• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    合成ZnO納米陣列及刺突狀CuO/ZnO異質(zhì)結(jié)

    2015-01-04 12:52:35李湘奇范慶飛李廣立黃瑤翰照范希梅張朝良周祚萬西南交通大學材料科學與工程學院材料先進技術(shù)教育部重點實驗室成都6003四川大學華西口腔醫(yī)院口腔疾病國家重點實驗室成都6003
    物理化學學報 2015年4期
    關(guān)鍵詞:前驅(qū)異質(zhì)摩爾

    李湘奇 范慶飛 李廣立 黃瑤翰 高 照范希梅,* 張朝良 周祚萬(西南交通大學材料科學與工程學院,材料先進技術(shù)教育部重點實驗室,成都6003;四川大學華西口腔醫(yī)院,口腔疾病國家重點實驗室,成都6003)

    合成ZnO納米陣列及刺突狀CuO/ZnO異質(zhì)結(jié)

    李湘奇1范慶飛1李廣立1黃瑤翰1高 照1范希梅1,*張朝良2周祚萬1
    (1西南交通大學材料科學與工程學院,材料先進技術(shù)教育部重點實驗室,成都610031;2四川大學華西口腔醫(yī)院,口腔疾病國家重點實驗室,成都610031)

    采用低溫水熱法在摻氟SnO2(FTO)導(dǎo)電玻璃表面制備ZnO納米陣列,研究了前驅(qū)體溶液濃度摩爾配比對ZnO納米陣列形貌、光學性能及其生長機理的影響.研究發(fā)現(xiàn),隨著前驅(qū)體溶液濃度摩爾配比的增加,ZnO納米陣列形貌及光學性能也隨之變化.ZnO納米陣列高度逐漸降低,ZnO納米陣列直徑和光學帶隙值大體上出現(xiàn)先增大后降低的趨勢.而當前驅(qū)體溶液(Zn(NO3)2:環(huán)六亞甲基四胺(HMT,C6H12N4))濃度摩爾配比為5:5時,其光學禁帶值(3.2 eV)接近于理論值.結(jié)果顯示制備ZnO納米陣列的最優(yōu)濃度摩爾配比為5:5.隨后選用最優(yōu)濃度摩爾配比下制備的ZnO納米陣列為基底,通過一種兩步溶液法成功在其表面制備刺突狀CuO/ZnO異質(zhì)結(jié).從場發(fā)射掃描電鏡(FE-SEM)結(jié)果中可以清楚看見,大量的CuO納米粒子沉積在ZnO納米陣列表面形成刺突狀異質(zhì)結(jié)結(jié)構(gòu).研究發(fā)現(xiàn)該CuO/ZnO納米異質(zhì)結(jié)相對于純ZnO納米陣列在紫外光下光催化性能明顯增加.最后,討論了CuO/ZnO納米異質(zhì)結(jié)光催化機理.

    ZnO納米陣列;CuO/ZnO異質(zhì)結(jié);水熱法;光學性能;摩爾比

    1 Introduction

    ZnO is a II-VI semiconductor with a wide direct band gap of 3.37 eV at room temperature and large exciton binding energy(60 meV).As a promising functional material,its nanostructures have attracted great attention.There are lots of literature about ZnO nanostructure,1-4such as nano-film,nano-flower,nano-sphere, nano-array and so on.Because of its high aspect ratio and faster rate of electronic transmission,the ZnO nano-arrays are widely used in light emitting diodes,5field emission devices,6solar cells,7etc.Especially in photocatalysis,there are lots of papers about the photocatalysis of ZnO.8,9Kuo et al.8used the chemical vapor transport method to synthesize ZnO nanowires as recyclable photocatalysts on silicon substrates coated with a very thin gold catalyst film.Zhai et al.9used the sol-gel method to synthesize ZnO nanowires for photocatalytic degradation of 4-chlorophenol on the surface of ZnO nanorod arrays.There are many methods that were used to synthesize ZnO nanorods,such as electrochemical growths,10physical vapor deposition,11magnetron sputtering deposition,12high pressure pulsed laser deposition,13and hydrothermal method14.In more recent years,the hydrothermal method has become a hot spot of research in the growth of ZnO nanorods because of its simple procedure,moderate-temperature, and low cost.For example,Liu and Zeng15reported that ZnO nanorods in the diameter regime of 50 nm were grown on the fluorinated tin oxide(FTO)glass substrate by hydrothermal method.Kumar et al.16reported that ZnO nanorods were successfully grown on glass substrate by a hydrothermal method through controlling the ZnO nanostructure seed layer.

    However,one-dimensional(1D)ZnO nano-arrays could not meet the demand for the development of modern advanced materials,due to the wide band-gap and easy recombination of the photo-induced electrons and holes in the photocatalytic reactions.17Hence,the separation process is considered as one of the most important roads for modification of single ZnO nano-arrays. Recently,coupled semiconductors formed between ZnO and other metal oxides or sulfides have been studied,18-20such as In2O3,CdS, CuO and so on.CuO is a p-type semiconductor with a narrow band gap(1.2-1.9 eV),21,22owning unique electrical,magnetic, and catalytic properties,which had been widely used in various applications such as lithium ion electrode materials,heterogeneous catalysts,gas sensors,and solar cells.23-26Therefore,when CuO nano-structure coupled on the surface of ZnO nano-arrays and formed the nano-arrays heterojunction,it may produce more applications.In the past few years,there are a lot of researches about CuO/ZnO nano-arays.27-29However,most of them are used for hydrogen productions,gas sensors,and solar cells,few used for photodegradations.For instance,Kim et al.27used photochemical method to synthesize CuO/ZnO heterostructured nanorods as H2S gas sensor at low temperature.Kargar et al.28synthesized ZnO/CuO heterojunction branched nano-arrays by a thermal oxidation method,applied as photocathodes for photoelectrochemical solar hydrogen production.Jung and Yong29used photochemical method to prepare CuO/ZnO nano-array structure on the mesh substrate,which shows highly efficient photocatalytic applications for dye.

    The aim of this study is to optimize the preparation of the 1D ZnO nano-arrays and investigate the role of CuO in enhancing the photocatalytic properties of 1D ZnO nano-arrays.Firstly,we reported a hydrothermal method for the synthesis of 1D ZnO nanoarrays with polyethyleneimine(PEI)as additive,PEI could efficiently increase the length of ZnO nano-arrays.30In this process, different molar ratios of Zn(NO3)2to C6H12N4(HMT)were added into the growth solutions to synthesize ZnO nano-arrays.The effects of OH-ion concentrations on the ZnO nano-arrays,including the structures,growth mechanism,and optical properties, were investigated.In this case,the molar ratios of Zn(NO3)2to HMT not only changed the geometrical shape of ZnO nano-arrays, but also affected optical properties of ZnO nano-arrays.Secondly, the spike-shaped CuO/ZnO heterostructure arrays were prepared by a two-step solution-system method,the structures and morphology were also discussed in details.Further,the samples were used for the photocatalytic degradation of methyl orange(MO) under UV light irradiation.We also discussed the possible photodegradation mechanism.

    2 Experimental

    2.1 Materials

    All chemicals were of analytical reagent grade and used without further purification.All the aqueous solutions were prepared using distilled water.Fluorinated tin oxide(10 Ω·cm-2,Xiang Town Technologies Ltd.,China)was used as substrates and cleaned by standard procedures prior to use.

    2.2 Preparation of ZnO nano-arrays on FTO coated glass substrates

    ZnO nano-arrays were grown by a low temperature hydrothermal route with a two-step method of seed deposition and nanoarray growth.The ZnO nano-arrays were deposited onto FTO coated glass substrates.First,FTO glass substrates were rinsed ultrasonically in acetone,ethanol,and distilled water for 15 min, successively.ZnO seed layer was prepared on FTO glass by dipcoating(10 cm·min-1)in 5-7 mol·L-1ethanolic solutions of zinc acetate(99%,analytical grade),followed by thermal decomposition at 300°C for 15 min.Then,the obtained ZnO seed layer was transferred into a Teflon crucible filled with a growth solutionof Zn(NO3)2(99%,analytical grade),HMT(99%,analytical grade) and PEI(branched,low molecular weight,Chengdu Xiya Chemical Co.Ltd.,China)and kept inside the autoclave at 90°C for 24 h.The concentrations of Zn(NO3)2,HMT,and PEI in the resulting solution are listed in Table 1.The growth solutions were refreshed every 6 h during the reaction period.After reaction,all samples were taken out to rinse with deionized water and ethanol,successively,for several times,and annealed in air at 450°C for 30 min to remove any residual organics before investigating their properties.

    2.3 Preparation of CuO hybridized ZnO nano-arrays

    CuO/ZnO nano-arrays were also grown by a two-step solutionsystem method of seed deposition and nanoparticle(NP)growth. Firstly,the as-prepared ZnO nano-arrays on FTO substrate(molar ratio of Zn(NO3)2to HMT is 5:5)was immersed in the reaction solutionof 60°Cfor 2h.31The reactionsolutionconsistedof 1mol· L-1copper nitrate((Cu(NO3)2,99%,analytical grade)as copper source,2.6 mol·L-1potassium sodium tartrate tetrahydrate(PSTT, 99%,analytical grade)as a complexing agent,2.7 mol·L-1sodium hydroxide(NaOH,90%,analytical grade)and 6.3 mol·L-1sodium carbonate(Na2CO3,99.8%,analytical grade)as an alkaline medium,and a drop of formaldehyde(HCHO,37%,analytical grade) as a reducing agent,all these chemicals were purchased from Kelong Chemical Co.Ltd.(Chengdu,China).Then,the substrate was rinsed thoroughly with deionized water and immediately annealed in air at 250°C for 1 h to form CuO seeds on the surfaces of the ZnO nano-arrays.After annealing,the oxidized substrate was immersed in above-mentioned solution at 65°C for 7 h to obtain the desired thicknesses of CuO shells.

    2.4 Characterization

    The morphology of the nano-arrays was characterized using scanning electron microscopy(SEM,Fei Quanta 200,USA).The crystal phase of the nano-arrays was determined by X-ray diffraction(XRD,PanalyticalX'pertPRO,Netherlands),using Cu Kαradiation from 20°to 80°.X-ray photoelectron spectroscopy (XPS)measurement was performed with a PHI 5600 multitechnique system by using a monochromatic Al KαX-ray source. The UV-Vis diffuse reflectance spectra in the wavelength range of 300-800 nm were carried out with a UV-Vis 2550 spectrophotometer(Shimadzu 2550,Japan).

    2.5 Photocatalytic test

    The photocatalytic activities of the pure ZnO nano-arrays and CuO/ZnO heterostructures were investigated using the photodegradation of MO solution.Firstly,the sample(2 cm×3 cm)was vertically immersed in a beaker filled with 20 mL MO aqueous solution(1 mg·L-1,99%,analytical grade,Chengdu Kelong Chemical Co.Ltd.,China),and then kept for 30 min in the dark to equilibrate.Subsequently,the solution with the samples was irradiated under a 100 W UV-lamp with 254 nm emission wavelength or a 100 W visible light for 5 h,the location of the lamp was on the right above the front side of the samples,the distance between the lamp and the solution surface was 14 cm, and meanwhile stirred continuously at 25°C.The solution was sampled every 1 h during UV irradiation in order to determine the degree of degradation of MO,which was done by measuring the absorbance at 466 nm using a UV-Vis 2550 spectrophotometer.

    Table 1 Synthesis conditions for the growth of ZnO nano-arrays

    3 Results and discussion

    3.1 Structural characterization of ZnOnano-arrays

    Fig.1 (a)X-ray diffraction patterns of ZnO nano-arrays under different molar ratios of Zn(NO3)2to HMT on FTO glass substrates;(b)enlarged(002)diffraction peaks about ZnO

    The crystallinity of ZnO nano-arrays prepared under the different synthesis conditions was investigated using X-ray diffraction analysis.Fig.1 shows the XRD patterns of ZnO nanoarrays grown for 24 h in the aqueous solutions with different molar ratios of Zn(NO3)2to HMT.As shown in Fig.1,FTO glass substrate had three characteristic diffraction peaks at 2θ=26.6°, 37.8°,51.8°,which corresponded to the(110),(200),(211) crystalline planes of tetragonal rutile structure of SnO2(JCPDS file No.41-1445),respectively.Besides,the diffraction peaks at 2θ=34.4°,36.1°,47.4°,62.7°for all the samples were attributed to the(002),(101),(102),(103)crystalline planes of typical wurtzite structure of ZnO(JCPDS file No.36-1451),respectively.The dominant(002)peak appearance in XRD patterns strongly supported that the ZnO nano-arrays show a high orientation along c-axis which was perpendicular to the FTO substrates.The results could also be inferred from the next SEM observations.Furthermore,enlarged(002)peaks of ZnO nano-arrays grown under different molar ratios of Zn(NO3)2to HMT were inserted in Fig.1b.We can find that all the(002)diffraction peak located on the same positions,and the(002)peak with the molar ratio of 5: 5 has the highest intensity.This result can be attributed to different molar ratios of Zn(NO3)2to HMT.ZnO is formed in the solution of OH?and Zn2+ions,and their stoichiometry is very critical parameter for ZnO.In the reaction process,if OH?concentrationis too low,this may lead to slow-growing and non-full reaction to form incomplete grain structure,while OH?concentration is too high,this may lead to fast-growing and the dissolution of ZnO crystals due to the presence of excess OH?.32All these reasons might result in the decrease of preferential growth trend.

    3.2 Surface morphology analysis of ZnO nanoarrays

    Fig.2 shows the top-down and cross-section SEM images of the ZnO nano-arrays synthesized under the conditions of different molar ratios of the Zn(NO3)2to HMT.From Fig.2,we observed that the majority ZnO nano-arrays were uniform and vertical grown on the FTO substrate with a high aspect ratio.The results were consistent with the XRD analysis.Averages were taken from the measurements for the ZnO nano-arrays on FTO substrate, where the lengths were measured using the cross-sectional SEM images and the diameters were measured using the top-down SEM images.33The mean values of the ZnO nano-array dimension, including the length and diameter estimated from a statistical evaluation of SEM images,are given in Fig.2f.It was obvious that as the molar ratios of Zn(NO3)2to HMT increased from 5:2 to 5: 15,the lengths of ZnO nano-arrays correspondingly decreased from 6.78 to 2.92 μm.The diameters of the nano-arrays increased to 311 nm with increasing the molar ratio of Zn(NO3)2to HMT to 5:6,and when further increasing the molar ratio to 5:15 the diameters of the nano-arrays decreased to 190.7 nm.

    Fig.2 Top-down SEM images of ZnO nano-arrays grown under different molar ratios of Zn(NO3)2to HMT of (a)5:2,(b)5:5,(c)5:6,(d)5:10,and(e)5:15;(f)mean diameter and length from a to e

    It was reported that ZnO was an amphoteric substance,it could not only act as an acid to form[Zn(OH)4]2?in the presence of OH?, but also act as a base to produce Zn2+in the presence of H+. Therefore,it was deduced that increasing the molar ratios of Zn(NO3)2to HMT could suppress the growth rate.This might result from the dissolution of ZnO crystals due to the presence of excess OH?.32

    As all we know,the growth of ZnO nano-arrays in the aqueous solution is based on the crystallization theory of solid phase from the solution,which involves two steps of nucleation and growth.

    In our experiments,the ZnO seeds derived by the thermal decomposition of zinc acetate were used as the nuclei,which was propitious to lower activation energy barrier for ZnO nano-arrays. The following reactions are involved in the formation of ZnO seeds:34

    Next,ZnO nano-arrays were grown in aqueous solution of Zn(NO3)2and HMT at 90°C.In our experiment,Zn(NO3)2was used as source of zinc,HMT as source of OH?,and PEI as additive.No precipitate generated initially when HMT was added to the mixture solution.With the increase of growth temperature,the HMT began to decompose and form ammonia,which reacted with Zn(NO3)2to generate Zn(OH)2and finally obtained ZnO nanoarrays on the substrate.The involved reactions can be expressed as follows:35

    The formation for superior alignment on ZnO seed film is attributed to the polar nature of the ZnO surface.36ZnO,as a polar crystal,its surface is either positively charged or negatively charged.34,37Therefore,the seed surface attracts ions of opposite charges(OH?or Zn2+)to form the new surface,which in turn attracts ions with opposite charges to cover the surface and thereby reacting to form ZnO.It was reported that the optimized(001) surface had roughly a 60%higher cleavage energy than the nonpolar(100)and(110)faces,and ZnO had a dipole moment along(001)direction.These properties suggested that the c-axis was the fastest growth direction and the ZnO(001)had the highest energy of the low-index surface.34,37Hence,ZnO could easily grow along this direction and the resultant ZnO nano-arrays stand mostly perpendicular onto substrates as shown in Fig.2.

    3.3 Optical properties of ZnO nano-arrays

    The optical band gap is an important parameter for the semiconductor materials.It links to the absorption line in the spectrum for these materials.Fig.3a shows the optical transmittance spectra of ZnO nano-arrays deposited at different growth conditions in the wavelength range of 300-800 nm.The average transmittance of the samples can be calculated by this formula:

    where Aois absorbance tested by a UV-Vis 2550 spectrophotometer,T is the average transmittance.It can be found that the ZnO nano-arrays present low transmittance in the wavelength range of 300-800 nm and the average transmittances are 1.57%, 2.01%,0.67%,11.68%,and 3.54%for the molar ratios of Zn(NO3)2to HMT from 5:2 to 5:15,respectively.This indicates a strong adsorption in the wavelength range from 300 to 800 nm.

    However,absorption coefficient is related to transmittance. From the transmission spectra of Fig.3a,the values of the absorption coefficient α are calculated using the equation:38

    The relationship between absorption coefficientαand the incident photon energy hνcan be described by Tauc formula:

    where A is a constant,Egis the optical band gap energy,νis the frequency of the incident photon,h is the Planck's constant,and d is the nano-array length.The optical band gaps for the as-prepared samples are 2.70,3.20,2.90,3.15,and 3.05 eV,respectively, which are given in Fig.3(b-f).With increasing the molar ratios of Zn(NO3)2to HMT from 5:2 to 5:15,the optical band gap increased at first with the molar ratio increasing from 5:2 to 5:5 and then decreased from 5:5 to 5:15,the change trend of optical band gap was generally like as the changing trend of diameter.Wang39and Schmidt40et al.also found the width of the band gap was connected with nano-arrays diameter.Therefore,we can regulate the optical band gap of ZnO nano-arrays through controlling the structure and diameter by changing the molar ratios of precursor solution.

    3.4 CuO hybridized ZnO nano-arrays

    Although the ZnO nano-arrays have higher specific surface area and excellent electron transmission,the photocatalytic activity is relatively low.The recombination process is considered as one of the most important factors to control photocatalytic activity.Therefore,we try to deposite nano-CuO on the surface of ZnO nano-arrays to form p-n heterojunctions to reduce the recombination of photo-induced electrons and holes.

    3.4.1 Structural characterization of CuO/ZnOnanoarrays

    The XRD patterns of the pure CuO and the as-synthesized samples with the 5:5 molar ratio of Zn(NO3)2to HMT were shown in Fig.4.As shown in Fig.4,the diffraction peaks at 2θ=34.4°, 36.2°,47.5°,62.8°,72.4°of as-prepared sample were attributed to the typical wurtzite structure of ZnO(JCPDS file No.36-1451). Then,the other peaks at 2θ=26.5°,37.8°,51.6°,65.8°were belong to the(110),(200),(211),(301)crystalline planes of tetragonal rutile structure of SnO2(JCPDS file No.41-1445),respectively. Besides,the two characteristic diffraction peaks at 2θ=61.6°,68.3° were assigned to the(113),(221)crystalline planes of monoclinic structure of CuO(JCPDS file No.80-1917),respectively.This observation indicated that the crystal structure of ZnO was intact during the CuO fabrication process.What's more,no other peaks for possible impurity phases such as Cu2O and metal Cu could be detected.So,it could be concluded that the nanocomposites were only composed of CuO and ZnO.

    3.4.2 Composition analysis of CuO/ZnOnano-arrays

    It is well known that surface composition and chemical states of materials are very important during photodegradation process since they can strongly affect the photocatalytic activity.The XPS analysis is carried out to investigate the composition information by the characteristic binding energy of different elements and element chemical states on material surfaces.The XPS results are given in Fig.5.The binding energies in the XPS spectra were calibrated by using that of C 1s(284.8 eV).All peaks in the XPS full spectrum of the as-prepared CuO/ZnOnano-arrays shownin Fig.5a could be ascribed to Zn,Cu,O,and C elements and no peaks of other elements are observed.However,the appearance of weak C peak mainly came from gaseous carbon molecules of vacuum treatment before the XPS test.

    The high resolution spectra for Zn,O,and Cu species are shown in Fig.5(b-d),respectively.The two strong peaks of Zn 2p at 1021.8 and 1045.0 eV in Fig.5b corresponded to Zn 2p3/2and Zn2p1/2,respectively.The peaks were symmetrical and nearly the same positions as those of pure ZnO.41Thus,it could be confirmed that Zn element existed mainly as the form of Zn2+chemical states on sample surfaces.As shown in Fig.5c,the broad O 1s core-level spectrum could be fitted to two symmetrical peaks by Gaussian rule.The peak at a lower binding energy(529.9 eV)in Fig.5c agreed with lattice oxygen(OL)in mental oxide such as CuO and ZnO,42,43while the other peak at 531.4 eV was attributed to chemisorbed oxygen and/or hydroxide(OH).42,43Fig.5d shows the Cu 2p XPS spectrum,the Cu 2p spectra of the as-synthesized sample show two main 2p3/2and 2p1/2spinorbit lines at 933.8 and 953.7 eV,respectively,which corresponded to the binding energies of Cu 2p3/2and Cu 2p1/2of CuO.44,45Simultaneously,the peak at 941.1, 943.6,and 962.7 eV were considered to be the satellite peaks of CuO,which could also confirm the presence of CuO.46,47So,it was further deduced that CuO was formed on the ZnO.

    Fig.3 (a)Optical transmittance of all the ZnO nano-arrays under different molar ratios of Zn(NO3)2to HMT on FTO glass substrates;(b-f)optical band gap calculations of ZnO nano-arrays grown under different molar ratios of Zn(NO3)2to HMT

    Fig.4 XRD patterns of the bare CuO and the as-prepared CuO/ZnO nano-arrays

    3.4.3 Surface morphology analysis of CuO/ZnO nanoarrays

    SEM tests were subsequently carried out to try to observe the location and morphology of CuO.Fig.6(a-c)shows the typical FE-SEM images of CuO NPs prepared on the surface of ZnO nano-arrays which were obtained under the conditions of 5:5 molar ratio of Zn(NO3)2to HMT,which was shown in Fig.2b.As can be seen from Fig.6(a-c),lots of CuO NPs uniformly enwrapped on the surface of ZnO nano-arrays and the structure of the CuO hybridized ZnO still presented the spike shape.In addition,no isolated CuO particles were found in the mixture, meaning that CuO particles were strongly anchored to the ZnO surface.The average size of CuO NPs was about 48.37 nm by using image analysis software(Image Pro Plus 6.0).48Therefore, combination with the results of XRD and XPS tests,we can be sure that this sample was CuO/ZnO heterostructure.

    Fig.5 XPS spectra of the as-prepared CuO/ZnO nano-arrays

    Fig.6 Cross-sectional FE-SEM images of ZnO and CuO/ZnO heterostructure nano-arrays

    3.4.4 Photocatalytic performance of CuO/ZnOnanoarrays

    The photocatalytic activities of the CuO/ZnO photocatalysts were evaluated with respect to the degradation of MO dye aqueous solution(1 mg·L-1)under UV light irradiation,and the results are shown in Fig.7a.The rate of photodegradation was tested by measuring the absorbance at 466 nm for MO.The degradation efficiency is calculated by the following equation:

    where D is the degradation rate of dye solution,A0and Atare theinitial maximum absorbance and the maximum absorbance of dye solution after irradiation for t hours,respectively.

    Fig.7 (a)Photoactivity of CuO/ZnO nano-arrays in the MO aqueous solution under UV irradiation;(b)photocatalytic degradation of MO in recycling tests of CuO/ZnO nano-arrays

    The blank test with only UV irradiation exhibited a decomposition rate of only 2.2%after 5 h irradiation.Pure CuO NPs show slightly progressed degradation for MO solution with 5.43%.And it could be noticed that the degradation rate of pure ZnO nano-arrays was 56.7%which was superior to that of pure CuO NPs,which might be due to the fact that ZnO nano-arrays had higher aspect ratio and higher specific surface area than pure CuO NPs.Further,the degradation rate of MO experienced another considerable increase and reached to 92.8%when CuO/ZnO nano-arrays were applied.As a contrast,we used commercial titania(P25,Degussa)as a reference catalyst,and the degradation rate of MO for P25 under UV irradiation for 5 h was 81.1%. Therefore,the photocatalytic activities were in the order of CuO/ ZnO>P25>pure ZnO>pure CuO>the blank test under UV light irradiation.The phenomenon is attributed to the formation of heterojunctions between the interface of CuO and ZnO nanoarrays,which favors the separation of photo-generated electrons and holes.20,49

    Photocatalytic recycling experiments were used for photocatalytic stability test.Fig.7b shows the results for photocatalytic recycling degradation of MO under UV irradiation.The photocatalytic activity decreased slightly after the third cycle;the MO degradation rate was 92.8%at the end of the first cycle and 84.6% after the third cycle,showing that the photocatalyst had excellent stability.

    The enhanced activities of the CuO/ZnO heterostructure could be explained based on the schematic diagram of excitation and separation of electrons and holes for CuO/ZnO heterojunction under UV irradiation,shown in Fig.8.It was reported that interparticle transfer of charge carriers contributes to the enhanced photocatalytic efficiency of coupled semiconductors when the energies of valence band(VB)and conduction band(CB)were properly matched.50As shown in Fig.8,when the CuO/ZnO heterostructure was irradiated by UV light,the valence band electrons of CuO and ZnO could be excited to their conduction band, respectively.According to the thermodynamic theory,51the photogenerated electrons transfer from CB of CuO to that of ZnO, while the photogenerated holes immigrate from VB of ZnO to that of CuO.Consequently,the photogenerated electrons and holes are effectively separated,the electrons accumulated in CB of ZnO and holes accumulated in VB of CuO can be consumed for degradation of pollutants.The possible photo-degradation mechanism of CuO/ZnO nano-arrays was as follows:29,52

    From the above reactions,it had been confirmed that the photodegradation of dyes was mainly governed by the direct oxidation of photo-induced holes53,54which could reduce H2O molecules to OH·,and OH·was strong oxidizing agent for organic pollutant and electrophilic reagent.46

    The UV-Vis absorption abilities of the one-dimensional ZnO nano-arrays and the CuO/ZnO nano-arrays are shown in Fig.9a. The absorption edge was about 380 nm for bare ZnO nano-arrays, while the absorption edge of the CuO/ZnO nano-arrays was about 550 nm.Obviously,the CuO/ZnO nano-arrays had the better light utilization rate than one-dimensional ZnO nano-arrays.The enhanced absorption of visible light for CuO/ZnO nano-arrays might be also very useful in the photo-degradation of dyes applications.

    Fig.8 Schematic diagram of excitation and separation of electrons and holes for CuO/ZnO heterojunction under UV irradiation

    Fig.9 (a)Diffuse reflectance UV-Vis spectra of the bare ZnO and CuO/ZnO nano-arrays;(b)photoactivity of CuO/ZnO nanoarrays in the MO aqueous solution under visible light irradiation

    The photocatalytic activities for the degradation of MO dye aqueous solution(1 mg·L-1)of the one-dimensional ZnO nanoarrays and the CuO/ZnO nano-arrays under 100 W visible light irradiation are shown in Fig.9b.The results show that the degradations of MO dye aqueous solution of the one-dimensional ZnO nano-arrays,P25,and CuO/ZnO nano-arrays were very lower from 10.4%to 14.9%under visible light than the results under the UV irradiation,these results might be attributed to the optical absorption.The UV light can stimulate CuO and ZnO to generate photoproduction electron-holes at the same time,and be more effective to separate the photogenerated electrons and holes, while the visible light can only stimulate CuO.Therefore,the photodegradation of MO under UV irradiation is higher than that under the visible light.

    4 Conclusions

    In summary,the spike-shaped CuO/ZnO nano-arrays were successfully fabricated using a two-step solution-system method. Firstly,the characters of the ZnO nano-arrays,such as the structures,growth mechanism,and optical properties could be controlled by the molar ratios of Zn(NO3)2to HMT.As the molar ratios increased from 5:2 to 5:15,the lengths of ZnO nano-arrays correspondingly decreased from 6.78 to 2.92 μm,and the diameter firstly increased to 311.0 nm and then decreased to 190.7 nm.By and large,the change of optical band gap also had the same trend as the change of diameter,when the molar ratio is 5:5,the(002) peak had the highest intensity and the optical gap was 3.20 eV. Afterwards,the CuO NPs were deposited on the surface of ZnO nano-arrays which were obtained under the 5:5 malar ratio of Zn(NO3)2to HMT.The prepared sample presented spike shape, excellent photocatalytic properties for MO under UV irradiation, and also showed advanced light absorption ability in the UV-Vis region.Next,we expect that this unique morphology will provide more promising applications,such as solar energy conversion and gas sensor devices.

    (1) Zhang,C.H.;Wang,G.F.;Liu,M.;Feng,Y.H.;Zhang,Z.D.; Fang,B.Electrochim.Acta 2010,55(8),2835.doi:10.1016/j. electacta.2009.12.068

    (2) Jiang,C.Y.;Sun,X.W.;Lo,G.Q.;Kwong,D.L.Appl.Phys. Lett.2007,90(26),263501.doi:10.1063/1.2751588

    (3) Zhang,Y.Z.;Liu,Y.P.;Wu,L.H.;Li,H.;Han,L.Z.;Wang,B. C.;Xie,E.Q.Appl.Surf.Sci.2009,255(9),4801.doi:10.1016/ j.apsusc.2008.11.091

    (4) Yang,P.D.;Yan,H.Q.;Mao,S.;Russo,R.;Johnson,J.; Saykally,R.;Morris,N.;Pham,J.;He,R.H.;Choi,H.J.Adv. Funct.Mater.2002,12(5),323.doi:10.1002/1616-3028 (20020517)12:5<323::AID-ADFM323>3.0.CO;2-G

    (5) Liu,C.H.;Zapien,J.A.;Yao,Y.;Meng,X.M.;Lee,C.S.;Fan, S.S.;Lifshitz,Y.;Lee,S.T.Adv.Mater.2003,15(10),838.doi: 10.1002/adma.200304430

    (6) Lee,C.J.;Lee,T.J.;Lyu,S.C.;Zhang,Y.;Ruh,H.;Lee,H.J. Appl.Phys.Lett.2002,81(19),3648.doi:10.1063/1.1518810

    (7) Zhu,S.B.;Chen,X.N.;Zuo,F.B.;Jiang,M.;Zhou,Z.W. J.Solid State Chem.2013,197,69.doi:10.1016/j.jssc. 2012.09.001

    (8) Kuo,T.J.;Lin,C.N.;Kuo,C.L.;Huang,M.H.Chem.Mater. 2007,19(21),5143.doi:10.1021/cm071568a

    (9) Zhai,X.H.;Long,H.J.;Dong,J.Z.;Cao,Y.A.Acta Phys.-Chim.Sin.2010,26(3),663.[翟曉輝,龍繪錦,董江舟,曹亞安.物理化學學報,2010,26(3),663.]doi:10.3866/ PKU.WHXB20100317

    (10) Elias,J.;Lévy-Clément,C.;Bechelany,M.;Michler,J.;Wang, G.;Wang,Z.;Philippe,L.Adv.Mater.2010,22(14),1607.doi: 10.1002/adma.200903098

    (11) Lyu,S.C.;Zhang,Y.;Lee,C.J.;Ruh,H.;Lee,H.J.Chemistry of Materials 2003,15(17),3294.doi:10.1021/cm020465j

    (12) Kang,S.W.;Mohanta,S.K.;Kim,Y.Y.;Cho,H.K.Crystal Growth and Design 2008,8(5),1458.doi:10.1021/cg701216f

    (13) Sun,Y.;Fuge,G.M.;Ashfold,M.N.R.Chemical Physics Letters 2004,396(1),21.

    (14) Gao,Y.F.;Nagai,M.;Chang,T.C.;Shyue,J.J.Crystal Growth and Design 2007,7(12),2467.doi:10.1021/cg060934k

    (15) Liu,B.;Zeng,H C.Journal of the American Chemical Society 2003,125(15),4430.doi:10.1021/ja0299452

    (16) Kumar,P.S.;Raj,A.D.;Mangalaraj,D.;Nataraj,D.Applied Surface Science 2008,255(5),2382.doi:10.1016/j.apsusc.2008.07.136

    (17) Liu,Z.Y.;Bai,H.W.;Sun,D.D.Int.J.Photoenergy 2011,2012.

    (18) Yan,W.P.;Wang,D.J.;Chen,L.P.;Lu,Y.C.;Xie,T.F.;Lin,Y. H.Acta Phys.-Chim.Sin.2013,29(5),1021.[閆偉平,王德軍,陳禮平,盧永春,謝騰峰,林艷紅.物理化學學報,2013,29 (5),1021.]doi:10.3866/PKU.WHXB201303043

    (19) Zhang,Q.B.;Feng,Z.F.;Han,N.N.;Lin,L.L.;Zhou,J.Z.; Lin,Z.H.Acta Phys.-Chim.Sin.2010,26(11),2927.[張橋保,馮增芳,韓楠楠,林玲玲,周劍章,林仲華.物理化學學報, 2010,26(11),2927.]doi:10.3866/PKU.WHXB20101113

    (20) Wang,J.;Fan,X.M.;Wu,D.Z.;Dai,J.;Liu,H.R.;Zhou,Z.W. Appl.Surf.Sci.2011,258(5),1797.doi:10.1016/j. apsusc.2011.10.048

    (21) Koffyberg,F.P.;Benko,F.A.J.Appl.Phys.1982,53(2),1173. doi:10.1063/1.330567

    (22) Wang,L.;Han,K.;Song,G.;Yang,X.;Tao,M.Characterization of Electro-Deposited CuO as a Low-Cost Material for High-Efficiency Solar Cells.In Photovoltaic Energy Conversion;the 2006 IEEE 4th World Conference,Singapore,2006;IEEE, 2006,1,130-133.

    (23) Rai,A.K.;Anh,L.T.;Gim,J.;Mathew,V.;Kang,J.;Paul,B.J.; Singh,N.K.;Song,J.;Kim,J.J.Power Sources 2013,244, 435.doi:10.1016/j.jpowsour.2012.11.112

    (24) Nezamzadeh-Ejhieh,A.;Karimi-Shamsabadi,M.Chem.Eng.J. 2013,228,631.doi:10.1016/j.cej.2013.05.035

    (25) Steinhauer,S.;Brunet,E.;Maier,T.;Mutinati,G.C.;Kock,A.; Freudenberg,O.;Gspan,C.;Grogger,W.;Neuhold,A.;Resel, R.Sensor Actuat.B-Chem.2013,187,50.doi:10.1016/j. snb.2012.09.034

    (26) Anandan,S.;Wen,X.G.;Yang,S.H.Mater.Chem.Phys.2005, 93(1),35.doi:10.1016/j.matchemphys.2005.02.002

    (27) Kim,J.;Kim,W.;Yong,K.J.Phys.Chem.C 2012,116(29), 15682.doi:10.1021/jp302129j

    (28) Kargar,A.;Jing,Y.;Kim,S.J.;Riley,C.T.;Pan,X.Q.;Wang, D.L.ACS Nano 2013,7(12),11112.doi:10.1021/nn404838n

    (29) Jung,S.;Yong,K.Chem.Commun.2011,47(9),2643.doi: 10.1039/c0cc04985a

    (30) Law,M.;Greene,L.E.;Johnson,J.C.;Saykally,R.;Yang,P.D. Nat.Mater.2005,4(6),455.doi:10.1038/nmat1387

    (31) Goldie,W.Plating 1964,51(11),1069.

    (32) Jung,J.;Myoung,J.;Lim,S.Thin Solid Films 2012,520(17), 5779.doi:10.1016/j.tsf.2012.04.052

    (33) Zhu,K.X.;Wang,W.J.;Chen,X.L.;Liu,J.;Song,B.;Jiang,L. B.;Guo,J.G.;Cheng,J.Y.J.Alloy.Compd.2011,509(24), 6942.doi:10.1016/j.jallcom.2011.04.007

    (34) Chen,Z.T.;Gao,L.J.Cryst.Growth 2006,293(2),522.doi: 10.1016/j.jcrysgro.2006.05.082

    (35) Lee,Y.L.;Zhang,Y.;Ng,S.L.G.;Kartawidja,F.C.;Wang,J. J.Am.Ceram.Soc.2009,92(9),1940.doi:10.1111/ jace.2009.92.issue-9

    (36) Wang,Z.L.Mater.Today 2004,7(6),26.doi:10.1016/S1369-7021(04)00286-X

    (37) Vayssieres,L.;Keis,K.;Lindquist,S.E.;Hagfeldt,A.J.Phys. Chem.B 2001,105(17),3350.doi:10.1021/jp010026s

    (38) Pankove,J.I.Optical Process in Semiconductor;Dover Publications:New York,2012.

    (39) Wang,B.L.;Zhao,J.J.;Jia,J.M.;Shi,D.N.;Wan,J.G.;Wang, G.H.Appl.Phys.Lett.2008,93(2),021918.doi:10.1063/ 1.2951617

    (40) Schmidt,T.M.;Miwa,R.H.Nanotechnology 2009,20(21), 215202.doi:10.1088/0957-4484/20/21/215202

    (41) Zheng,J.;Jiang,Z.Y.;Kuang,Q.;Xie,Z.X.;Huang,R.B.; Zheng,L.S.J.Solid State Chem.2009,182(1),115.doi: 10.1016/j.jssc.2008.10.009

    (42) Ai,Z.H.;Zhang,L.Z.;Lee,S.C.;Ho,W.K.J.Phys.Chem.C 2009,113(49),20896.doi:10.1021/jp9083647

    (43) Borgohain,K.;Murase,N.;Mahamuni,S.J.Appl.Phys.2002, 92(3),1292.doi:10.1063/1.1491020

    (44) Li,B.X.;Wang,Y.F.Superlattice Microst.2010,47(5),615. doi:10.1016/j.spmi.2010.02.005

    (45) Sakai,Y.;Ninomiya,S.;Hiraoka,K.Surf.Int.Anal.2012,44 (8),938.doi:10.1002/sia.4843

    (46) Capece,F.M.;Castro,V.D.;Furlani,C.;Mattogno,G. J.Electron.Spectrosc.1982,27(2),119.doi:10.1016/0368-2048(82)85058-5

    (47) Wan,Y.;Zhang,Y.D.;Wang,X.L.;Wang,Q.Electrochem. Commun.2013,36,99.doi:10.1016/j.elecom.2013.09.026

    (48) Xiang,F.M.;Wu,J.;Liu,L.;Huang,T.;Wang,Y.;Chen,C.; Peng,Y.;Jiang,C.X.;Zhou,Z.W.Polym.Adv.Technol.2011, 22(12),2533.doi:10.1002/pat.v22.12

    (49) Saravanan,R.;Karthikeyan,S.;Gupta,V.K.;Sekaran,G.; Narayanan,V.;Stephen,A.Mater.Sci.Eng.C 2013,33(1),91. doi:10.1016/j.msec.2012.08.011

    (50) Serpone,N.;Maruthamuthu,P.;Pichat,P.;Pelizzetti,E.; Hidaka,H.J.Photochem.Photobiol.A 1995,85(3),247.doi: 10.1016/1010-6030(94)03906-B

    (51) Wei,S.Q.;Chen,Y.Y.;Ma,Y.Y.;Shao,Z.C.J.Mol.Catal.AChem.2010,331(1),112.

    (52) Li,J.;Wang,J.;Huang,L.;Lu,G.D.Photochem.Photobiol. Sci.2010,9(1),39.doi:10.1039/b9pp00084d

    (53) Chandrinou,C.;Boukos,N.;Stogios,C.;Travlos,A. Microelectron.J.2009,40(2),296.doi:10.1016/j. mejo.2008.07.024

    (54) Greene,L.E.;Law,M.;Goldberger,J.;Kim,F.;Johnson,J.C.; Zhang,Y.F.;Saykally,R.J.;Yang,P.D.Angew.Chem.Int.Edit. 2003,42(26),3031.doi:10.1002/anie.200351461

    Syntheses of ZnO Nano-Arrays and Spike-Shaped CuO/ZnO Heterostructure

    LI Xiang-Qi1FAN Qing-Fei1LI Guang-Li1HUANG Yao-Han1GAO Zhao1FAN Xi-Mei1,*ZHANG Chao-Liang2ZHOU Zuo-Wan1
    (1Key Laboratory of Advanced Technologies of Materials,Ministry of Education,School of Materials Science and Engineering, Southwest Jiaotong University,Chengdu 610031,P.R.China;2State Key Laboratory of Oral Diseases, West China Hospital of Stomatology,Sichuan University,Chengdu 610031,P.R.China)

    Alow-temperature hydrothermal route was applied to fabricate ZnO nano-arrays on fluorinated tin oxide(FTO)-coated glass substrates.The effects of the molar ratios of the precursor concentrations on the ZnO nano-arrays were studied with respect to morphology,optical properties,and growth mechanism.The results show that the length reduced with the increased molar ratios of precursor concentrations,and the diameter first increased then decreased.In general,the change of optical band gap followed the same trend as that for the change in diameter.When the molar ratio of precursor concentrations is 5:5,the optical band gap is 3.2 eV, which is similar to the theoretical value at room temperature.We propose that the optimal molar ratio of zinc nitrate(Zn(NO3)2)to hexamethylenetetramine(HMT,C6H12N4)is 5:5 for the preparation of ZnO nano-arrays. Spike-shaped CuO/ZnO nano-arrays were also successfully synthesized using a two-step solution-system method.Field emission scanning electron microscope(FE-SEM)results show that there were a large number of copper oxide(CuO)nano-particles(NPs)deposited onto the ZnO nano-array surfaces to form spike-shaped structures.The covered CuO NPs exhibited improved photocatalytic properties over pure ZnO nano-arraysunder UV irradiation,and the possible photocatalytic mechanism of the CuO/ZnO nano-heterojunction was discussed in detail.?Editorial office ofActa Physico-Chimica Sinica

    ZnO nano-array;CuO/ZnO heterostructure;Hydrothermal method;Optical property; Molar ratio

    O645;O611

    10.3866/PKU.WHXB201502062www.whxb.pku.edu.cn

    Received:December 15,2014;Revised:February 4,2015;Published on Web:February 6,2015.

    ?Corresponding author.Email:xmfan@home.swjtu.edu.cn;Tel:+86-28-87602714;Fax:+86-28-87600454.

    The project was supported by the High-Tech Research and Development Program of China(2009AA03Z427).

    國家高技術(shù)研究發(fā)展計劃項目(2009AA03Z427)資助

    猜你喜歡
    前驅(qū)異質(zhì)摩爾
    戰(zhàn)場上的雕塑家——亨利摩爾
    河北畫報(2020年10期)2020-11-26 07:20:56
    西方摩爾研究概觀
    SiBNC陶瓷纖維前驅(qū)體的結(jié)構(gòu)及流變性能
    可溶性前驅(qū)體法制備ZrC粉末的研究進展
    隨機與異質(zhì)網(wǎng)絡(luò)共存的SIS傳染病模型的定性分析
    Ag2CO3/Ag2O異質(zhì)p-n結(jié)光催化劑的制備及其可見光光催化性能
    前驅(qū)體磷酸鐵中磷含量測定的不確定度評定
    MoS2/ZnO異質(zhì)結(jié)的光電特性
    物理實驗(2015年10期)2015-02-28 17:36:52
    溶膠-凝膠微波加熱合成PbZr0.52Ti0.48O3前驅(qū)體
    執(zhí)政者應(yīng)學習異質(zhì)傳播
    亚洲成av片中文字幕在线观看| 一边亲一边摸免费视频| 无遮挡黄片免费观看| 免费av中文字幕在线| 久久性视频一级片| 国产精品.久久久| 夫妻性生交免费视频一级片| 国产淫语在线视频| 免费在线观看视频国产中文字幕亚洲 | 中文乱码字字幕精品一区二区三区| 精品福利观看| 涩涩av久久男人的天堂| 国产一卡二卡三卡精品| 欧美激情极品国产一区二区三区| 人妻 亚洲 视频| 欧美av亚洲av综合av国产av| 亚洲伊人色综图| 嫩草影视91久久| 亚洲欧美精品综合一区二区三区| a 毛片基地| 亚洲精品成人av观看孕妇| 在线 av 中文字幕| 又黄又粗又硬又大视频| 久久久久久久久免费视频了| 色综合欧美亚洲国产小说| 免费av中文字幕在线| 啦啦啦在线免费观看视频4| 黄色怎么调成土黄色| 99国产精品99久久久久| 国产高清视频在线播放一区 | 亚洲成色77777| 久久99一区二区三区| 黄频高清免费视频| 99精国产麻豆久久婷婷| 免费在线观看完整版高清| 一个人免费看片子| 久久久国产欧美日韩av| 国产亚洲av片在线观看秒播厂| 亚洲精品国产区一区二| 欧美日韩精品网址| 欧美日韩黄片免| 嫩草影视91久久| 久久毛片免费看一区二区三区| 91av网站免费观看| 一卡2卡三卡四卡精品乱码亚洲| 不卡av一区二区三区| 午夜福利在线在线| 99热只有精品国产| 哪里可以看免费的av片| 免费高清在线观看日韩| 久久中文字幕一级| www.www免费av| 欧美日韩乱码在线| 亚洲男人天堂网一区| 亚洲专区国产一区二区| 久久香蕉精品热| 神马国产精品三级电影在线观看 | 久久人人精品亚洲av| 露出奶头的视频| 午夜老司机福利片| 好看av亚洲va欧美ⅴa在| 精品人妻1区二区| or卡值多少钱| 97超级碰碰碰精品色视频在线观看| 精品国产国语对白av| 欧美又色又爽又黄视频| 一夜夜www| 午夜福利成人在线免费观看| 少妇 在线观看| 色综合亚洲欧美另类图片| 中亚洲国语对白在线视频| 国产精品 欧美亚洲| 亚洲欧美精品综合一区二区三区| 国产精品二区激情视频| 麻豆国产av国片精品| 怎么达到女性高潮| av中文乱码字幕在线| 黑丝袜美女国产一区| 国产97色在线日韩免费| 欧美国产精品va在线观看不卡| 悠悠久久av| 亚洲美女黄片视频| 99久久综合精品五月天人人| 亚洲国产中文字幕在线视频| 日韩精品中文字幕看吧| 伊人久久大香线蕉亚洲五| 国产一卡二卡三卡精品| 女生性感内裤真人,穿戴方法视频| cao死你这个sao货| 中国美女看黄片| 可以免费在线观看a视频的电影网站| 免费观看精品视频网站| 国产精品98久久久久久宅男小说| 午夜福利18| 波多野结衣高清无吗| 波多野结衣高清作品| 色播亚洲综合网| 操出白浆在线播放| 欧美一级毛片孕妇| 国产高清videossex| 中文资源天堂在线| 999久久久精品免费观看国产| 精品久久久久久,| 深夜精品福利| 亚洲精品美女久久av网站| 色综合婷婷激情| 日日摸夜夜添夜夜添小说| 一级毛片高清免费大全| 黑人操中国人逼视频| 免费在线观看视频国产中文字幕亚洲| 亚洲精品一卡2卡三卡4卡5卡| 每晚都被弄得嗷嗷叫到高潮| 又黄又爽又免费观看的视频| 一二三四在线观看免费中文在| 在线十欧美十亚洲十日本专区| 成人18禁在线播放| 9191精品国产免费久久| 精品少妇一区二区三区视频日本电影| 国产午夜福利久久久久久| 老司机靠b影院| 亚洲熟妇中文字幕五十中出| 国产精品久久视频播放| 欧美一级a爱片免费观看看 | 中文亚洲av片在线观看爽| 亚洲五月色婷婷综合| 在线播放国产精品三级| 黄频高清免费视频| 一本一本综合久久| 欧美日韩亚洲国产一区二区在线观看| 亚洲va日本ⅴa欧美va伊人久久| av天堂在线播放| 国产精品一区二区三区四区久久 | 国产熟女午夜一区二区三区| 女人被狂操c到高潮| 黄色a级毛片大全视频| 国产精品国产高清国产av| 久久欧美精品欧美久久欧美| 亚洲成人国产一区在线观看| 亚洲精品中文字幕一二三四区| 91麻豆av在线| 中文亚洲av片在线观看爽| 19禁男女啪啪无遮挡网站| 亚洲人成伊人成综合网2020| 在线观看免费视频日本深夜| 亚洲九九香蕉| 日本在线视频免费播放| 亚洲专区中文字幕在线| 亚洲精华国产精华精| 黄色a级毛片大全视频| 国产精品影院久久| 欧美成人一区二区免费高清观看 | svipshipincom国产片| 在线观看www视频免费| 久久久国产精品麻豆| 免费看日本二区| 国产精品免费视频内射| 午夜福利免费观看在线| 丰满人妻熟妇乱又伦精品不卡| 悠悠久久av| 免费看美女性在线毛片视频| 午夜免费鲁丝| 久久久国产欧美日韩av| 欧美色视频一区免费| 欧美乱码精品一区二区三区| 亚洲第一青青草原| 99久久精品国产亚洲精品| 亚洲av五月六月丁香网| 精品久久久久久久毛片微露脸| 欧美一级毛片孕妇| 日本免费一区二区三区高清不卡| а√天堂www在线а√下载| 级片在线观看| 动漫黄色视频在线观看| 免费在线观看完整版高清| 亚洲无线在线观看| 国内少妇人妻偷人精品xxx网站 | 欧美久久黑人一区二区| 女同久久另类99精品国产91| 一进一出好大好爽视频| 18美女黄网站色大片免费观看| 久久久久国产一级毛片高清牌| 丁香六月欧美| 日韩精品中文字幕看吧| 欧美+亚洲+日韩+国产| www.999成人在线观看| 免费看十八禁软件| 成人亚洲精品av一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 法律面前人人平等表现在哪些方面| 在线观看www视频免费| 国产精品av久久久久免费| 国产高清videossex| 成人国产一区最新在线观看| 母亲3免费完整高清在线观看| 精品国内亚洲2022精品成人| 亚洲精品久久成人aⅴ小说| 中文字幕人妻熟女乱码| 国产亚洲av高清不卡| 久久久久久久午夜电影| 久久热在线av| 久久久国产欧美日韩av| 国产精品美女特级片免费视频播放器 | 欧美丝袜亚洲另类 | 757午夜福利合集在线观看| 在线免费观看的www视频| aaaaa片日本免费| 在线观看66精品国产| videosex国产| 欧美国产日韩亚洲一区| av天堂在线播放| 18禁裸乳无遮挡免费网站照片 | 亚洲av成人av| 首页视频小说图片口味搜索| 国产高清视频在线播放一区| 嫁个100分男人电影在线观看| 国产亚洲精品av在线| 1024香蕉在线观看| 精品午夜福利视频在线观看一区| 此物有八面人人有两片| 1024视频免费在线观看| 9191精品国产免费久久| 国产黄a三级三级三级人| 精品日产1卡2卡| 午夜视频精品福利| 久久性视频一级片| 色老头精品视频在线观看| 一二三四社区在线视频社区8| 人妻久久中文字幕网| 悠悠久久av| 夜夜爽天天搞| 99久久99久久久精品蜜桃| 免费av毛片视频| 老司机午夜十八禁免费视频| ponron亚洲| 母亲3免费完整高清在线观看| 在线国产一区二区在线| 长腿黑丝高跟| 欧美中文综合在线视频| 美女免费视频网站| 老司机午夜十八禁免费视频| 国产爱豆传媒在线观看 | 亚洲第一电影网av| 一级a爱片免费观看的视频| 亚洲人成电影免费在线| 国产精品99久久99久久久不卡| 亚洲狠狠婷婷综合久久图片| 中文字幕久久专区| 久热这里只有精品99| 亚洲成a人片在线一区二区| 日韩中文字幕欧美一区二区| 搡老妇女老女人老熟妇| 91在线观看av| 久久久水蜜桃国产精品网| 欧美中文综合在线视频| 婷婷精品国产亚洲av在线| 青草久久国产| 777久久人妻少妇嫩草av网站| 国产精品精品国产色婷婷| 两个人看的免费小视频| 欧美午夜高清在线| 国产区一区二久久| 97碰自拍视频| 亚洲真实伦在线观看| 一边摸一边抽搐一进一小说| 国产精品国产高清国产av| 精品久久久久久久毛片微露脸| 两个人看的免费小视频| 亚洲激情在线av| 成人国语在线视频| 人人妻人人澡欧美一区二区| 别揉我奶头~嗯~啊~动态视频| 午夜激情av网站| 成在线人永久免费视频| 波多野结衣巨乳人妻| 宅男免费午夜| 午夜久久久在线观看| 国产精品影院久久| 三级毛片av免费| 999久久久精品免费观看国产| 一个人观看的视频www高清免费观看 | 男女视频在线观看网站免费 | 国产视频一区二区在线看| 美女午夜性视频免费| 亚洲av五月六月丁香网| 男人舔女人下体高潮全视频| 两个人视频免费观看高清| 亚洲欧洲精品一区二区精品久久久| 成人特级黄色片久久久久久久| 岛国视频午夜一区免费看| 久久精品国产亚洲av高清一级| 国产亚洲欧美精品永久| 少妇 在线观看| 在线天堂中文资源库| av片东京热男人的天堂| 国语自产精品视频在线第100页| 久久中文看片网| 男人的好看免费观看在线视频 | 色尼玛亚洲综合影院| 99久久久亚洲精品蜜臀av| 少妇裸体淫交视频免费看高清 | 免费在线观看黄色视频的| 国产伦在线观看视频一区| 黄色女人牲交| bbb黄色大片| 成人国产综合亚洲| 亚洲av成人av| 一级作爱视频免费观看| 精品国产超薄肉色丝袜足j| 夜夜爽天天搞| 色老头精品视频在线观看| 丝袜美腿诱惑在线| av电影中文网址| 久久久久久大精品| 一区二区三区国产精品乱码| 亚洲av日韩精品久久久久久密| 日本一本二区三区精品| 欧美黄色片欧美黄色片| 久久午夜综合久久蜜桃| 国产91精品成人一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 午夜福利欧美成人| 精品久久久久久成人av| 久久精品夜夜夜夜夜久久蜜豆 | 在线播放国产精品三级| 国产精品久久久人人做人人爽| 成人亚洲精品av一区二区| 亚洲国产毛片av蜜桃av| e午夜精品久久久久久久| www.自偷自拍.com| 非洲黑人性xxxx精品又粗又长| 亚洲精品中文字幕在线视频| 两性夫妻黄色片| 国产亚洲精品久久久久久毛片| 亚洲欧美一区二区三区黑人| 不卡av一区二区三区| 亚洲九九香蕉| 一本综合久久免费| 搡老妇女老女人老熟妇| 成人永久免费在线观看视频| 制服丝袜大香蕉在线| 女人爽到高潮嗷嗷叫在线视频| 久久久久久久午夜电影| 亚洲av片天天在线观看| 免费高清在线观看日韩| 亚洲午夜理论影院| 香蕉丝袜av| 波多野结衣巨乳人妻| 国产成年人精品一区二区| 成人18禁高潮啪啪吃奶动态图| 国产免费av片在线观看野外av| 欧美中文综合在线视频| 他把我摸到了高潮在线观看| xxx96com| 亚洲久久久国产精品| xxx96com| www.999成人在线观看| 精品一区二区三区av网在线观看| 99精品欧美一区二区三区四区| 亚洲天堂国产精品一区在线| 国产成年人精品一区二区| 黑人欧美特级aaaaaa片| 哪里可以看免费的av片| 黄色毛片三级朝国网站| 国产精品爽爽va在线观看网站 | 免费在线观看完整版高清| 成人18禁高潮啪啪吃奶动态图| 亚洲成人国产一区在线观看| 91老司机精品| 亚洲熟妇中文字幕五十中出| 成人一区二区视频在线观看| av有码第一页| 人人妻人人看人人澡| 精品久久久久久久毛片微露脸| 在线国产一区二区在线| 欧美激情高清一区二区三区| 少妇熟女aⅴ在线视频| 欧美日韩乱码在线| 欧美不卡视频在线免费观看 | 日本三级黄在线观看| 国内揄拍国产精品人妻在线 | 久久国产乱子伦精品免费另类| 两人在一起打扑克的视频| 国产亚洲精品第一综合不卡| 精品欧美一区二区三区在线| 日韩欧美一区视频在线观看| 中文字幕最新亚洲高清| 国产精品一区二区三区四区久久 | 久久天堂一区二区三区四区| 性欧美人与动物交配| 自线自在国产av| 亚洲五月婷婷丁香| 亚洲色图av天堂| 久久久久久大精品| 91大片在线观看| 国产亚洲精品综合一区在线观看 | 女人高潮潮喷娇喘18禁视频| 欧美在线一区亚洲| 国产1区2区3区精品| 91麻豆精品激情在线观看国产| 久久久久久亚洲精品国产蜜桃av| 不卡一级毛片| 两个人视频免费观看高清| 男男h啪啪无遮挡| 日韩欧美三级三区| 亚洲av电影不卡..在线观看| 久久午夜综合久久蜜桃| 人人妻人人看人人澡| 国产成人系列免费观看| 成人手机av| 国产激情偷乱视频一区二区| 啦啦啦免费观看视频1| 久久这里只有精品19| 婷婷亚洲欧美| 丝袜美腿诱惑在线| 精品国内亚洲2022精品成人| 18禁黄网站禁片免费观看直播| 国产欧美日韩一区二区精品| 欧美日韩瑟瑟在线播放| 国产一卡二卡三卡精品| 很黄的视频免费| 国产亚洲精品久久久久久毛片| 黄色a级毛片大全视频| 亚洲成人精品中文字幕电影| 桃红色精品国产亚洲av| 色婷婷久久久亚洲欧美| 亚洲狠狠婷婷综合久久图片| 啦啦啦韩国在线观看视频| 久热这里只有精品99| 成年女人毛片免费观看观看9| 男人舔女人的私密视频| 国产亚洲av嫩草精品影院| 激情在线观看视频在线高清| 露出奶头的视频| 啦啦啦韩国在线观看视频| 精品乱码久久久久久99久播| svipshipincom国产片| 亚洲第一av免费看| 午夜老司机福利片| 悠悠久久av| 黄片大片在线免费观看| 国产精品国产高清国产av| 欧美性猛交╳xxx乱大交人| 亚洲久久久国产精品| 首页视频小说图片口味搜索| 欧美一区二区精品小视频在线| 亚洲美女黄片视频| 成人午夜高清在线视频 | 亚洲一区二区三区色噜噜| 中文字幕另类日韩欧美亚洲嫩草| 国产精品久久电影中文字幕| 久久人人精品亚洲av| 中文字幕精品亚洲无线码一区 | 亚洲无线在线观看| 九色国产91popny在线| 日韩欧美一区二区三区在线观看| 亚洲欧美精品综合久久99| 波多野结衣高清无吗| 麻豆国产av国片精品| 欧美三级亚洲精品| 国产成人精品久久二区二区91| 国产单亲对白刺激| 91成人精品电影| 可以在线观看的亚洲视频| 国产99白浆流出| 亚洲精华国产精华精| 欧美 亚洲 国产 日韩一| 美女高潮到喷水免费观看| 亚洲在线自拍视频| 久久中文看片网| 级片在线观看| 国产三级在线视频| 久久久精品国产亚洲av高清涩受| 国内久久婷婷六月综合欲色啪| 老熟妇乱子伦视频在线观看| 极品教师在线免费播放| 高清在线国产一区| av在线播放免费不卡| www.精华液| 久久久国产欧美日韩av| 亚洲精品久久国产高清桃花| 老司机深夜福利视频在线观看| 精品久久久久久久毛片微露脸| 国产精品电影一区二区三区| 在线免费观看的www视频| 久久伊人香网站| 男女做爰动态图高潮gif福利片| 可以免费在线观看a视频的电影网站| 国产精品影院久久| 99久久国产精品久久久| 色哟哟哟哟哟哟| 一本一本综合久久| 久久香蕉精品热| 人人妻人人澡人人看| 美女午夜性视频免费| 精品久久久久久久久久免费视频| 极品教师在线免费播放| 国产亚洲av高清不卡| 国产成人av教育| 国产精品香港三级国产av潘金莲| 免费在线观看日本一区| 狠狠狠狠99中文字幕| 国产午夜福利久久久久久| 亚洲成a人片在线一区二区| 国产不卡一卡二| 黑人欧美特级aaaaaa片| 香蕉丝袜av| 午夜两性在线视频| 欧美色欧美亚洲另类二区| 亚洲国产看品久久| 国产精品电影一区二区三区| 99国产精品一区二区蜜桃av| 国产高清视频在线播放一区| 亚洲av电影不卡..在线观看| 啦啦啦 在线观看视频| 又黄又粗又硬又大视频| 两性夫妻黄色片| 无遮挡黄片免费观看| 久久国产精品人妻蜜桃| 久久人妻福利社区极品人妻图片| 午夜两性在线视频| 国产区一区二久久| 免费在线观看完整版高清| 久久久久免费精品人妻一区二区 | 中文在线观看免费www的网站 | 国产区一区二久久| 黄片小视频在线播放| 色播在线永久视频| 久久久久国内视频| 国产精品久久久久久亚洲av鲁大| 正在播放国产对白刺激| 极品教师在线免费播放| 夜夜看夜夜爽夜夜摸| 国产97色在线日韩免费| 宅男免费午夜| 欧美乱色亚洲激情| 成人手机av| 村上凉子中文字幕在线| 国产精品 欧美亚洲| 在线免费观看的www视频| 脱女人内裤的视频| 在线观看舔阴道视频| 国产精品久久久久久精品电影 | 午夜视频精品福利| 99精品久久久久人妻精品| 国产成人欧美| 给我免费播放毛片高清在线观看| 亚洲 欧美 日韩 在线 免费| 国产成人影院久久av| 亚洲熟女毛片儿| 好男人在线观看高清免费视频 | 男人的好看免费观看在线视频 | 老熟妇仑乱视频hdxx| 国产精品 国内视频| 欧美三级亚洲精品| 国产成人一区二区三区免费视频网站| 2021天堂中文幕一二区在线观 | 欧美激情 高清一区二区三区| 男男h啪啪无遮挡| 欧美日韩乱码在线| 国产精品1区2区在线观看.| 亚洲人成电影免费在线| 黄色女人牲交| 国产亚洲精品一区二区www| www.www免费av| 亚洲自拍偷在线| 亚洲在线自拍视频| 日本免费a在线| 亚洲精品国产区一区二| 校园春色视频在线观看| 亚洲无线在线观看| 亚洲熟女毛片儿| 精品久久蜜臀av无| 亚洲中文av在线| 变态另类成人亚洲欧美熟女| 精品熟女少妇八av免费久了| 婷婷六月久久综合丁香| 女人爽到高潮嗷嗷叫在线视频| tocl精华| 一区二区日韩欧美中文字幕| 亚洲av成人一区二区三| 一本久久中文字幕| 欧美在线黄色| 人人妻人人看人人澡| 国产精华一区二区三区| 12—13女人毛片做爰片一| 亚洲人成伊人成综合网2020| 亚洲成人国产一区在线观看| 亚洲最大成人中文| 美女 人体艺术 gogo| 国产私拍福利视频在线观看| 欧美乱色亚洲激情| 久99久视频精品免费| 亚洲激情在线av| 不卡av一区二区三区| 在线观看日韩欧美| 国产免费av片在线观看野外av| 久久久久久久久中文| 久久九九热精品免费| 午夜a级毛片| 91大片在线观看| 欧美成人性av电影在线观看| 18禁观看日本| 91大片在线观看| 国产成人精品久久二区二区91| 欧美+亚洲+日韩+国产| 黑人欧美特级aaaaaa片| 亚洲国产精品成人综合色| 人人妻,人人澡人人爽秒播| 国产在线精品亚洲第一网站| cao死你这个sao货| 亚洲精品一区av在线观看| 精品国内亚洲2022精品成人| 中国美女看黄片| 久久国产精品男人的天堂亚洲| 日日摸夜夜添夜夜添小说|