朱 煒,劉 斌,司 倩,馬濤濤,蔡信彬,樊增祿
(1.西安工程大學(xué) 環(huán)境與化學(xué)工程學(xué)院,陜西 西安710048;2.西安工程大學(xué) 紡織與材料學(xué)院,陜西 西安710048)
無水乙醇作為一種性能優(yōu)良的有機(jī)溶劑,被廣泛用于化妝品、制藥、電子航天工業(yè)等行業(yè).有些國家已將無水乙醇與汽油混合而成的汽油醇作為動(dòng)力燃料[1-4].但當(dāng)乙醇濃度達(dá)到95.57%時(shí),乙醇與水將形成共沸物導(dǎo)致普通精餾無法繼續(xù)進(jìn)行分離.一直以來,乙醇-水物系的分離都是化工領(lǐng)域的一個(gè)研究熱點(diǎn).傳統(tǒng)的共沸精餾和萃取精餾因在分離過程中耗能大,會(huì)使用對(duì)人身體有害的第三組分,所以這樣技術(shù)必將逐漸被淘汰,進(jìn)而被清潔的新工藝所替代,如加離子液體萃取精餾,膜技術(shù)和吸附法等.
共沸精餾就是向共沸物中添加第三種組分,與欲分離組分形成二元最低恒沸物或三元最低恒沸物,恒沸物的沸點(diǎn)較原共沸物要低很多,從而使溶液變成“恒沸物-純組分”的蒸餾.加入的第三種組分稱為夾帶劑或恒沸劑.
夾帶劑是共沸精餾的核心,理想的夾帶劑應(yīng)滿足下述要求:①與欲分離組分形成恒沸物,其沸點(diǎn)與另一組分的差別至少10℃;②盡量與組分中含量少的組分形成恒沸物,且夾帶的量盡可能高;③恒沸物冷凝后可分為輕、重兩相,使夾帶劑易于回收;④滿足工業(yè)要求,如來源廣、價(jià)格低、熱穩(wěn)定、無腐蝕、無毒等.
可用作乙醇-水分離的共沸劑有:苯,正戊烷[5],二乙醚[6],環(huán)己烷[7],正己烷[8],正庚烷[9],異辛烷,丙酮[10],聚合物[11]等.其中,苯和環(huán)己烷是使用最多的兩種共沸劑.
萃取精餾也是向共沸物中加入第三組分,通過第三組分與原溶液中各組分的相互作用,改變了原組分間的相對(duì)揮發(fā)度,從而打破共沸物系的共沸點(diǎn).所加第三種組分稱為萃取劑.
整個(gè)萃取精餾的關(guān)鍵是萃取劑的選擇.根據(jù)所加萃取劑的不同萃取精餾可分為普通萃取精餾、溶鹽萃取精餾、復(fù)合萃取精餾和加離子液體萃取精餾.
1.2.1 普通萃取精餾 普通萃取精餾的萃取劑是有機(jī)溶劑,其需滿足的條件有:選擇性強(qiáng),溶解度大,沸點(diǎn)適當(dāng),滿足工業(yè)要求(同夾帶劑)等.可用于乙醇-水分離的有機(jī)溶劑萃取劑有:乙二醇,二乙醚,甲苯和呋喃等.
1.2.2 溶鹽萃取精餾 溶鹽萃取精餾用鹽溶液作萃取劑,利用溶鹽的“鹽效應(yīng)”打破組分間的共沸點(diǎn)來實(shí)現(xiàn)精餾.溶鹽萃取精餾的最大優(yōu)點(diǎn)是鹽對(duì)組分間相對(duì)揮發(fā)度的改變程度大,但固體鹽的結(jié)晶會(huì)引起設(shè)備堵塞、腐蝕問題.
可用 于 溶 鹽 萃 取 精 餾 的 鹽 有:CaCl2[12],CoCl2[13],CuCl2,NiCl2[14],SrBr2[15],NaAc/KAc[16],Ca(NO3)2,NaI/KI[17],葡萄糖[18],HgCl2/LiCl[19]等.其中 HgCl2和 LiCl是上述鹽中最有效的.
1.2.3 復(fù)合萃取精餾 復(fù)合萃取精餾采用將鹽與有機(jī)溶劑形成混合物的方式提取萃取劑,如乙二醇+CaCl2[20]等.它是溶鹽萃取精餾和普通萃取精餾的結(jié)合,并綜合了各自的優(yōu)點(diǎn).與普通萃取精餾相比,復(fù)合萃取精餾能減少溶劑循環(huán)量,減少能耗和設(shè)備投資.
1.2.4 加離子液體萃取精餾 由于傳統(tǒng)有機(jī)溶劑萃取劑易揮發(fā),再生能耗大,固體鹽會(huì)腐蝕、堵塞設(shè)備.因此選擇或開發(fā)“綠色”萃取劑將勢(shì)在必行.離子液體具有低蒸汽壓、無毒、無腐蝕性等獨(dú)特優(yōu)點(diǎn),因此有望作為“綠色“萃取劑而取代傳統(tǒng)的有機(jī)溶劑和固體鹽類[21-23].可作為萃取劑用于乙醇-水分離過程的離子液體如表1所示[24-34].
表1 可用于乙醇-水分離的離子液體Table 1 The ionic liquid used for separation of ethanol and water
膜分離技術(shù)是近年發(fā)展起來的一項(xiàng)高新技術(shù),它以膜為分離介質(zhì),并在膜的兩側(cè)施加推動(dòng)力(如壓力差、電位差等),使預(yù)分離組分中的某一組分優(yōu)先通過膜,從而達(dá)到分離的目的.目前應(yīng)用于乙醇-水體系分離的膜分離技術(shù)主要有兩種,分別是滲透汽化和膜接觸器.
滲透汽化是液體混合物在膜下側(cè)負(fù)壓的作用下,利用膜對(duì)被分離混合物中某種組分有優(yōu)先透過的特點(diǎn),使該組分滲透通過膜,在膜的下側(cè)汽化除去,實(shí)現(xiàn)分離的膜技術(shù).蒸汽滲透與滲透汽化原理相似,唯一區(qū)別就是蒸汽滲透為氣相進(jìn)料,相變過程通常發(fā)生在進(jìn)入裝置之前,而在該過程中為蒸汽相滲透通過膜.表征滲透汽化的兩個(gè)基本參數(shù)是滲透通量和分離因子.
滲透汽化的關(guān)鍵是選用合適的膜.用于醇-水滲透汽化分離的膜主要分為親水性膜(優(yōu)先透過水,適宜分離低水量的醇水溶液)和親醇性膜(優(yōu)先透過醇,適宜分離低醇量的醇水溶液)兩類.但不管是親水性膜還是親醇性膜都很難同時(shí)滿足滲透通量和分離因子兩個(gè)要求.因此,除對(duì)原有兩種膜進(jìn)行改性外,還出現(xiàn)了共混膜,如聚乙烯醇-殼聚糖共混膜和硅橡膠-殼聚糖共混膜.可用于乙醇水分離的滲透汽化膜有:磺化聚砜膜[35],光化聚合復(fù)合膜[36],芳香酰胺膜[37],鋰化聚砜膜[38],殼聚糖復(fù)合膜[39]等.
滲透汽化透水膜最早實(shí)現(xiàn)工業(yè)化.GFT,Kalsp,Lurgi等公司已經(jīng)建立起采用平板膜的工業(yè)化滲透汽化或蒸汽滲透工藝工廠[40].但是這些裝置的尺寸很大,操作不便,因而效率不高.Tsuyumoto[40]等在實(shí)驗(yàn)工廠進(jìn)行了采用中空纖維膜組件生產(chǎn)無水乙醇的滲透汽化實(shí)驗(yàn):用6m2膜處理流率為100kg/h的含水量為6%(質(zhì)量分?jǐn)?shù))的乙醇水溶液,持續(xù)兩個(gè)月,乙醇損失極低.Mulder和Smolder[41-42]對(duì)滲透汽化法分離乙醇-水的機(jī)理進(jìn)行了研究.Nguyen[43]等使用聚丙烯腈/聚乙烯吡咯烷酮共混膜進(jìn)行了滲透汽化分離實(shí)驗(yàn).Wenzlaff[44]等表征了三醋酸纖維素和苯乙烯-丁二烯膜交聯(lián)化的性能.Sander和Soukup[45]報(bào)道了他們?cè)O(shè)計(jì)和運(yùn)行的乙醇脫水的滲透汽化工廠.
唐俏瑜[46]等將聚二甲基硅氧烷/聚偏氟乙烯復(fù)合膜應(yīng)用于乙醇-水的滲透汽化分離,考察了膜交聯(lián)溫度、操作溫度、物料濃度和膜下側(cè)壓力對(duì)分離性能的影響,最終分離因子為8.23,滲透通量為281.36g/(m2·h).曾小雅[47]等采用BPPO(溴代聚苯醚)非對(duì)稱膜考察了添加劑含量、BPPO濃度、進(jìn)料組成和溫度對(duì)乙醇-水滲透汽化分離性能的影響.結(jié)果當(dāng)進(jìn)料溫度為60℃,乙醇含量為50%,添加劑濃度為9.9%,BPPO含量為10%時(shí),滲透通量為236.4g/m2·h,分離因子達(dá)16.74.紀(jì)樹蘭[48]等研究了聚苯醚含量、進(jìn)料乙醇含量、進(jìn)料溫度對(duì)聚苯醚/聚砜復(fù)合膜分離乙醇水的滲透汽化性能的影響,結(jié)果當(dāng)復(fù)合膜中聚苯醚含量為14%,進(jìn)料溫度為60℃且含乙醇10%時(shí),滲透通量為157.2g/m2·h,乙醇的選擇系數(shù)為15.6.Xia[49]等利用聚乙烯醇/陶瓷復(fù)合膜滲透汽化工藝來分離乙酸乙酯/乙醇/水三元共沸物系,考察了操作溫度、進(jìn)料水含量和流率對(duì)于分離性能的影響,并用Flory-Huggins理論研究膜與滲透劑間的相互作用,用UNIFAC模型描述膜中滲透劑的活度.牛洪金[50]等使用PDMS(聚二甲基硅氧烷)-PPO(聚苯醚)嵌段共聚物非對(duì)稱滲透汽化膜滲透汽化來分離乙醇-水,分別研究了鑄膜液濃度、膜后側(cè)壓、進(jìn)料流速對(duì)分離性能的影響.結(jié)果當(dāng)嵌段共聚物質(zhì)量分?jǐn)?shù)為11%,進(jìn)料流速為0.267L/min,乙醇含量為5%,溫度為60℃,膜后側(cè)壓為10kPa時(shí),滲透通量達(dá)850.7g/m2·h,乙醇的選擇系數(shù)為8.78.
膜接觸器是以多孔的疏水膜作為傳質(zhì)接觸界面,并與吸收、萃取等單元操作相耦合的一種膜分離技術(shù).膜接觸器能提供比傳統(tǒng)的接觸設(shè)備大500倍的接觸面積(液—液接觸),兩流體的流速也可獨(dú)立控制.
Cussler[51-52]提出一種可用于精餾操作的膜接觸器,該膜接觸器采用非選擇性的微孔聚乙醚(內(nèi)涂聚二甲基硅氧烷)中空纖維膜代替?zhèn)鹘y(tǒng)的精餾填料,并將之應(yīng)用于異丙醇-水體系的分離.2007年,林蘭[53]開發(fā)了非選擇性的微孔聚醚砜膜(內(nèi)有甲基硅氧烷涂層)的膜接觸器,并將其用于乙醇-水體系的分離.研究結(jié)果表明,將新型中空纖維膜接觸器作為精餾填料,在操作彈性、產(chǎn)能以及分離效率等方面均具有明顯優(yōu)勢(shì).2011年,李娜[54]將經(jīng)PDMS(聚二甲基硅氧烷)涂覆改性的PVDF(聚偏氟乙烯)復(fù)合膜組件作為結(jié)構(gòu)填料用于乙醇-水體系分離.結(jié)果表明,膜的孔隙率為28.7%,溶脹度為84%,精餾效率提高了59%,液相總傳質(zhì)系數(shù)為5.815×10-3cm/s.
由于固體存在表面力,當(dāng)流體與固體接觸時(shí),流體中的某些物質(zhì)有附著于固體表面的趨勢(shì),這種現(xiàn)象稱為吸附.被吸附的流體叫吸附質(zhì),固體叫吸附劑.吸附的逆過程稱為脫附.吸附法就是利用吸附劑對(duì)流體混合物中不同組分的選擇性吸附實(shí)現(xiàn)分離的方法.
吸附劑的性能對(duì)吸附分離的技術(shù)經(jīng)濟(jì)指標(biāo)起著決定性作用.工業(yè)吸附劑的要求有:表面積大,選擇性高,機(jī)械強(qiáng)度好,化學(xué)穩(wěn)定性和熱穩(wěn)定性好,廉價(jià)易得等.可用于乙醇-水分離的吸附劑主要有分子篩和生物質(zhì)兩大類.
分子篩是具有均勻微孔結(jié)構(gòu)的硅鋁酸鹽化合物.分子篩能把比其直徑小的分子吸附到孔腔內(nèi)部,并對(duì)極性分子和不飽和分子進(jìn)行優(yōu)先吸附.對(duì)于乙醇-水物系而言,水和乙醇的臨界分子直徑分別是2.7A和4.7A.因此,水分子可進(jìn)入3A分子篩內(nèi)部,加之分子篩對(duì)強(qiáng)極性水的吸引作用被吸附在分子篩內(nèi)部,而乙醇分子則被阻擋在外,從而實(shí)驗(yàn)水與乙醇的吸附分離.
Ishikawa[55]等最先報(bào)道用沸石分子篩分離乙醇/水的研究,結(jié)果表明,在352.15~362.15K下,分離因子達(dá)到1 633,滲透通量為0.1kg/m2·h.工業(yè)規(guī)模的乙醇脫水中,鉀和鈉沸石也被用到[56].Carmo[57]將3A沸石作為吸收劑用于乙醇-水的變壓吸附工藝中,考察了進(jìn)料量、吸附壓力和溫度、解吸壓力和溫度對(duì)于濃縮效果、回收率、產(chǎn)率及總循環(huán)時(shí)間的影響,并將實(shí)驗(yàn)結(jié)果用經(jīng)驗(yàn)方程進(jìn)行了擬合,最后得到了該工藝的最佳操作條件.李浩[58]采用分子篩吸附法制取無水乙醇,得到了水在3A分子篩上的吸附等溫曲線模型,并對(duì)吸附過程、脫附過程的工藝條件,以及整個(gè)工藝流程進(jìn)行了探討.范榮玉[59]研究了3A,4A,5A分子篩對(duì)乙醇中微量水的吸附性能,結(jié)果表明4A分子篩的吸附效果最好,由此測(cè)定了不同溫度下乙醇中微量水在4A分子篩上的靜態(tài)吸附平衡數(shù)據(jù),并用Langmuir和Freundlic兩個(gè)吸附等溫式分別進(jìn)行擬合,還采用固定床測(cè)定了不同粒徑、初始濃度、床層高度,流量下的動(dòng)態(tài)穿透曲線.
生物質(zhì)吸附是將有機(jī)生物質(zhì)作為吸附劑.生物質(zhì)吸附劑除了擁有同分子篩一樣的低吸附能耗以外,還有很多其自身特有的優(yōu)勢(shì).比如生物質(zhì)吸附劑的成本比較低廉(大量存在于自然界、廢棄材料或農(nóng)作物中),分離效果較好且再生能耗要小于分子篩.有時(shí)當(dāng)所用吸附劑與生產(chǎn)燃料乙醇的原料相同時(shí),可不需再生處理.
為使生物質(zhì)吸附劑的比表面積更大,吸附效果更好,就必須對(duì)其進(jìn)行改性.改性的方法主要有3種[60]:物理法、化學(xué)法和生物法.物理法主要是機(jī)械研磨、濕熱處理等;化學(xué)法可分為兩種:一種是使大分子變?yōu)樾》肿樱缢崴?,另一種是使其變?yōu)榇蠓肿樱缃宦?lián)等;生物法則是利用酶的改性水解作用.由于物理方法改性效果不佳,浪費(fèi)較大,目前研究主要側(cè)重于酸水解和酶水解.與酸水解相比,酶水解工藝有著非常明顯的優(yōu)勢(shì):第一,酶水解可破壞淀粉的中心區(qū)域,形成較深的明顯孔洞;第二,酶水解后的廢料處理成本低且可再利用.所以,目前生物質(zhì)吸附劑的改性主要采用酶水解法.
Ladisch[61]等分別研究了淀粉(玉米和馬鈴薯),木聚糖,純纖維素和玉米渣作為氣相分離乙醇-水混合物吸附劑的吸附效果,得到吸水能力的順序?yàn)橛衩椎矸郏居衩自灸揪厶牵炯兝w維素,并指出以上結(jié)果是由生物質(zhì)中支鏈淀粉濃度不同造成,支鏈淀粉的濃度越大,吸附劑的吸水能力就越大.Benson和George[62]用一根變熱吸附柱來評(píng)價(jià)三種木質(zhì)素基吸附劑(漂白木漿,橡木木屑,紅麻稈芯)的除水效率,繪制了臨界點(diǎn)曲線來表征吸附劑的效率,并和淀粉基吸附劑進(jìn)行了對(duì)比,還得到了水分子在吸附劑多孔基質(zhì)中擴(kuò)散的傳質(zhì)性能和傳質(zhì)區(qū)的速度和長(zhǎng)度.Sowerby[63]等開發(fā)了一個(gè)用來描述在短小直徑柱中的乙醇-水共沸物的氣相吸附干燥過程的非等溫非絕熱模型,并將用模型計(jì)算出來的臨界點(diǎn)曲線和溫度曲線與實(shí)驗(yàn)結(jié)果進(jìn)行了比較,還討論了吸附和解吸過程中兩層膜各自阻力的相對(duì)大小.韓秀麗[64]等研究了生物質(zhì)復(fù)合物吸附劑對(duì)水和乙醇的氣相吸附性能,測(cè)定了生物質(zhì)復(fù)合物吸附劑吸附乙醇溶液中水的穿透曲線,考察了進(jìn)料流速、進(jìn)料濃度和床層高度對(duì)吸附穿透曲線的影響,也測(cè)定了再生后吸附劑的穿透曲線,找出了最佳再生條件.結(jié)果表明,吸附劑對(duì)水的最大吸附量可達(dá)20%,且再生后的吸附劑對(duì)水仍有很好的吸附能力.Wang[65]等通過比較五種淀粉基吸附劑的乙醇脫水穿透曲線,發(fā)現(xiàn)ZSG-1的效果最優(yōu)(可得到99.7wt%的無水乙醇),成本和能耗低,可回收.還采用Bohart-Adamns方程描述了ZSG-1的吸附動(dòng)力學(xué),并計(jì)算了吸附熱.李清明[66]等采用固定床吸附柱研究了馬鈴薯吸附劑對(duì)乙醇-水的氣相吸附過程.結(jié)果表明,生產(chǎn)能力和透過時(shí)間隨著時(shí)間的降低、粒徑的變小、進(jìn)料流量的降低和床層高度的增大而增大,每1千克吸附劑制得無水乙醇205.1g.張琳葉[67]等研究了甘薯吸附劑制備燃料乙醇的過程,重點(diǎn)考察了吸附過程中床層溫度、進(jìn)床氣速、床層高度、甘薯粒度等因素對(duì)透過曲線的影響,并給出了吸附波移動(dòng)速度、傳質(zhì)區(qū)長(zhǎng)度的計(jì)算方法.
Fullarton和Schlunder[68-69]提出了一種新型分離共沸物的工藝:擴(kuò)散蒸餾.該工藝中液體在低于沸點(diǎn)下蒸發(fā),然后在惰性氣通道中擴(kuò)散和冷凝.因此分離效果不僅與各組分的相對(duì)揮發(fā)度相關(guān),還與它們?cè)诙栊詺庵械臄U(kuò)散有關(guān).他們將該工藝用于乙醇-水的分離,發(fā)現(xiàn)所有實(shí)驗(yàn)結(jié)果可以用汽液相平衡和Stefan-Maxwell方程(穩(wěn)態(tài)分子擴(kuò)散)進(jìn)行描述,他們還提出了擴(kuò)散精餾的單點(diǎn)行為概念.McDowell和Davis[70]通過對(duì)積分柱的計(jì)算機(jī)模擬擴(kuò)展了擴(kuò)散精餾過程行為的描述和研究,所建立的模型比Fullarton和Schlunder的模型有所改進(jìn),尤其是對(duì)于模型參數(shù)的認(rèn)知上.Taylor和Krishna[71]建議將擴(kuò)散蒸餾工藝用于無水乙醇的生產(chǎn).Chung[72]等在濕壁柱中用擴(kuò)散蒸餾法生產(chǎn)無水乙醇,并觀察了蒸發(fā)和冷凝溫度、環(huán)形部分、惰性氣的選擇性和總通量對(duì)過程的影響.Kim[73]等為Chung的工藝過程建立了一個(gè)模型(考慮到顯熱的傳遞),并提出一種算法,它可以使冷凝液膜界面溫度的計(jì)算更準(zhǔn)確.此外,還有許多其他分離乙醇-水的方法:變壓工藝,精餾工藝[74],精餾和滲透汽化相結(jié)合的工藝[75-76],超臨界CO2萃取工藝[77],用汽油做萃取劑的萃取精餾[78],用汽油做萃取劑的液液萃取[79-81]和通過化學(xué)絡(luò)合作用進(jìn)行分離的方法[82]等.
從工藝而言,上述幾種無水乙醇的生產(chǎn)方法各具特點(diǎn):精餾工藝作為傳統(tǒng)工藝已沿用幾十年,工藝成熟、易于產(chǎn)業(yè)化,但其能耗大,操作要求高,發(fā)展方向主要集中于降低能耗和研發(fā)新型第三種組分.就兩種特殊精餾生產(chǎn)工藝來說,萃取精餾比恒沸精餾更具發(fā)展?jié)摿?,因其能耗相?duì)較低;膜分離技術(shù)能耗低、易操作、易批量生產(chǎn),因此具有很好的工業(yè)化應(yīng)用前景.但由于膜的造價(jià)較高,若要使其在工業(yè)上得到廣泛應(yīng)用,還需要在膜和膜組件研發(fā),工藝參數(shù)優(yōu)化及吸附劑性能提高等方面進(jìn)行大量的研究;吸附法能耗同樣相對(duì)較低.具有發(fā)展?jié)摿?,但仍處?shí)驗(yàn)研究階段.值得一提的是,生物質(zhì)吸附是繼分子篩吸附后一種滿足可持續(xù)發(fā)展戰(zhàn)略的清潔工藝:一方面,生物質(zhì)既是發(fā)酵法生產(chǎn)乙醇的原料,又是吸附劑;另一方面,用作吸附劑的生物質(zhì)再生失效后可直接再用作發(fā)酵原料.
從能耗而言,精餾法的能耗最大,而非精餾法工藝(如膜分離,吸附法)的能耗相對(duì)則較低,因此經(jīng)濟(jì)效益也較好.表2比較了幾種無水乙醇生產(chǎn)工藝的能耗情況.
表2 不同無水乙醇生產(chǎn)工藝的能耗Table 2 Energy consumption of various processes for anhydrous ethanol production
隨著世界能源危機(jī)的加劇和環(huán)保意識(shí)的增強(qiáng),人們對(duì)乙醇-水物系分離工藝的要求越來越高.精餾法雖然工藝成熟,但能耗較大,設(shè)備投資大,因此現(xiàn)在涌現(xiàn)了很多新興的節(jié)能精餾技術(shù),如多效精餾,熱泵精餾等.這些新興精餾技術(shù)現(xiàn)已用于工廠的技改過程中.非精餾法能耗較低,經(jīng)濟(jì)效益顯著,但無論是膜材料還是吸附劑現(xiàn)在還存在各種各樣的問題,嚴(yán)重阻礙了其工業(yè)化,有待于進(jìn)一步的研究.況且對(duì)于低醇量的醇水溶液分離,非精餾法優(yōu)勢(shì)不再明顯.綜上,工業(yè)上合理的乙醇-水分離方法應(yīng)該是精餾法與非精餾法的結(jié)合,如萃取精餾+膜分離或萃取精餾+吸附法等.因此有理由相信,隨著節(jié)能精餾技術(shù),膜技術(shù)與吸附劑法的不斷完善和進(jìn)步,乙醇-水物系分離工藝中存在的問題將一定得到有效解決,從而實(shí)現(xiàn)乙醇-水分離工藝的綠色化.
[1] MALHOTRA R K,DAS L M.Biofuels as blending components for motor gasoline and diesel fuels[J].J Sci Ind Res,2003,62(2):90-96.
[2] SANTOSH K,NEETU S,RAM P.Anhydrous ethanol:A renewable source of energy[J].Renew Sust Energ Rev,2010,14:1830-1844.
[3] JACKSON M,MORALES M M.Ethanol fuel use:Promising prospects for the future[J].Renewable Energy for Development,2004,17(1):1-4.
[4] YU S,TAO J.Energy efficiency assessment by life cycle simulation of cassava-based fuel ethanol for automotive use in Chinese Guangxi context[J].Energy,2009,34(1):22-31.
[5] TREYBAL R E.Mass-transfer operations[M].3rd ed.Singapore:McGraw-Hill Book Co.,1980.
[6] BLACK C.Distillation modeling of ethanol recovery and dehydration processes for ethanol and gasohol[J].Chem Eng Prog,1980,76(3):78-85.
[7] GOMIS V,F(xiàn)ONT A,PEDRAZA R,et al.Isobaric vapour-liquid and vapour-liquid-liquid equilibrium data for the system water+ethanol+cyclohexane[J].Fluid Phase Equilib,2005,235(4):7-10.
[8] GOMIS V,F(xiàn)ONT A,PEDRAZA R,et al.Isobaric vapor-liquid and vapor-liquid-liquid equilibrium data for the waterethanol-hexane system[J].Fluid Phase Equilib,2007,259(1):66-70.
[9] GOMIS V,F(xiàn)ONT A,SAQUETE MD.Isobaric vapour-liquid and vapour-liquid-liquid equilibrium data for the system water+ethanol+n-heptane at 101.3kPa[J].Fluid Phase Equilib,2006,248(43):206-210.
[10] GOMIS V,PEDRAZA R,F(xiàn)RANCES O,et al.Dehydration of ethanol using azeotropic distillation with isooctane[J].Ind Eng Chem Res,2007,46(13):4572-4576.
[11] Al-AMER A.Investigating polymeric entrainers for azeotropic distillation of the ethanol/water and MTBE/methanol systems[J].Ind Eng Chem Res,2000,39(10):3901-3906.
[12] NISHI Y.Vapor-liquid equilibrium relations for the system accompanied by hypothetical chemical reactions containing salts[J].J Chem Eng Jpn,1975,8(7):187-191.
[13] JAQUES D,GALAN MA.Isobaric LVE data for alcohol-water systems saturated with a salt which appear to contradict the Gibbs-Konovolov theorem[J].Chem Eng Sci,1980,35(8):1803-1804.
[14] BURNS J A,F(xiàn)URTER W F.Effects of salts having large organic ions on vapor-liquid equilibrium[J].Adv Chem Ser,1976,155(2):85-98.
[15] GALAN M,LABRADOR M,ALVAREZ J.Salt effect in liquid-vapor equilibrium:Ethanol-water system saturated with strontium bromide,barium nitrate,and strontium nitrate[J].J Chem Eng Data,1980,25(1):7-9.
[16] MERANDA D,F(xiàn)URTER WF.Vapour-liquid equilibrium data for system:Ethanol-water saturated with potassium acetate[J].Can J Chem Eng,1966,44(3):298-300.
[17] VMERANDA D,F(xiàn)URTER WF.Vapor-liquid equilibrium in alcohol-water systems containing dissolved halide salts and salt mixtures[J].AIChE J,1972,18(1):111-116.
[18] TAN T C,TEO W K,TI H C.Vapour liquid equilibria of ethanol-water system saturated with glucose at subatmospheric pressures[J].Chem Eng Res Des,1988,66(2):75-83.
[19] TAN T C,NG B H.Effect of mixed dissolved solutes on the vapour liquid equilibrium of the ethanol-water system:Prediction and experimental verification[J].Chem Eng Res Des,1993,71(3):53-61.
[20] LEI Z,WANG H,ZHOU R,et al.Influence of salt added to solvent on extractive distillation[J].Chem Eng J,2002,87(4):149-156.
[21] MARSH K N,BOXALL J,LICHTENTHALER R.Room temperature ionic liquids and their mixtures——a review[J].Fluid Phase Equilib,2004,219(1):93-98.
[22] HAN X X,ARMSTRONG D W.Ionic liquids in separations[J].Acc Chem Res,2007,40(11):1079-1086.
[23] LEI Z,CHEN B,LI C,et al.Predictive molecular thermodynamic models for liquid solvents,solid salts,polymers,and ionic liquids[J].Chem Rev,2008,108(4):1419-1455.
[24] ORCHILLES A V,MIGUEL P J,VERCHER E,et al.Using 1-ethyl-3-methylimidazolium trifluoromethanesulfonate as an entrainer for the extractive distillation of ethanol+water mixtures[J].J Chem Eng Data,2010,55(4):1669-1674.
[25] CALVAR N,GOMEZ E,GONZALEZ B,et al.Experimental vapor-liquid equilibria for the ternary system ethanol+water+1-ethyl-3-methylpyridinium ethylsulfate and the corresponding binary systems at 101.3kPa:Study of the effect of the cation[J].J Chem Eng Data,2010,55(8):2786-2791.
[26] GENG W,ZHANG L Z,DENG D S,et al.Experimental measurement and modeling of vapor-liquid equilibrium for the ternary system water+ethanol+1-butyl-3-methylimidazolium chloride[J].J Chem Eng Data,2010,55(4):1679-1683.
[27] MOKHTARANI B,GMEHLING J.(vapour+liquid)equilibria of ternary systems with ionic liquids using headspace gas chromatography[J].J Chem Thermodyn,2010,42(8):1036-1038.
[28] ZHANG L Z,GE Y,JI D X,et al.Experimental measurement and modeling of vapor-liquid equilibrium for ternary systems containing ionic liquids:A case study for the system water+ethanol+1-hexyl-3-methylimidazolium chloride[J].J Chem Eng Data,2009,54(8):2322-2329.
[29] CALVAR N,GONZALEZ B,GOME Z,et al.Vapor-liquid equilibria for the ternary system ethanol+water+1-butyl-3-methylimidazolium methylsulfate and the corresponding binary systems at 101.3kPa[J].J Chem Eng Data,2009,54(3):1004-1008.
[30] CALVAR N,GONZALEZ B,GOME Z,et al.Vapor-liquid equilibria for the ternary system ethanol+water+1-ethyl-3-methylimidazolium ethylsulfate and the corresponding binary systems containing the ionic liquid at 101.3kPa[J].J Chem Eng Data,2008,53(3):820-825.
[31] GE Y,ZHANG L Z,YUAN X C,et al.Selection of ionic liquids as entrainers for separation of(water+ethanol)[J].J Chem Thermodyn,2008,40(8):1248-1252.
[32] CALVAR N,GONZALEZ B,GOMEZ E,et al.Study of the behaviour of the azeotropic mixture ethanol-water with imidazolium-based ionic liquids[J].Fluid Phase Equilib,2007,259(1):51-56.
[33] CALVAR N,GONZALEZ B,GOMEZ E,et al.Vapor-liquid equilibria for the ternary system ethanol+water+1-butyl-3-methylimidazolium chloride and the corresponding binary systems at 101.3kPa[J].J Chem Eng Data,2006,51(6):2178-2181.
[34] JORK C,SEILER M,BESTE Y A,et al.Influence of ionic liquids on the phase behavior of aqueous azeotropic systems[J].J Chem Eng Data,2004,49(4):852-857.
[35] CHEN S H,LIN S S,CHANG D J,et al.Pervaporation separation of water/ethanol mixture by sulfonated polysulfone membrane[J].J Membr Sci,2001,183(1):29-36.
[36] DOGUPARTHY S P.Pervaporation of aqueous alcohol mixtures through a photopolymerised composite membrane[J].J Membr Sci,2001,185(2):201-205.
[37] LEE K R,WANG Y H,TENG H Y,et al.Preparation of aromatic polyamide membrane for alcohol dehydration by pervaporation[J].Eur Polym J,1999,35(5):861-866.
[38] SHIHHSIUNG C,REYMAY L,CHINGSHAN H,et al.Pervaporation separation water/ethanol mixture through lithitated polysulfone membrane[J].J Membr Sci,2001,193(1):59-67.
[39] WANG X P,SHEN Z Q,ZHANG F Y.A novel composite chitosan membrane for the separation of alcohol-water mixtures[J].J Membr Sci,1996,119(2):191-198.
[40] TSUYUMOTO M,TERAMOTO A,MEARES P.Dehydration of ethanol on a pilot-plant scale,using a new type of hollow-fiber membrane[J].J Membr Sci,1997,133(1):83-94.
[41] MULDER M,SMOLDERS C.On the mechanism of separation of ethanol/water mixtures by pervaporation.I.Calculation of concentration profiles[J].J Membr Sci,1984,17(3):289-307.
[42] MULDER M,F(xiàn)RANKLIN A,SMOLDERS C.On the mechanism of separation of ethanol/water mixtures by pervaporation.II.Experimental concentration profiles[J].J Membr Sci,1985,23(3):451-458.
[43] NGUYEN Q T,LE B L,NEEL J.Preparation of membranes from polyacrylonitrile-polyvinylpyrrolidone blends and the study of their behaviour in the pervaporation of water-organic liquid mixtures[J].J Membr Sci,1985,22(2-3):245-255.
[44] WENZLAFF A,BODDEKER K W,HATTENBACH K.Pervaporation of water-ethanol through ion-exchange membranes[J].J Membr Sci,1985,22(2-3):333-344.
[45] SANDER U,SOUKUP P B.Design and operation of pervaporation plant for ethanol dehydration[J].J Membr Sci,1988,36:463-375.
[46] 唐俏瑜,王莉,展俠,等.高選擇性PDMS/PVDF復(fù)合膜滲透汽化分離乙醇/水混合物[J].膜科學(xué)與技術(shù),2011,31(6):1-5.TANG Qiaoyu,WANG Li,ZHAN Xia,et al.Pervaporation of ethanol/water mixtures by PDMS/PVDF composite membranes with high permeability[J].Membrane Science and Technology,2011,31(6):1-5.
[47] 曾小雅,紀(jì)樹蘭,秦振平,等.溴化聚苯醚滲透汽化非對(duì)稱膜的制備及其乙醇/水分離性能[J].膜科學(xué)與技術(shù),2011,31(6):30-33.ZENG Xiaoya,JI Shulan,QIN Zhenping,et al.Preparation of BPPO asymmetric membrane and its pervaporation for ethanol/water solution[J].Membrane Science and Technology,2011,31(6):30-33.
[48] 紀(jì)樹蘭,曾小雅,秦征平,等.聚苯醚/聚砜復(fù)合膜對(duì)乙醇/水混合體系的滲透汽化分離[J].北京工業(yè)大學(xué)學(xué)報(bào),2011,37(6):893-897.JI Shulan,ZENG Xiaoya,QIN Zhenping,et al.Pervaporation separation of ethanol/water mixture by PPO/PSF composite membrane[J].Jounal of Beijing University of Technology,2011,37(6):893-897.
[49] XIA S,WANG W,LIU G,et al.Pervaporation properties of polyvinyl alcohol/ceramic composite membrane for separation of ethyl acetate/ethanol/water ternary mixtures[J].Korean J Chem Eng,2012,29(2):228-234.
[50] 牛洪金,劉威,劉吉達(dá),等.PDMS-b-PPO非對(duì)稱滲透汽化膜對(duì)乙醇/水的分離性能[J].膜科學(xué)與技術(shù),2013,33(1):66-70.NIU Hunjin,LIU Wei,LIU Jida,et al.Pervaporation of water/ethanol binary mixtures by PDMS-PPO asymmetric membrane[J].Membrane Science and Technology,2013,33(1):66-70.
[51] ZHANG G,CUSSLER E L.Distillation in hollow fibers[J].AIChE J,2003,49(9):2344-2351.
[52] ZHANG G,CUSSLER E L.Hollow fibers as structured distillation packing[J].J Membr Sci,2003,215(1-2):185-193.
[53] 林蘭,張國亮,孟琴.新型中空纖維膜接觸器用于乙醇/水體系分離的探索[J].化工學(xué)報(bào),2007,58(11):2822-2827.LIN Lan,ZHANG Guoliang,MENG Qin.Ethanol-water separation in hollow fiber membrane contactor[J].Journal of Chemical Industry and Engineering(China),2007,58(11):2822-2827.
[54] 李娜.PDMS/PVDF中空纖維復(fù)合膜接觸器用于醇/水體系分離的性能研究[D].杭州:浙江工業(yè)大學(xué),2011,21-49.LI Na.PDMS/PVDF hollow fiber composite membrane for alcohol-water[D].Hangzhou:Zhejiang University of Technology,2011,21-49.
[55] ISHIKAWA A.CHIANG T H,TODAF F.Separation of water-alcohol mixtures by permeation through a zeolite membrane on porous glass[J].J Chem Soc Chem Commun,1989,22(3):764-768.
[56] GUAN J,HU X.Simulation and analysis of pressure swing adsorption:Ethanol drying process by the electrical analogue[J].Sep Purif Technol,2003,31(4):31-35.
[57] CARMO M J,GUBULIN J C.Ethanol-water separation in the PSA process[J].Adsorption,2002,8:235-248.
[58] 李浩.分子篩吸附法制無水乙醇的機(jī)理及工藝[J].山東化工,2009,38(11):29-33.LI Hao.The mechanism and technics of the absolute alcohol made by the molecular sieve adsorption method[J].Shangdong Chemical Industry,2009,38(11):29-33.
[59] 范榮玉,吳方棣.分子篩吸附脫除乙醇中微量水的研究[J].武夷學(xué)院學(xué)報(bào),2013,32(2):60-64.FAN Rongyu,WU Fangdi.Study on purification of small amount of water from ethanol on molecular sieves by adsorption[J].Journal of Wuyi University,2009,38(11):29-33.
[60] 劉一鳴,高鑫,李洪,等.生物質(zhì)吸附劑在制備燃料乙醇中應(yīng)用的研究進(jìn)展[J].化工進(jìn)展,2013,32(10):2336-2342.LIU Yiming,GAO Xin,LI Hun,et al.Research progress in development of adsorbents in the producing biomass-based fuel ethanol[J].Chemical Industry and Engineering Process,2013,32(10):2336-2342.
[61] LADISCH M,VOLOCH M,HONG J,et al.Cornmeal adsorber for dehydrating ethanol vapors[J].Ind Eng Chem Process Des Dev,1984,23(3):437-443.
[62] BENSON T,GEORGE C.Cellulose based adsorbent materials for the dehydration of ethanol using thermal swing adsorption[J].Adsorption,2005,11:697-701.
[63] SOWERBY B,CRITTENDEN B.A vapour phase adsorption and desorption model for drying the ethanol-water azeotrope in small columns[J].Trans IChemE,1991,69(1):3-13.
[64] 韓秀麗,劉金盾,馬曉建,等.乙醇脫水吸附劑吸附-脫附性能的研究[J].高?;瘜W(xué)工程學(xué)報(bào),2008,22(6):1059-1064.HAN Xiuli,LIU Jindun,MA Xiaojian,et al.Research on adsorption performance of ethanol dehydration adsorbent[J].Journal of Chemical Engineering of Chinese Universities,2008,22(6):1059-1064.
[65] WANG Y,GONG C,SUN J,et al.Separation of ethanol/water azeotrope using compound starch-based adsorbents[J].Bioresource Technol,2010,101(8):6170-6176.
[66] 李清明,譚興和,蘇小軍,等.乙醇-水體系在馬鈴薯粉吸附劑上的吸附過程研究[J].生物質(zhì)化學(xué)工程,2012,46(4):42-45.LI Qingming,TAN Xinhe,SU Xiaojun,et al.Study on vapor adsorption process of ethanol-water system on potato powder[J].Biomass Chemical Engineering,2012,46(4):42-45.
[67] 張琳葉,微光濤,陳礪.甘薯吸附劑固定床吸附脫水制燃料乙醇及技術(shù)思考[J].可再生資源,2012,30(2),42-49.ZHANG Linye,WEI Guangtao,CHEN Li.Preparation of fuel alcohol by adsorption dehydration in fixed bed using sweet potato as adsorbent and thoughts on its technology[J].Renewable Energy Resources,2012,30(2),42-49.
[68] FULLARTON D,SCHLUNDER E.Diffusion distillation——a new separation process for azeotropic mixtures[J].Chem Eng Fundam,1983,2(3):53-58.
[69] FULLARTON D,SCHLUNDER E.Diffusion distillation——a new separation process for azeotropic mixtures.Part I:Selectivity and transfer efficiency[J].Chem Eng Process,1986,20(2):255-263.
[70] MCDOWELL J,DAVIS J.A characterization of diffusion distillation for azeotropic separation[J].Ind Eng Chem Res,1988,27(11):2139-2148.
[71] TAYLOR R,KRISHNA R.Multicomponent mass transfer[M].New York:JohnWiley &Sons,Inc,1993:79-89.
[72] CHUNG I,SONG K,HONG W,et al.Ethanol dehydration by evaporation and diffusion in an inert gas layer[J].HWAHAK KONGHAK,1994,32(4):734-741.
[73] KIM S,LEE D,HONG W.Modeling of ethanol dehydration by diffusion distillation in consideration of the sensible heat transfer[J].Korean J Chem Eng,1996,13(5):275-281.
[74] TEGTEMEIER U.Process design for energy saving ethanol production[J].Biotechnol Lett,1985,7(2):129-134.
[75] GOODING C,BAHOUTH F.Membrane aided distillation of azeotropic solutions[J].Chem Eng Commun,1985,35(6):267-279.
[76] ISHIDA M,NAKAGAWA N.Exergy analysis of a pervaporation system and its combination with a distillation column based on energy utilization diagram[J].J Membr Sci,1985,24(3):271-283.
[77] HARTLINE F.Lowering the cost of alcohol[J].Science,1979,206(4414):41-42.
[78] CHAMBERS R,HERENDEEN R,JOYCE J,et al.Gasohol:Does it or doesn′t it produce positive net energy[J].Science,1979,206(4420):789-795.
[79] LEEPER S,WANKAT P.Gasohol production by extraction of ethanol from water using gasoline as solvent[J].Ind Eng Chem Proc Des Dev,1982,21(2):331-334.
[80] LEE F,PAHL R.Use of gasoline to extract ethanol from aqueous solution for producing gasohol[J].Ind Eng Chem Proc Des Dev,1985,24(2):250-255.
[81] GRAMAJO D,BONATTI C,SOLIMO H.Liquid-liquid equilibrium of water+ethanol+reformate[J].Fluid Phase Equilib,2005,230(1-2):45-50.
[82] ROUSSEAU R.Handbook of separation process technology[M].New York:John Wiley &Sons,1987:45-85.