产精品女同一区二区软件| 国产成人aa在线观看| tube8黄色片| 91精品三级在线观看| 精品熟女少妇av免费看| 免费观看a级毛片全部| 国产日韩欧美视频二区| 麻豆精品久久久久久蜜桃| 成年av动漫网址| 久久精品国产亚洲av涩爱| 90打野战视频偷拍视频| 欧美日韩成人在线一区二区| 日韩av免费高清视频| 亚洲婷婷狠狠爱综合网| 美女视频免费永久观看网站| tube8黄色片| 伦理电影大哥的女人| 91aial.com中文字幕在线观看| 国产激情久久老熟女| 亚洲国产最新在线播放| 亚洲成人一二三区av| 亚洲人成网站在线观看播放| 日韩av不卡免费在线播放| 美女国产视频在线观看| 中文字幕av电影在线播放| 麻豆精品久久久久久蜜桃| 青春草视频在线免费观看| 国产男女超爽视频在线观看| 最黄视频免费看| 青青草视频在线视频观看| 97精品久久久久久久久久精品| av在线老鸭窝| 国产高清不卡午夜福利| 最新的欧美精品一区二区| av片东京热男人的天堂| 王馨瑶露胸无遮挡在线观看| a级毛色黄片| a级片在线免费高清观看视频| 在线看a的网站| 大码成人一级视频| 国内精品宾馆在线| 国产爽快片一区二区三区| 欧美+日韩+精品| 狠狠婷婷综合久久久久久88av| 少妇人妻 视频| 亚洲欧洲日产国产| 亚洲四区av| av在线app专区| 性高湖久久久久久久久免费观看| 婷婷色麻豆天堂久久| 一边亲一边摸免费视频| 免费黄色在线免费观看| 亚洲三级黄色毛片| 免费看光身美女| 欧美精品一区二区大全| 久久久久视频综合| 亚洲国产色片| 亚洲,欧美,日韩| 26uuu在线亚洲综合色| 青春草亚洲视频在线观看| 免费日韩欧美在线观看| 极品少妇高潮喷水抽搐| 90打野战视频偷拍视频| 久久精品夜色国产| 久久久久久人人人人人| 午夜视频国产福利| 永久网站在线| 色婷婷av一区二区三区视频| 91精品伊人久久大香线蕉| 国产无遮挡羞羞视频在线观看| 欧美老熟妇乱子伦牲交| av在线观看视频网站免费| 多毛熟女@视频| 美女国产高潮福利片在线看| 18禁观看日本| 久久婷婷青草| 国产av码专区亚洲av| 日本wwww免费看| 99久久综合免费| 一边亲一边摸免费视频| 久久午夜综合久久蜜桃| 卡戴珊不雅视频在线播放| 亚洲精品日本国产第一区| 老女人水多毛片| 99视频精品全部免费 在线| 国产男人的电影天堂91| 在线免费观看不下载黄p国产| 精品人妻熟女毛片av久久网站| 午夜日本视频在线| 国产综合精华液| 女人被躁到高潮嗷嗷叫费观| www.av在线官网国产| 日本色播在线视频| 国产精品人妻久久久影院| 两个人看的免费小视频| 99热6这里只有精品| 80岁老熟妇乱子伦牲交| 男女下面插进去视频免费观看 | 久久久久人妻精品一区果冻| 亚洲欧美中文字幕日韩二区| 99国产精品免费福利视频| 精品一区二区三区四区五区乱码 | 大码成人一级视频| 老司机影院成人| a级片在线免费高清观看视频| 亚洲熟女精品中文字幕| 美女福利国产在线| 一级爰片在线观看| 91午夜精品亚洲一区二区三区| 午夜免费鲁丝| 人妻少妇偷人精品九色| 久久精品国产a三级三级三级| 97超碰精品成人国产| 午夜福利在线观看免费完整高清在| 亚洲精品,欧美精品| 日本午夜av视频| 精品久久国产蜜桃| 久久午夜福利片| 乱码一卡2卡4卡精品| 国产精品.久久久| 黄片无遮挡物在线观看| 国产精品嫩草影院av在线观看| 午夜免费观看性视频| 久久久亚洲精品成人影院| 少妇的丰满在线观看| 青青草视频在线视频观看| 久久精品久久久久久久性| 欧美 日韩 精品 国产| 国产精品人妻久久久久久| 国产黄频视频在线观看| 久久综合国产亚洲精品| 亚洲成人一二三区av| 亚洲,欧美,日韩| 久久99精品国语久久久| 国产av国产精品国产| 一级爰片在线观看| 亚洲av中文av极速乱| av一本久久久久| 女的被弄到高潮叫床怎么办| 99视频精品全部免费 在线| 男女边吃奶边做爰视频| 在线免费观看不下载黄p国产| 亚洲在久久综合| 成人国语在线视频| 欧美 亚洲 国产 日韩一| 九草在线视频观看| 在线观看三级黄色| 中文字幕免费在线视频6| 亚洲中文av在线| 免费不卡的大黄色大毛片视频在线观看| 水蜜桃什么品种好| 欧美日本中文国产一区发布| 精品久久久久久电影网| 一边摸一边做爽爽视频免费| 欧美激情极品国产一区二区三区 | 国产精品一二三区在线看| 波野结衣二区三区在线| 国产视频首页在线观看| 高清毛片免费看| 男女啪啪激烈高潮av片| 女性被躁到高潮视频| 最近中文字幕2019免费版| www.熟女人妻精品国产 | 这个男人来自地球电影免费观看 | 国产精品国产三级专区第一集| 久久精品国产综合久久久 | 午夜日本视频在线| 国产视频首页在线观看| 日韩制服丝袜自拍偷拍| 天天躁夜夜躁狠狠久久av| 午夜激情久久久久久久| 老司机影院成人| 久久毛片免费看一区二区三区| 国产黄频视频在线观看| 亚洲,一卡二卡三卡| videos熟女内射| 人体艺术视频欧美日本| 亚洲精品色激情综合| 国产 精品1| 考比视频在线观看| 欧美精品一区二区免费开放| 美国免费a级毛片| 午夜福利视频在线观看免费| 亚洲熟女精品中文字幕| 99久国产av精品国产电影| 精品人妻熟女毛片av久久网站| 国产精品人妻久久久影院| 中文乱码字字幕精品一区二区三区| 国产色婷婷99| 1024视频免费在线观看| 亚洲精品久久午夜乱码| 亚洲伊人色综图| 22中文网久久字幕| 啦啦啦在线观看免费高清www| av女优亚洲男人天堂| 免费大片黄手机在线观看| 国产麻豆69| 五月天丁香电影| 亚洲精华国产精华液的使用体验| 国产熟女午夜一区二区三区| 男人爽女人下面视频在线观看| 中国美白少妇内射xxxbb| 久久这里只有精品19| 一级黄片播放器| 最近中文字幕2019免费版| 欧美另类一区| 又黄又爽又刺激的免费视频.| 久久99精品国语久久久| 日本爱情动作片www.在线观看| 日韩制服丝袜自拍偷拍| 纵有疾风起免费观看全集完整版| 制服人妻中文乱码| av线在线观看网站| 22中文网久久字幕| xxxhd国产人妻xxx| 欧美97在线视频| 中文字幕人妻熟女乱码| 久久国内精品自在自线图片| 国产伦理片在线播放av一区| 国产一区二区在线观看av| 在线免费观看不下载黄p国产| 九草在线视频观看| 日本wwww免费看| 丝袜脚勾引网站| 国产白丝娇喘喷水9色精品| 午夜久久久在线观看| 国产无遮挡羞羞视频在线观看| 欧美日韩综合久久久久久| av网站免费在线观看视频| 高清黄色对白视频在线免费看| 国产国拍精品亚洲av在线观看| 女人被躁到高潮嗷嗷叫费观| 国产永久视频网站| 热re99久久国产66热| 精品视频人人做人人爽| 91aial.com中文字幕在线观看| 精品一区二区三区视频在线| av有码第一页| 国产成人aa在线观看| 日韩,欧美,国产一区二区三区| 亚洲综合色网址| 亚洲av在线观看美女高潮| 欧美日韩成人在线一区二区| 精品久久久精品久久久| 久久久欧美国产精品| 在线观看三级黄色| 97在线人人人人妻| 国产精品偷伦视频观看了| 亚洲成人手机| a级片在线免费高清观看视频| 美女国产视频在线观看| 国产日韩欧美视频二区| 国产高清不卡午夜福利| 国产一区亚洲一区在线观看| 超碰97精品在线观看| 亚洲欧美一区二区三区黑人 | 制服诱惑二区| 水蜜桃什么品种好| 在线天堂最新版资源| 亚洲,一卡二卡三卡| a级片在线免费高清观看视频| 久久人人爽人人爽人人片va| 亚洲伊人色综图| 久久99精品国语久久久| 一本大道久久a久久精品| 国产在线视频一区二区| 国产亚洲午夜精品一区二区久久| 丁香六月天网| 五月伊人婷婷丁香| 99热这里只有是精品在线观看| 国产熟女欧美一区二区| 黑人猛操日本美女一级片| 亚洲欧美色中文字幕在线| 免费播放大片免费观看视频在线观看| 97精品久久久久久久久久精品| 色网站视频免费| 久久 成人 亚洲| 在线精品无人区一区二区三| 久久影院123| 考比视频在线观看| 一级a做视频免费观看| 十八禁高潮呻吟视频| 欧美bdsm另类| 亚洲精品中文字幕在线视频| 免费高清在线观看视频在线观看| 国产片特级美女逼逼视频| 亚洲成人av在线免费| 啦啦啦中文免费视频观看日本| 少妇被粗大的猛进出69影院 | 久久ye,这里只有精品| 国产高清三级在线| 99香蕉大伊视频| 一二三四在线观看免费中文在 | 欧美人与性动交α欧美精品济南到 | 韩国av在线不卡| 成人亚洲欧美一区二区av| 黄色怎么调成土黄色| 赤兔流量卡办理| 国产亚洲欧美精品永久| 亚洲少妇的诱惑av| 日韩伦理黄色片| 国产69精品久久久久777片| 国产成人精品无人区| 午夜老司机福利剧场| 久久久久国产网址| 国产精品女同一区二区软件| 热99久久久久精品小说推荐| 国产男人的电影天堂91| 国产在线一区二区三区精| 黄片无遮挡物在线观看| 51国产日韩欧美| 久久人妻熟女aⅴ| 王馨瑶露胸无遮挡在线观看| 欧美日本中文国产一区发布| 中国国产av一级| 日韩一区二区视频免费看| 爱豆传媒免费全集在线观看| 极品少妇高潮喷水抽搐| 亚洲av男天堂| videos熟女内射| 少妇的丰满在线观看| 午夜免费观看性视频| 日韩三级伦理在线观看| 精品99又大又爽又粗少妇毛片| 哪个播放器可以免费观看大片| 如何舔出高潮| 一区二区av电影网| 乱人伦中国视频| 成人国产av品久久久| 九草在线视频观看| av卡一久久| 你懂的网址亚洲精品在线观看| 亚洲av免费高清在线观看| 男女免费视频国产| 曰老女人黄片| 91午夜精品亚洲一区二区三区| 欧美成人午夜精品| 91aial.com中文字幕在线观看| 欧美成人精品欧美一级黄| 又大又黄又爽视频免费| 日日啪夜夜爽| 黑人高潮一二区| 精品一品国产午夜福利视频| 精品一区在线观看国产| 深夜精品福利| 国产成人免费无遮挡视频| 成人亚洲欧美一区二区av| 国内精品宾馆在线| 22中文网久久字幕| 久久精品久久久久久久性| 国产一区二区在线观看日韩| av线在线观看网站| 亚洲精品色激情综合| 一区二区日韩欧美中文字幕 | 亚洲人与动物交配视频| 一区二区三区精品91| 久久久久久人人人人人| www.色视频.com| 久久国产精品男人的天堂亚洲 | 日韩欧美一区视频在线观看| 国产片内射在线| 久久久久精品人妻al黑| 久久精品国产综合久久久 | av不卡在线播放| 91午夜精品亚洲一区二区三区| 国产无遮挡羞羞视频在线观看| 国产国语露脸激情在线看| 日本91视频免费播放| 色哟哟·www| 亚洲性久久影院| 嫩草影院入口| 国产福利在线免费观看视频| 一级黄片播放器| 99热国产这里只有精品6| 精品亚洲乱码少妇综合久久| 日韩中文字幕视频在线看片| 午夜免费观看性视频| 亚洲四区av| 国产爽快片一区二区三区| 国产在线视频一区二区| 爱豆传媒免费全集在线观看| 女的被弄到高潮叫床怎么办|