• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      隨鉆電磁波測井數(shù)據(jù)處理新方法

      2014-12-25 09:57:54張中慶龐兵強
      吉林大學學報(地球科學版) 2014年5期
      關鍵詞:圖版介電常數(shù)電磁波

      張中慶,龐兵強

      浙江大學海洋科學與工程學院,杭州 310027

      0 引言

      隨鉆電磁波測井是指在地層剛被鉆開后不久,泥漿尚未完全侵入地層時,通過對地層信息的測量,比較真實地反映原狀地層的電性特征,該信息能夠及時有效地評價油氣層的儲藏,對地層做出準確的評價。井下環(huán)境的復雜性使得電磁波信號在不同介質(zhì)中的作用有所差異,這種差異主要與介質(zhì)的介電常數(shù)、電導率等電磁特性參數(shù)有關,隨鉆電磁測井正是利用電磁波信號在地層介質(zhì)中傳播時發(fā)生了幅度衰減和相位偏移來完成對地層電性特征的測量。目前國外的隨鉆測井技術已經(jīng)得到廣泛應用,而國內(nèi)研究尚處于發(fā)展階段,因此對隨鉆測井技術的研究十分必要。

      隨鉆電磁測井信號來自2個接收線圈上的幅度衰減和相位差,將幅度衰減和相位差同時轉(zhuǎn)換為地層視電阻率和介電常數(shù)常用的方法是鏈表法。筆者在有限元素法分析的基礎上,通過三維數(shù)值模擬不同地層模型的儀器響應,繪制了表示數(shù)據(jù)對(地層電阻率,介電常數(shù))、(幅度衰減,相位差)之間對應關系的校正圖版,根據(jù)圖版中兩數(shù)據(jù)對之間的對應關系,提出了采用相位差和幅度衰減交匯方式、同時解釋地層視電阻率和介電常數(shù)的方法;同時分析了各種環(huán)境因素對儀器響應造成的影響,主要包括地層各向異性、地層傾角(α)和地層厚度(d),繪制了相應的校正解釋圖版[1-2],并用相位差和幅度衰減交匯解釋得到了地層視電阻率曲線,為地層電阻率解釋提供了有效的理論依據(jù)。

      1 隨鉆電磁波測井測量原理

      隨鉆電磁波測井方法的理論依據(jù)是電磁波在非均質(zhì)地層中的傳播規(guī)律,在非均質(zhì)地層中,電磁場分布可以由Maxwell方程描述。由于隨鉆電磁儀器發(fā)射天線激發(fā)的電磁場隨著環(huán)境的變化而變化,因此通過檢測接收天線電磁場的變化,即可獲得有關地層的相關信息。通常情況下,單發(fā)雙收的三線圈系結(jié)構是隨鉆電磁波測井儀器的基本結(jié)構,其他結(jié)構都是在其基礎上發(fā)展起來的。圖1為Schlumberger公司ARC系列線圈系示意圖,其中T1、T2、T3、T4、T5為5個發(fā)射線圈,R1、R2為2個接收線圈。在儀器的發(fā)射線圈上施加一穩(wěn)定的交變電流,在井眼周圍的地層介質(zhì)中便會產(chǎn)生交變電磁場。線圈系周圍的介質(zhì)可以看成由無數(shù)個由半徑為r、橫截面積為drdz的地層單元環(huán)組成。這些單元環(huán)均為閉合線圈,在發(fā)射線圈交變電磁場的激勵下,單元環(huán)中便會產(chǎn)生感應電流,感應電流會在接收線圈上產(chǎn)生感應電動勢。隨鉆電磁波測井通過轉(zhuǎn)換2個接收線圈之間感應電動勢的幅度衰減和相位差得到地層的視電阻率(Ra)信息[3-5]。圖2是不同中心源距下兩接收線圈之間感應電動勢的相位差(Δφ)、幅度比(A)與地層真電阻率(Rt)之間的關系曲線。

      2 有限元方法數(shù)值仿真

      有限元法(finite element method,簡稱FEM)是以變分原理和加權余量法為基礎的數(shù)值計算方法,是一種求解微分方程的近似方法。用有限元法分析電磁場問題,首先要對電磁場中的邊界問題進行研究,確定其邊界條件與微分控制方程;其次使用有限元法對求解區(qū)域進行網(wǎng)格離散,進而求出待求的未知場量以及其他物理特性變量。FEM適用于任何形狀的求解區(qū)域,因為它可以從“場”的角度,通過數(shù)值方式來求解電磁場邊值問題。

      圖1 線圈系示意圖Fig.1 Coil of electromagnetic wave logging while drilling

      應用有限元方法求解電磁場邊值問題,一般包含以下幾個步驟:

      1)給出微分控制方程及其邊界條件,滿足隨鉆測井等效方程:

      式中:E為任一點電場矢量;V為單元體體積;μr為介質(zhì)相對磁導率;μ0為真空磁導率;J為激勵源電流密度;ω為激勵源角頻率;ε為復介電常數(shù)。

      圖2 相位差、幅度比與電阻率關系曲線Fig.2 Curves of phase difference,amplitude attenuation with resistivity

      2)求解區(qū)域網(wǎng)格離散,離散后再進行節(jié)點編號和元素編號。

      3)選擇基函數(shù)以及加權函數(shù),運用Galerkin加權余量法或Ritz變分法將微分控制方程離散化為線性方程組;矢量有限元采用四面體元素,四面體單元中任一點的電場矢量可以表示為

      其中:

      式中:Ve為單元體積;{Ee}和{Je}分別代表電場和電流源離散后的總體矢量。

      4)消去邊界上的未知量并求解矩陣方程,得出所求解區(qū)域內(nèi)的場分布。

      5)后處理,計算出所需的參數(shù)[6-9]。

      本文采用Ritz變分法進行分析,將電場微分方程簡化為線性方程組得到電場值。

      3 地層視電阻率和介電常數(shù)

      隨鉆電磁波測井儀受地層電阻率和介電常數(shù)的影響表現(xiàn)出不同的響應特性,在將幅度衰減(A)和相位差(ΔΦ)分別轉(zhuǎn)換為地層視電阻率和視介電常數(shù)時,常用的方法是聯(lián)立A和ΔΦ表達式,然后采用鏈表法建立地層視電阻率(Ra)、視介電常數(shù)(εr)與數(shù)據(jù)對(A,ΔΦ)之間的對應關系。使用時則相反,由測井時讀到的數(shù)據(jù)對(A,ΔΦ)查表求數(shù)據(jù)對(Ra,εr)[10-14]。筆者在采用有限元素法算得可靠的校正圖版后,根據(jù)圖版中數(shù)據(jù)對(A,ΔΦ)、(Ra,εr)之間的對應關系,給出了一種采用交匯解釋圖版將A和ΔΦ同時轉(zhuǎn)換為地層視電阻率和地層視介電常數(shù)的方法,并通過實際地層模型驗證該方法的合理性。

      計算I為Schlumberger公司的隨鉆電阻率測井儀,源距16in,工作頻率為2MHz,計算不同地層電阻率和不同介電常數(shù)下的相位差和幅度衰減曲線。圖3是文獻[1]與本文計算的數(shù)據(jù)對(A,ΔΦ)、(Ra,εr)之間的對應關系圖。由圖3可知:當介電常數(shù)一定時,隨著地層電阻率的增大,相位差和幅度衰減均減小;當?shù)貙与娮杪室欢〞r,隨著介電常數(shù)的增大,相位差增大而幅度衰減減小,且當?shù)貙与娮杪瘦^小時,相位差和幅度衰減受介電常數(shù)的影響較小。

      圖3 文獻[1]與本文計算的數(shù)據(jù)對(A,ΔΦ)、(Ra,εr)之間的對應關系Fig.3(A,ΔΦ),(Ra,εr)relationship chart comparation in reference[1]and our’s

      實際地層模型如圖4所示:模型為5層模型,地層分界面坐標為-11、-3、6和15m,井眼直徑D為8.5in,泥漿電阻率Rm為0.2Ω·m,目的層真電阻率Rt分別為70、50、20、30和50Ω·m,介電常數(shù)εt分別為50、40、20、40和10,測量點起始位置為-20m,測量間隔0.3m。

      圖4 實際計算地層模型Fig.4 Actual calculation formation model

      圖5和圖6分別表示由此模型下讀到的數(shù)據(jù)對(A,ΔΦ)用交匯解釋方法同時得到的地層視電阻率曲線和介電常數(shù)曲線。通過與模型文件對比可知,轉(zhuǎn)換后的地層視電阻率與模型設置較為一致;轉(zhuǎn)換后的地層介電常數(shù)當測量點在目的層中間時與模型文件設置值吻合性較好,在地層分界面處存在著差異。

      圖5 地層視電阻率曲線Fig.5 Formation apparent resistivity curve

      上述結(jié)果表明,筆者提出的利用交匯解釋圖版同時轉(zhuǎn)換地層電阻率和介電常數(shù)的方法是有效的。根據(jù)隨鉆電磁測井儀測量的相位差和幅度衰減曲線不僅可以計算出地層的視電阻率,同時還可計算出該層的視介電常數(shù)。

      圖6 地層視介電常數(shù)曲線Fig.6 Formation apparent dielectric constant curve

      4 各向異性介質(zhì)響應

      當?shù)貙哟嬖诟飨虍愋詴r,隨鉆電磁波測井響應曲線會受地層傾角的影響,使測得的地層視電阻率不能真實地反映原狀地層的電阻率,造成解釋上的偏差[15-18]。地層各向異性主要由水平電阻率與垂直電阻率的比值決定。但在斜井測量中,地層傾角隨著測量深度的變化而變化,故此時測得的視電阻率曲線不僅受水平電阻率(Rh)與垂直電阻率(Rv)比值的影響,還受測量點地層傾角的影響;因此,有必要探究此種情形下儀器的響應情況。

      計算II為Baker Hughes公司的隨鉆電阻率測井儀,Rh為1Ω·m,Rv為5Ω·m,分別計算2MHz和400kHz工作頻率下,長、短源距的相位差視電阻率和幅度衰減視電阻率。

      圖7是文獻[2]與本文計算的地層傾角解釋圖版對比圖。通過離散圖版定量分析本文計算結(jié)果與文獻[2]的誤差(表1)。

      表1 各向異性-地層傾角解釋圖版誤差對比Table 1 Error comparision in aeolotropy-formation dip interpretation chart

      表1表明本文計算的MPR(multiple propagation resistivity)儀器地層傾角解釋圖版與文獻[2]中的圖版吻合性較好,相對誤差小于3.112%。由此驗證了本文計算的地層傾角解釋圖版是正確的。

      圖7 文獻[2]和本文計算的地層傾角解釋圖版Fig.7 Interpretation chart of formation dip of compare results of reference[2]and our’s

      圖8是本文用讀到的數(shù)據(jù)對(A,ΔΦ)交匯解釋圖版得到的不同傾角下的地層視電阻率曲線。

      圖8 地層視電阻率曲線Fig.8 Formation apparent resistivity curve

      圖7進一步表明:當?shù)貙觾A角為0°時,視電阻率等于水平電阻率,隨著地層傾角的增大(大于30°時),視電阻率受各向異性影響逐漸偏離水平電阻率;在相同地層傾角下,地層各向異性對相位差視電阻率的影響大于對幅度衰減電阻率的影響;源距越長,儀器的工作頻率越大,2種視電阻率曲線受地層各向異性影響也越大,曲線變化也越明顯。

      5 不同層厚時地層傾角影響

      層厚和地層傾角對隨鉆測井響應的影響從來都是耦合在一起的;在大斜度井和水平井的數(shù)據(jù)處理過程中,若不對測量的原始數(shù)據(jù)進行相應的校正,則會造成很大的解釋誤差,失去隨鉆測井的地層評價意義[19-20]。因此,需要研究地層層厚和傾角對隨鉆電磁測井響應的影響,繪制相應的校正圖版及給出校正方法。

      圖9 文獻[2]和本文計算的層厚與傾角圖版Fig.9 Interpretation chart of layer thickness and the formation dip in reference[2]and our’s

      圖10 交匯解釋圖版方法計算的層厚與傾角圖版Fig.10 Interpretation chart of layer thickness and the formation dip by cross plot method

      計算III為Halliburton公司的隨鉆電阻率測井儀器,工作頻率為2MHz,源距為15in,圍巖電阻率Rs為10Ω·m,地層傾角為40°。圖9是當計算的相位差視電阻率Ra為20,30,50,70Ω·m時,地層真電阻率與層厚的關系曲線與文獻[2]中的層厚和地層傾角解釋圖版對比,表明了本文計算結(jié)果的正確性。圖10是用數(shù)據(jù)對(A,ΔΦ)交匯解釋圖版方法得到的相同條件下的傾角層厚圖版,與原來計算結(jié)果基本一致,表明交匯解釋是可靠的。

      圖9表明:針對Halliburton公司的儀器,本文計算的層厚和地層傾角解釋圖版與文獻[2]中的結(jié)果吻合性較好。層厚越小,視電阻率受圍巖的影響越大,其值遠小于地層真電阻率;隨著地層厚度增加,視電阻率才逐漸接近地層真電阻率。

      6 結(jié)論

      1)可將測量得到的相位差和幅度衰減通過工程轉(zhuǎn)換為相位差電阻率和幅度衰減電阻率,亦可通過交匯解釋圖版方法將相位差和幅度衰減同時轉(zhuǎn)化為地層視電阻率和地層視介電常數(shù),且不增加計算的復雜性。

      2)介電常數(shù)固定的情況下,隨著地層電阻率的增大,相位差電阻率和幅度衰減電阻率均減??;地層電阻率固定的情況下,隨著介電常數(shù)的增大,相位差電阻率增大而幅度衰減電阻率減??;當?shù)貙与娮杪瘦^小時,介電常數(shù)對相位差電阻率和幅度衰減電阻率影響也較小。

      3)當?shù)貙觾A角小于30°時,地層各向異性對隨鉆測井響應影響很小,視電阻率與水平電阻率接近;當?shù)貙觾A角大于30°時,隨著地層傾角的增大,地層各向異性對測井響應的影響逐漸增大,視電阻率逐漸偏離水平電阻率。

      4)地層傾角變化時各向異性對測井儀器響應的影響表現(xiàn)為:對相位差視電阻率的影響大于對幅度衰減視電阻率的影響;工作頻率和線圈間源距越大,各向異性影響亦越大。

      5)固定地層傾角下,地層層厚越小,視電阻率受圍巖電阻率影響越大,其值要遠遠小于地層真電阻率值;隨著地層層厚的不斷增大,視電阻率逐漸接近地層真電阻率,且地層電阻率與圍巖電阻率對比度越大,不受圍巖影響的最小地層厚度也越大。

      6)可以利用本文數(shù)值模擬的計算圖版,校正各種環(huán)境因素的影響,甚至可通過程序?qū)崿F(xiàn)各種環(huán)境因素的自動校正,得到更為精確的地層電阻率值。

      (References):

      [1]09-FE-0058Schlumberger Log Interpretation Charts[S].Sugar Land:225Schlumberger Drive,2009.

      [2]斯倫貝謝、哈里伯頓和貝克休斯三大公司.斯倫貝謝、哈里伯頓和貝克休斯三大公司隨鉆測井解釋圖版集[R].[S.l.]:斯倫貝謝公司,哈里伯頓公司,貝克休斯公司,2009.Schlumberger,Halliburton and Baker Hughes Company LWD Interpretation Charts[R].[S.l.]:Schlumberger Company,Halliburton Company,Baker Hughes Company,2009.

      [3]楊震,劉慶成,岳步江,等.隨鉆電磁波電阻率測井儀器響應影響因素數(shù)值模擬[J].測井技術,2011,35(4):325-330.Yang Zhen,Liu Qingcheng,Yue Bujiang,et al.Numerical Simulation on Influence Factors of Electromagnetic Eave Resistivity Logging While Drilling Response[J].Well Logging Technology,2011,35(4):325-330.

      [4]洪德成.三軸感應測井資料處理方法研究[D].長春:吉林大學,2009.Hong Decheng.Study on the Data Processing Method of Triaxial Induction Logging[D].Changchun:Jilin University,2009.

      [5]陳愛新.隨鉆電磁波測井環(huán)境影響分析[J].石油地球物理勘探,2006,41(5):601-605.Chen Aixin.Analysis of Environment Influence in Electromagnetic Logging While Drilling[J].Oil Geophysical Prospecting,2006,41(5):601-605.

      [6]張中慶,穆林雪,張雪,等.矢量有限元素法在隨鉆電阻率測井模擬中的應用[J].中國石油大學學報:自然科學版,2011,35(4):64-71.Zhang Zhongqing,Mu Linxue,Zhang Xue,et al.Application of Vector Finite Element Method to Simulate Logging-While-Drilling Resistivity Tools[J].Journal of China University of Petroleum,2011,35(4):64-71.

      [7]李輝,劉得軍,劉彥昌,等.自適應hp-FEM在隨鉆電阻率測井儀器響應數(shù)值模擬中的應用[J].地球物理學報,2012,55(8):2787-2797.Li Hui,Liu Dejun,Liu Yanchang,et al.Application of Self-Adapative Hp-FEM in Numerical Simulation Resitivity Logging-While-Drilling[J].Chinese Journal of Geophysics,2012,55(8):2787-2797.

      [8]徐凱軍,李桐林.垂直有限線源三維地電場有限差分正演研究[J].吉林大學學報:地球科學版,2006,36(1):137-141.Xu Kaijun,Li Tonglin.The Forward Modeling of Three-Dimensional Geoelectric Field of Vertical Finite Line Source by Finite-Difference Method[J].Journal of Jilin University:Earth Science Edition,2006,36(1):137-141.

      [9]Anderson B,Barber T,Luling M,et al.Observation of Large Dielectric Effect on LWD Propagation-Resistivity Logs[C]//SPWLA 48th Annual Symposium.Austin:Society of Petrophysicists &Well Log Analysts,2007.

      [10]孫金浩,范煒.隨鉆電磁波測井影響因素分析[J].國外測井技術,2010(2):52-57.Sun Jinhao,F(xiàn)an Wei.The Influencing Factors of Electromagnetic Well Logging[J].World Well Logging Technology,2010(2):52-57.

      [11]刑光龍,劉曼芬,楊善德.高頻電磁波測井同時求取介電常數(shù)和視電阻率的迭代方法[J].地球物理學報,2002,45(增刊1):418-423.Xing Guanglong,Liu Manfen,Yang Shande.A Note on the Method to Solve Apparent Dielectric Constant and Apparent Conductivity Simultaneously in High Frequency Electromagnetic Wave-Logging[J].Chinese Journal of Geophysics,2002,45(Sup.1):418-423.

      [12]康俊佐.陣列傳播電阻率測井資料反演方法與儀器優(yōu)化組合研究[D].長春:吉林大學,2005.Kang Junzuo.Study on Inverse Method and Tool Optimal Combination in Array Electromagnetic Propagation Resistivity Logs[D].Changchun:Jilin University,2005.

      [13]Rodney P F,Wisler M M.Electromagnetic Wave Resistivity MWD Tool[J].SPE Drilling Engineering,1986,10:337-346.

      [14]張雪,張中慶.高頻感應測井儀器的響應特性及其應用研 究[J].地 球 物 理 學 進 展,2010,25(4):1479-1484.Zhang Xue, Zhang Zhongqing.Response Characteristics of High-Frequency Induction Logging Instrument and Their Application[J].Progress in Geophysics,2010,25(4):1479-1484.

      [15]朱建偉,趙剛,劉博,等.油頁巖測井識別技術及應用[J].吉林大學學報:地球科學版,2012,42(2):289-295.Zhu Jianwei,Zhao Gang,Liu Bo,et al.Identification Technology and Application of Well-Logging About Oil Shale[J].Journal of Jilin University:Earth Science Edition,2012,42(2):289-295.

      [16]袁阿明.隨鉆電磁波傳播測井井下電路研究[D].西安:西安石油大學,2009.Yuan Aming.Circuit Design of Electromagnetic Wave Propagation Logging[D].Xi’an:Xi’an Shiyou University,2009.

      [17]Hagiwara T.A New Method to Determine Horizontal Resistivity in Anisotropic Formations Without Prior Knowledge of Relative Dip[C]//SPWLA 37th Annual Symposium.New Orleans: Society of Petrophysicists & Well Log Analysts,1996.

      [18]Anderson B,Bonner S,Luling M G,et al.Response of 2-MHz LWD Resistivity and Wireline Induction Tools in Dipping Beds and Laminated Formations[C]//SPWLA 31th Annual Logging Symposium.Lafayette:Society of Petrophysicists & Well Log Analysts,1990.

      [19]Hal Meyer W.Analysis of Environmental Correction for Propagation Resistivity Tools[C]//SPWLA 41st Annual Logging Symposium.Dallas:Society of Petrophysicists & Well Log Analysts,2000.

      [20]Heidari Z,Torres Verdin C,Ljasan O,et al.Rapid Interactive Assessment of Petrophysical and Geometrical Effect on Density Wells[C]//SPE Annual Technical Conference and Exhibition.New Orleans:Society of Petroleum Engineers,2009.

      猜你喜歡
      圖版介電常數(shù)電磁波
      聚焦電磁波和相對論簡介
      電磁波和相對論簡介考點解讀
      無鉛Y5U103高介電常數(shù)瓷料研究
      電子制作(2017年20期)2017-04-26 06:57:40
      用有源音箱驗證電磁波的發(fā)射和接收
      低介電常數(shù)聚酰亞胺基多孔復合材料的研究進展
      低介電常數(shù)聚酰亞胺薄膜研究進展
      中國塑料(2015年8期)2015-10-14 01:10:40
      圖版 Ⅰ Plate Ⅰ
      地球?qū)W報(2015年5期)2015-06-06 10:45:11
      圖版II Plate II
      地球?qū)W報(2015年5期)2015-06-06 10:45:11
      平行透刺聯(lián)合電磁波治療肩周炎32例
      傾斜角對蜂窩結(jié)構等效介電常數(shù)影響分析
      武鸣县| 孟连| 老河口市| 德保县| 勃利县| 建阳市| 临泉县| 任丘市| 大田县| 军事| 扶风县| 定兴县| 喀什市| 阿拉善盟| 弥渡县| 呼图壁县| 鄯善县| 普兰县| 南城县| 民丰县| 石泉县| 霍林郭勒市| 周至县| 龙江县| 金沙县| 宜兰县| 信丰县| 富宁县| 鄂伦春自治旗| 斗六市| 肇庆市| 仙桃市| 弥渡县| 邛崃市| 安顺市| 小金县| 江达县| 北碚区| 怀集县| 库尔勒市| 那坡县|