• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Denoising of EEG Signals by Combining Wavelet Packet Transform with FastICA Algorithm

    2014-11-16 12:56:08陳宏銘,王遠大,程玉華
    生物醫(yī)學工程學進展 2014年3期
    關(guān)鍵詞:清華大學出版社醫(yī)學工程波包

    0 INTRODUCTION

    Electroencephalograms(EEG)signals embracing a large amount of physical and pathological information play an important role in clinical medicine study and disease diagnosis[1]. There are interferences that might vitiate the EEG signal such as influences related to cerebral activity that should be eliminated from the logging before various analyses[2].The strength of EEG voltage signals in a healthy person is between 20 MV and 50 MV,which is too weak and is easily affected by all kinds of noise[3].Therefore,it's most likely that there are lots of noise in EEG signals.It brings risks to doctors'diagnosis process and analysis.

    The main types of noise in EEG signals are white noise with Gaussian distribution,Electroculograms(EOG),noise from vascular beating,power- line interference,etc.These noises are almost as large as the EEG signal and get a very low SNR performance.As is known to all,the frequency of white Gaussian noise is much higher than that of EEG signal[4].The white Gaussian noise can be decomposed by taking advantage of the character of wavelet transform-multi- resolution[5],and then set the highest frequency coefficients to zero.In this way,most of the white Gaussian noise can be removed,but a portion of the relevant EEG signal are removed at the same time.The result is not what we expected.

    In this paper,WPT has been applied to keep the original EEG signals as much as possible,instead of wavelet transform to remove the white Gaussian noise[6].WPT was first introduced by Coifman et al.[7]for offering a rich set of decomposition structures.It is a recapitulation of the dyadic wavelet transform(DWT)and related to a best selection algorithm.As to other non-random noise including EOG,vascular beating,power - line interference,their frequencies almost keep constant,wavelet transform can be used to remove the noise,too.Owing to the EEG signals consisting of high-frequency and low-frequency components,partial EEG data will be inevitably lost when using wavelet transform to remove non-random noise.

    What's worse,the frequency range of the noise has to be recognized by using wavelet transform.The wavelet transform cannot be applied to remove external noises effectively.While the EEG signals can be collected by wearing a headset with sensors,some other unnoticed noise may be added.Compared with the wavelet transform,ICA is more suitable to remove non-random noise.The fundamental paper on the ICA was proposed by Comon[8].Many ICA algorithms have been developed by researchers from different groups.TheFastICA algorithm wasproposed by scholars from Finnish, see[9]. It is a linear ICA algorithm with fast convergence and good accuracy[10].

    In this paper,F(xiàn)astICA algorithm has been used to remove all types of non-random noise.Just as its name suggests,high-speed operation with lesscomplexity has been achieved,which has an advantage for dealing with mass data.At the same time,its accuracy is no worse than that of other forms of ICA.By using this approach,different non-random noise can be assigned to individual channels.We don't need to know the frequency ranges of any type of noise,and when some unnoticed noise are added,the system can work as well without any modification.Nevertheless,the drawback of ICA is that it cannot tell which channel is the noisy-channel,and which one is the channel of EEG.To overcome this,a method of Quasi Expected Value(QEV)is proposed.The EEG signal from all FastICA outputs can be selected simply and effectively by QEV method.

    1 METHODOLOGIES

    The flow chart of sampling and processing EEG signals is shown in Fig.1 .First of all,EEG signals are collected from different area of the brain.To simplify the analysis eight is chosen as the channel number,and N,the sampling points in each channel.Thus,we can construct a matrix S(8,N)with 8 denoting the number of rows and N,the number of columns.Then,WPT algorithm is used to remove the random noise before ICA is applied,because the less the random noise is,the better the ICA algorithm will work.Next,F(xiàn)astICA algorithm is used to process all eight channels of WPT outputs.The outputs of FastICA are immune from random noise.They are generated from different independent sources.One of them is the original EEG signal and the others are different types of noise.The final step is to find out the original EEG signal from the channels by using QEV method.

    Fig.1 Flow chart of sampling and processing from EEG signals圖1 腦電信號的采樣和處理流程圖

    1.1 WPT in Removing Random Noise

    The Mallat fast decomposition algorithm is used to analyze EEG signal.EEG signal can be assigned into arbitrary frequency band by wavelet packet.All timE-frequency ingredients of EEG signal can be mapping into orthogonal spaces which assign different frequency band[11].In wavelet transform,the signal(EEG)is decomposed into two parts:high-frequency(detail)and low-frequency components.The low-frequency component is decomposed into high-frequency and low- frequency componentsagain.The procedure is repeated again and again.We can easily see that the wavelet transform is good for processing low-frequency component rather than high-frequency component.

    A multi-scales analysis method for non-stationary signal processing is based on wavelet packet transform.Frequency band is assigned to multi - levels.Coefficients of high-frequency component(detail)and low-frequency component(approximate)are decomposed successively at each level to create a full binary tree.It enhances the time-frequency resolution of signal processing and makes EEG signal analysis more reliable.Because partial EEG signal includes the personal important health information.The detail of EEG signals need to be kept as much as possible[5].

    To preserve the detail,WPT algorithm is adopted to remove random noise in this paper.A wavelet packet decomposition tree of WPT algorithm[12]is shown in Fig.2 .Suppose EEG signal is in scalE-space S,the sketch map is decomposed into three scale-spaces.In this figure,"A"and"D"stand for low-frequency and high-frequency component of the signal,respectively.The DDD3 is set to zero to remove the random noise. Through experiments, the DB4 wavelets are chosen and the decomposing level is three.The EEG signal is decomposed into detail and approximation bands after Mallat decomposition and the information is of integrity.

    Fig.2 Decomposition tree of wavelet packet圖2 小波包樹分解

    1.2 FastICA algorithm in Removing Non -random Noise

    Typically,the problem that ICA algorithm concerned can be described as below:suppose that S=[S1;S2;…;SN]is the original unknown multivariate signal matrix,X=[X1;X2;… Xn]is the observed signal matrix,and is transformed through the unknown linear mixing matrix A such that X=A*S.If we find a matrix B and get ? via the equation ? =B*X,in which ? is the optimal value of S[13].It means that we succeed in dividing the signals generated by different sources into different channels.

    The basic requirements of ICA are listed below:

    1)The targeted signalmustbe totally or approximately independent to all the noises in the observed signal.In other words,the cross- correlation coefficients should be near to zero;

    2)All the signals and noise including the targeted signals must be Non-Gaussian in nature;

    3)The number of channels must be more than that of targeted signals and noise types.

    The main types of noise in EEG signal are white Gaussian noise,EOG,noise from vascular beating and power- line interference.After the application of WPT,white Gaussian noise is removed.All kinds of the remaining noise are Non-Gaussian,which meets thecondition.Because the remaining noise and targeted signals come from different sources,they are independent to each other,which meet the condition.After removing the white Gaussian noise,other four types of noise remain.If the channel number is greater than or equal to four,condition 3)will be met.

    The mixing and de-mixing processes are shown in Fig.3 ,in which the de-mixing stage is ICA algorithm.Two steps are always adopted in the demixing algorithm:

    Step 1.Whitening:A method which can make the variance of all the components zi(t)equal to one.

    Step 2.Orthogonal transformations:A method which makes all components of y(t)independent to each other,meanwhile keeps the variance of y(t)unchanged.

    Fig.3 The processes of mixing and de-mixing圖3 混合和去混的過程

    The FastICA algorithm(also known as fixedpoint algorithm)is a high-speed algorithm to determine the optimal value[14].Two major optimal criterionsare maximum likelihood and maximum negentropy.In this paper,the maximum negentropy criterion is adopted.Fixed-point iteration is adopted in FastICA algorithm for the purpose of fast convergence.

    Negentropy criterion is defined as below[15]:

    ygis the Gaussian random variable having the same covariance matrix as y.The lower the absolute value of negentropy is,the more obvious the Gaussian character of y reveals.Only when y is a Gaussian variable,the negentropy value is equal to zero.According to(2),the probability density distribution is needed in calculating H(y).However,it's generally rather difficult to find the probability density distribution.So equation (2) is replaceed approximately by[15]:

    From(3),E is the operational symbol of the expected value,and f is a non-linear function.There are several forms of function f.In this paper,the adopted form of f in equation(4)[15]is a very common non-linear function.

    Thus the main task is to optimize the matrix W,so as to make Nf(WTX)minimum.

    The iteration process can be simplified to the following steps[15]:

    The iteration process won't stop until reaches its convergence condition in(7),which is determined by the required precision.And the convergence condition in this paper is ‖WN‖≤10-4.

    1.3 QEV method in Choosing EEG Channel among All Channels

    Among all channels'FastICA output signal Z(i,:),one is the targeted signal and the others are different types of noise generated by different sources.For all channels'WPT output signal X(i,:),the targeted signal exists in all channels,but each type of noise substantially presents in the channel nearby the noise source.The channels which are far from the noise source contain this noise hardly.So the original EEG signal has relatively higher degree of correlation with all channels X(i,:),and the degrees of the correlation between each noise channeland all channels X(i,:)are all much lower except for that between the noise channel and the channel near the noise source.So the expected value of correlation coefficients between original EEG signal and X(i,;)is higher than that between noise channel and X(i,:).By choosing the highest expected value,the EEG channel can be located among the FastICA output channels.It's a method of expected value(EV).

    Through the experiments,the difference between the highest and the second expected value is not big enough and it's more likely to cause the poor results.In this paper,a method of quasi expected value(QEV)is proposed.A judgment can be reached after analysis,the correlation coefficients between the noise channel and all the channels of X(i,:)are all low value except for that between the noise channel and the channel near its source.The expected correlation coefficients excluding the maximum value will be much lower.On the other hands,if the minimum correlation coefficients between the original EEG and X(i,:)is removed,the expected value of the targeted signal will be higher.In QEV stage,the expected correlation coefficients between each FastICA output channel and X(i,:)can be calculated excluding the maximum and minimum values.

    1.4 Criteria of Independent Signals

    Cross-correlation coefficient is a measure of similarity between two signals in data processing.The larger the cross-correlation coefficient is,the higher the degree of similarity will be.Generally speaking,two signals from different sources are assumed statisticalindependent.Itmeans the degree of similarity is very small,if the cross - correlation coefficients between any two of the FastICA output channels are low in a certain range.Each signal of the FastICA output channels is from different sources.Therefore,cross-correlation coefficients are generally the criteria of signal independent.The formula for cross- correlation coefficients is shown in formula(8)[15],

    where N is the sequence length and m=0,1,...,N -1.

    The cross-correlation coefficient is a ratio of differences,in which positive or negative sign represent the direction of the cross- correlation coefficient.The absolute value represents the degree of similarity.The perspectives on the correlation coefficient(in absolute value)are different in statistics,but commonly the degree of similarity is divided into four parts shown in Table 1.

    Tab.1 Different Ways to Define The Degree Of Similarity表1 相關(guān)程度劃分

    2 EXPERIMENTAL RESULTS AND DISCUSSION

    Thisexperimentaldatabase,collected atthe Children's Hospital Boston(CHB - MIT),consists of totally 23 sets of EEG signals over 9 minutes long.The sampling frequency of the data is 256 Hz.The file format is edf which cannot be read by MATLAB tool.The method list below is used to convert the file format.

    · Convert eeg.edf into eeg.txt by using software called EDFbrowser.The file format of text is ASCII.

    · Analyze the contents of eeg.txt,i.e.this file consists of one group of timing information and 23 groups of EEG information.

    · Write a program to read the eeg.txt into a vector(x,y1,y2,...,y23)with the MATLAB function called textread().

    Six thousand sampling points are selected from a large data to construct the vector(y1,y2,y3,y4,y5,y6,y7,y8).A four- dimensional data set X[y1,y2,y3,y4,y5,y6,y7,y8]is constituted to reduce computation time.The waveforms of the data set are shown in Fig.4 .The cross-correlation coefficients between any two of the observed signals are shown in Table2.The range of micro,real and significant correlation coefficients are from 0.02 to 0.69,which means the observed signals contain the noises generated from various noise sources.Two observed signals with high cross -correlation coefficient contain little or the same noise.However,two observed signals with a low crosscorrelation coefficient inevitably contain two noises from different noise sources.

    The WPT output signal waveforms become clean and smooth as shown in Fig.5 .(Compared to Fig.4 ).It means that the white Gaussian noise has been restrained to some degrees.At the same time,there is plenty of high-frequency component in waveforms.It means the useful signal details has been retained.The cross-correlation coefficients between any two of the WPT output signals are shown in Table 3.The Micro,real and significant correlation coefficients can range from 0.02 to 0.68.It's obvious that the degree of similarity to WPT output signals decreases a little by comparing Table 3 to Table 2.It means the WPT can remove the noises,but the performance is not good enough.

    The waveforms of FastICA output signals are shown in Fig.6 .It is more difficult to observe the difference between Fig. 4 and Fig. 6, but the statistical data are helpful to analyze.The cross -correlation coefficients between any two of FastICA output signals are shown in Table 4.The order of magnitude in Table 4 is 10-15or 10-16,which can be regarded as approximately zero.It means that FastICA output signals are independent. Therefore, the approach we adopt in this paper performs extremely well in removing the noise in EEG signal.

    At last,the QEV method is adopted to find out the original EEG signal among the FastICA output signals.The waveform of QEV output signal is shown in Fig.7 .The process is shown in detailed as below:

    ·Work out all the cross-correlation coefficients between each FastICA output signal Z(i:)and each WPT output signal X(i,:),of which the absolute values are shown in Table 5.

    ·Work out the quasi expected value of each column of Table 5,which is shown in Table 6.

    By comparing the performance of EV and QEV methods with the expected values of each column of Table 5,the results are shown in Table 7.According to Table 6 and Table 7,both of the largest numbers are Z(8,:),which means that the original EEG signal channel(the 8thchannel)have been obtained through QEV and EV methods successfully.In Table 7,the first and second highest numbers are 0.483 and 0.334,respectively.The difference between them is 0.149.While the first and second highest values are 0.455 and 0.346 in Table 7.The difference between themis 0.109.By comparing with EV method,the tolerance ability of QEV method is improved by 36.7%.The QEV method we proposed in this paper performs much better than the EV method.

    Fig.4 The observed signals圖4 所觀察到的信號

    Fig.5 The output signals of WPT algorithm圖5 WPT算法的輸出信號

    Fig.6 The output signals of FastICA algorithm圖6 FastICA算法的輸出信號

    Fig.7 The output signal of QEV method圖7 QEV方法的輸出信號

    Tab.3 Correlation coefficients between any two WPT output signal channels表3 任何兩個WPT的輸出信號通道之間的相關(guān)系數(shù)

    Tab.4 Correlation coefficients between any two FastICA output signal channels表4 任何兩個FastICA的輸出信號通道之間的相關(guān)系數(shù)

    Tab.5 Correlation coefficients between observed signals and FastICA output signals表5 觀測信號和FastICA的輸出信號之間的相關(guān)系數(shù)

    Tab.6 Quasi expected values of fastICA output signals表6 FastICA輸出信號的準預期值

    Tab.7 Expected values of fastICA output signals表7 FastICA輸出信號的期望值

    3 CONCLUSION

    In this paper,the method of combining WPT with FastICA algorithm is proposed to remove all types of noise from EEG signals.Through the experiments from the data acquired in CHB -MIT,the order of magnitude to cross-correlation coefficients for all the output signals is 10-15or 10-16.The result shows that the method can remove almost all of the noise.The wavelet packet analysis is employed to decompose the EEG signal into layers.In order to find out the original EEG signal from FastICA outputs,we propose the QEV method.By comparing with the QV method, the tolerance of QEV method is improved by 36.7% .It's really a simple and practical method for denoising of EEG Signal.

    4 ACKNOWLEDGEMENTS

    This research was supported by the 863 National High Technology Research and Development Program of China(2013AA011202)and the National 02 Key Special Program(2009ZX02305-005),the 863 National High Technology Research and Development Program of China(2013AA014102)and the National No. 2 Special Key Project Program (No.2012ZX02503005).

    REFERENCE

    [1]Zunairah Haji Murat,Mohd Nasir Taib,Sahrim Lias,et al.Establishing the fundamental of brainwave balancing index(BBI)usingEEG[C]. The 2ndInt. Conf. on Computional Intelligence,Communication Systemsand Networks(CICSyN2010),Liverpool,United Kingdom,2010.

    [2]Melia,Umberto,F(xiàn)rancesc Claria,Montserrat Vallverdu,et al.Removal of peak and spike noise in EEG signals based on the analytic signal magnitude[C].Annual International Conference of the IEEE Engineering in Medicine and Biology Society.San Diego,CA,Aug.2012.

    [3]J.Yoo,L.Yan,D.El- Damak,et al.An 8 - channel scalable EEG acquisition SoC with fully integrated patient-specific seizure classification and recording processor[C].IEEE Int.Solid - State Circuits Conf.(ISSCC)Dig.Tech.Papers.San Francisco,CA,F(xiàn)eb.2012.

    [4]M.Mollazadeh,K.Murari,G.Cauwenberghs,et al.Micropower CMOS-integrated low-noise amplification,filtering,and digitization of multimodal neuropotentials[J].IEEE Trans Biomed Circuits Syst,2009,3(1):1 -10.

    [5]羅志增,李亞飛,孟明,等.一種基于二代小波變換與盲信號分離的腦電信號處理方法[J].航天醫(yī)學與醫(yī)學工程,2010,23(2):137-140.

    [6]Dahshan EI,Sayed EI.Genetic algorithm and wavelet hybrid scheme for ECG signal denoising[J].Telecommunication Systems,2010,46(3):209 -215.

    [7]Coifman R,Meyer Y,Quake S,et al.Signal processing and compression with wave packets[M].Numerical AlgorithmsResearchGroup, New Haven, CT:Yale University,1990.

    [8]Comon P. Independent component analysis, a new concept?[J].Signal Process,1994,36(3):287 -314.

    [9]Hyv?rinen A,Karhunen J,Oja E.Independent Component Analysis[M].Wiley,New York,2001.

    [10]Charayaphan C,Sattar F.Design of low - cost FPGA hardware for real-time ICA-based blind source separation algorithm[J].EURASIP JApplSignal Process,2005,18:3076 -3086.

    [11]Yan S,Zhao H,Liu C,et al.Brain-computer interface design based on wavelet packet transform and SVM[C].International Conference on Systemsand Informatics(ICSAI2012),Shanghai,China ,May 2012.

    [12]Kharate GK,Patil VH.Color image compression based on wavelet packet best tree[J].Int J Comput Sci Issues,2010,7(3):31-35.

    [13]Shen H,Kleinsteuber M,H¨uper K.Local convergence analysis of FastICA and related algorithms[C].IEEE Trans Neural Networks,2008,19(6):1022 -1032.

    [14]Ye J,Huang T.New fast- ICA algorithms for blind source separation without prewhitening[J].Communicat Comput Informat Sci,2011,225(2):579 -585.

    [15]楊福生,洪波.獨立分量分析的原理與應用[M].北京:清華大學出版社,2006.

    猜你喜歡
    清華大學出版社醫(yī)學工程波包
    清華大學出版社期刊中心
    基于小波包Tsallis熵和RVM的模擬電路故障診斷
    Desperate Love towards the Dark Lady in Shakespeare’s Sonnets
    世界家苑(2018年4期)2018-05-21 08:56:20
    僑胞任洪亮率團斬獲全球醫(yī)學工程創(chuàng)新大賽金獎等
    華人時刊(2017年21期)2018-01-31 02:24:16
    《秘書工作手記》
    決策(2017年5期)2017-06-21 16:58:25
    基于小波包變換的電力系統(tǒng)諧波分析
    小波包理論與圖像小波包分解
    Translation and Dissemination of Critique of the Gotha Program in China in the Early Times〔* 〕
    學術(shù)界(2015年8期)2015-02-25 08:39:32
    我院醫(yī)學工程科的現(xiàn)狀及發(fā)展對策的探討
    基于小波包的全信息解調(diào)方法及其應用
    性色av乱码一区二区三区2| 满18在线观看网站| 18禁黄网站禁片午夜丰满| 国产精品免费大片| 一本久久精品| 免费黄频网站在线观看国产| 国内毛片毛片毛片毛片毛片| 午夜老司机福利片| 亚洲精品国产色婷婷电影| 老司机影院成人| 丁香六月天网| 成年美女黄网站色视频大全免费| 日本一区二区免费在线视频| 国产成人a∨麻豆精品| 国产一级毛片在线| 亚洲中文av在线| 日本av免费视频播放| 国产人伦9x9x在线观看| 免费日韩欧美在线观看| 国产淫语在线视频| av超薄肉色丝袜交足视频| 精品久久蜜臀av无| 色老头精品视频在线观看| 好男人电影高清在线观看| 亚洲成av片中文字幕在线观看| 中国美女看黄片| 国产亚洲欧美精品永久| 9热在线视频观看99| 午夜福利视频在线观看免费| 久久精品国产亚洲av高清一级| 久久这里只有精品19| 日本av手机在线免费观看| 午夜两性在线视频| 99精品欧美一区二区三区四区| 免费高清在线观看视频在线观看| 天堂8中文在线网| 日韩一区二区三区影片| 亚洲成av片中文字幕在线观看| 超色免费av| 正在播放国产对白刺激| 国产无遮挡羞羞视频在线观看| 宅男免费午夜| 成年人黄色毛片网站| 精品第一国产精品| 成人av一区二区三区在线看 | 日韩一卡2卡3卡4卡2021年| 啦啦啦在线免费观看视频4| 婷婷色av中文字幕| 亚洲精品粉嫩美女一区| 极品人妻少妇av视频| 真人做人爱边吃奶动态| 国产精品影院久久| 中文字幕人妻丝袜制服| av网站在线播放免费| 老司机影院成人| 美女午夜性视频免费| 国产伦人伦偷精品视频| 国产精品免费大片| 激情视频va一区二区三区| 亚洲视频免费观看视频| 一区在线观看完整版| 人人澡人人妻人| 国产亚洲一区二区精品| av有码第一页| 亚洲免费av在线视频| 免费在线观看视频国产中文字幕亚洲 | 中文字幕人妻丝袜一区二区| 99香蕉大伊视频| 亚洲色图综合在线观看| 国产亚洲精品第一综合不卡| 男女下面插进去视频免费观看| 婷婷丁香在线五月| 国产精品一二三区在线看| 18禁国产床啪视频网站| 99精品久久久久人妻精品| 亚洲精品久久午夜乱码| 国产深夜福利视频在线观看| 久久人妻熟女aⅴ| 日韩中文字幕视频在线看片| 老熟妇乱子伦视频在线观看 | 性少妇av在线| 超碰成人久久| 精品人妻1区二区| 亚洲国产日韩一区二区| 欧美激情高清一区二区三区| 性高湖久久久久久久久免费观看| 在线永久观看黄色视频| 一区二区日韩欧美中文字幕| 国产一区二区激情短视频 | netflix在线观看网站| 一区二区三区激情视频| 美女视频免费永久观看网站| 久久久国产欧美日韩av| 国产精品欧美亚洲77777| 久久国产精品人妻蜜桃| 日日摸夜夜添夜夜添小说| 黑人操中国人逼视频| 亚洲精品中文字幕在线视频| 国产精品香港三级国产av潘金莲| 老鸭窝网址在线观看| 丰满人妻熟妇乱又伦精品不卡| 侵犯人妻中文字幕一二三四区| 在线永久观看黄色视频| 女警被强在线播放| 欧美国产精品va在线观看不卡| 美女午夜性视频免费| 日韩人妻精品一区2区三区| 亚洲精品国产色婷婷电影| 妹子高潮喷水视频| 国产精品自产拍在线观看55亚洲 | 别揉我奶头~嗯~啊~动态视频 | 国产成人精品无人区| 美女扒开内裤让男人捅视频| 丰满饥渴人妻一区二区三| 亚洲久久久国产精品| 精品熟女少妇八av免费久了| 黑人操中国人逼视频| 国产又爽黄色视频| 国产精品成人在线| 久久国产亚洲av麻豆专区| 伊人久久大香线蕉亚洲五| 国产男女超爽视频在线观看| av又黄又爽大尺度在线免费看| 欧美日韩精品网址| 黄色视频不卡| 老司机福利观看| 一边摸一边做爽爽视频免费| 久久精品人人爽人人爽视色| 午夜久久久在线观看| 欧美精品亚洲一区二区| 国产精品九九99| 少妇人妻久久综合中文| 日韩 亚洲 欧美在线| 高清视频免费观看一区二区| 日韩大片免费观看网站| 日韩一区二区三区影片| 精品国产一区二区三区久久久樱花| 大码成人一级视频| 老司机靠b影院| 99精国产麻豆久久婷婷| 制服人妻中文乱码| 嫩草影视91久久| 免费观看av网站的网址| 多毛熟女@视频| 不卡一级毛片| 亚洲性夜色夜夜综合| 老司机午夜福利在线观看视频 | 自线自在国产av| 久久人妻福利社区极品人妻图片| 精品第一国产精品| 亚洲伊人色综图| 国产伦人伦偷精品视频| 国产精品一区二区免费欧美 | 2018国产大陆天天弄谢| 成年av动漫网址| 狠狠狠狠99中文字幕| 精品一区在线观看国产| 亚洲少妇的诱惑av| 在线观看免费日韩欧美大片| 一本大道久久a久久精品| 他把我摸到了高潮在线观看 | 精品国内亚洲2022精品成人 | 欧美性长视频在线观看| 捣出白浆h1v1| 18禁裸乳无遮挡动漫免费视频| 九色亚洲精品在线播放| 国产成人精品在线电影| svipshipincom国产片| 不卡一级毛片| 啪啪无遮挡十八禁网站| 大片免费播放器 马上看| 日韩视频在线欧美| 热99re8久久精品国产| 岛国在线观看网站| 日本精品一区二区三区蜜桃| 免费久久久久久久精品成人欧美视频| 亚洲专区中文字幕在线| 这个男人来自地球电影免费观看| 在线观看舔阴道视频| avwww免费| 国产熟女午夜一区二区三区| 下体分泌物呈黄色| 成在线人永久免费视频| 国产一区二区 视频在线| 精品人妻1区二区| 视频在线观看一区二区三区| 午夜91福利影院| 欧美黑人精品巨大| 国产精品秋霞免费鲁丝片| a 毛片基地| 99国产精品免费福利视频| 国产97色在线日韩免费| 成人av一区二区三区在线看 | 另类精品久久| 亚洲一码二码三码区别大吗| 99久久综合免费| h视频一区二区三区| 69精品国产乱码久久久| 国产精品1区2区在线观看. | 精品国产一区二区三区四区第35| 国产欧美日韩综合在线一区二区| 99热全是精品| 亚洲精品中文字幕一二三四区 | 欧美日韩黄片免| 免费观看av网站的网址| 亚洲 欧美一区二区三区| 亚洲第一av免费看| 菩萨蛮人人尽说江南好唐韦庄| 狂野欧美激情性bbbbbb| 成在线人永久免费视频| 精品第一国产精品| 国产淫语在线视频| 最新在线观看一区二区三区| 飞空精品影院首页| 免费看十八禁软件| 咕卡用的链子| 国产不卡av网站在线观看| 午夜老司机福利片| 老司机在亚洲福利影院| 18禁国产床啪视频网站| 这个男人来自地球电影免费观看| 老司机福利观看| 法律面前人人平等表现在哪些方面 | 热re99久久精品国产66热6| 女人高潮潮喷娇喘18禁视频| 少妇精品久久久久久久| 成在线人永久免费视频| 国产精品秋霞免费鲁丝片| 精品国产国语对白av| 久久久久久久国产电影| 日韩制服骚丝袜av| 啦啦啦视频在线资源免费观看| 久久久久久人人人人人| 国产不卡av网站在线观看| 一区二区三区精品91| 国精品久久久久久国模美| 亚洲精品国产av蜜桃| 中文字幕另类日韩欧美亚洲嫩草| xxxhd国产人妻xxx| 在线永久观看黄色视频| 色综合欧美亚洲国产小说| 欧美 日韩 精品 国产| 少妇裸体淫交视频免费看高清 | 美女中出高潮动态图| 国产欧美日韩综合在线一区二区| 97精品久久久久久久久久精品| 国产av精品麻豆| 精品一区二区三区av网在线观看 | 91麻豆精品激情在线观看国产 | 免费少妇av软件| 久久久国产成人免费| 午夜激情av网站| 午夜福利免费观看在线| 精品第一国产精品| 他把我摸到了高潮在线观看 | 国产精品熟女久久久久浪| 欧美午夜高清在线| 精品久久蜜臀av无| 十八禁高潮呻吟视频| 国产色视频综合| 老司机亚洲免费影院| 女性生殖器流出的白浆| 脱女人内裤的视频| 91麻豆精品激情在线观看国产 | 亚洲成人国产一区在线观看| 免费久久久久久久精品成人欧美视频| 亚洲欧美色中文字幕在线| 久9热在线精品视频| 老熟妇乱子伦视频在线观看 | 日日摸夜夜添夜夜添小说| 久久天堂一区二区三区四区| 国产激情久久老熟女| 日韩欧美国产一区二区入口| 大香蕉久久成人网| 少妇 在线观看| 国产有黄有色有爽视频| 中文字幕高清在线视频| 日本黄色日本黄色录像| 97在线人人人人妻| 成人黄色视频免费在线看| 日韩 亚洲 欧美在线| 免费观看av网站的网址| 黑人操中国人逼视频| 一二三四社区在线视频社区8| 欧美另类亚洲清纯唯美| 美女午夜性视频免费| 亚洲国产av新网站| 韩国精品一区二区三区| 视频区图区小说| 精品国产超薄肉色丝袜足j| 国产成人精品久久二区二区91| 在线观看舔阴道视频| 久久久水蜜桃国产精品网| 久久久精品94久久精品| av欧美777| 爱豆传媒免费全集在线观看| 国产亚洲精品第一综合不卡| 性少妇av在线| 女人高潮潮喷娇喘18禁视频| 日本vs欧美在线观看视频| 欧美日韩黄片免| 亚洲av国产av综合av卡| 久久国产精品影院| 中亚洲国语对白在线视频| 免费日韩欧美在线观看| 亚洲精品中文字幕一二三四区 | 丝袜喷水一区| 亚洲av男天堂| 伊人久久大香线蕉亚洲五| 亚洲色图 男人天堂 中文字幕| 亚洲欧美日韩另类电影网站| 日韩人妻精品一区2区三区| 在线十欧美十亚洲十日本专区| 成在线人永久免费视频| 一区二区三区乱码不卡18| 日韩三级视频一区二区三区| 亚洲情色 制服丝袜| 国产亚洲av片在线观看秒播厂| 久久精品成人免费网站| 亚洲天堂av无毛| 可以免费在线观看a视频的电影网站| 国产精品免费视频内射| 性高湖久久久久久久久免费观看| 久久久久视频综合| 另类精品久久| 最近中文字幕2019免费版| 久久ye,这里只有精品| 亚洲精品国产av蜜桃| 人成视频在线观看免费观看| 丁香六月欧美| 91成人精品电影| 中亚洲国语对白在线视频| 久久国产亚洲av麻豆专区| 精品视频人人做人人爽| 国产精品成人在线| 精品久久久精品久久久| 午夜免费观看性视频| 国产伦人伦偷精品视频| 亚洲精品乱久久久久久| 国产精品1区2区在线观看. | 亚洲一区二区三区欧美精品| 免费在线观看日本一区| av在线老鸭窝| 亚洲精华国产精华精| 啦啦啦中文免费视频观看日本| 亚洲全国av大片| 叶爱在线成人免费视频播放| 色综合欧美亚洲国产小说| 婷婷色av中文字幕| 久久人妻熟女aⅴ| 一区二区三区乱码不卡18| 国产男女超爽视频在线观看| av电影中文网址| 欧美激情极品国产一区二区三区| 少妇猛男粗大的猛烈进出视频| 久久久水蜜桃国产精品网| 50天的宝宝边吃奶边哭怎么回事| 中文字幕人妻丝袜一区二区| 国产精品欧美亚洲77777| 飞空精品影院首页| 动漫黄色视频在线观看| 亚洲av成人不卡在线观看播放网 | av又黄又爽大尺度在线免费看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人av激情在线播放| 亚洲 国产 在线| 操出白浆在线播放| 少妇猛男粗大的猛烈进出视频| 久久久精品免费免费高清| 欧美精品一区二区免费开放| 精品少妇内射三级| av线在线观看网站| 亚洲av日韩在线播放| 国产99久久九九免费精品| 日韩视频在线欧美| 美女主播在线视频| 黄网站色视频无遮挡免费观看| 亚洲人成电影观看| 亚洲国产欧美日韩在线播放| 久久九九热精品免费| 999久久久精品免费观看国产| 久久国产精品大桥未久av| 精品第一国产精品| 在线天堂中文资源库| 欧美中文综合在线视频| 极品少妇高潮喷水抽搐| 日韩一卡2卡3卡4卡2021年| 十八禁高潮呻吟视频| 欧美黄色淫秽网站| 啦啦啦免费观看视频1| 精品欧美一区二区三区在线| 久久精品国产亚洲av香蕉五月 | 国产男人的电影天堂91| avwww免费| 黑人猛操日本美女一级片| 国产一卡二卡三卡精品| 人人妻人人添人人爽欧美一区卜| 亚洲av日韩精品久久久久久密| 亚洲av成人一区二区三| 狠狠狠狠99中文字幕| 老司机在亚洲福利影院| 一区二区三区精品91| 不卡一级毛片| 一进一出抽搐动态| 丁香六月天网| 欧美中文综合在线视频| 欧美黄色片欧美黄色片| 美女福利国产在线| 国产伦人伦偷精品视频| 久热爱精品视频在线9| 汤姆久久久久久久影院中文字幕| 女人被躁到高潮嗷嗷叫费观| 操美女的视频在线观看| 成年动漫av网址| 国产高清videossex| 人人妻人人爽人人添夜夜欢视频| 少妇猛男粗大的猛烈进出视频| 久久国产精品大桥未久av| 国产成+人综合+亚洲专区| 少妇裸体淫交视频免费看高清 | 亚洲av日韩在线播放| 97人妻天天添夜夜摸| 十八禁人妻一区二区| 欧美亚洲日本最大视频资源| 亚洲国产av新网站| 亚洲国产看品久久| 久久影院123| 亚洲国产日韩一区二区| 91九色精品人成在线观看| 久久精品国产亚洲av高清一级| 97人妻天天添夜夜摸| 国产精品偷伦视频观看了| 亚洲国产欧美日韩在线播放| 国产成人免费观看mmmm| 精品视频人人做人人爽| 久久综合国产亚洲精品| videosex国产| 国产精品熟女久久久久浪| 久久天躁狠狠躁夜夜2o2o| 热re99久久精品国产66热6| 亚洲 国产 在线| 两性夫妻黄色片| 成年av动漫网址| 日韩大片免费观看网站| 午夜福利一区二区在线看| 亚洲国产精品一区三区| 大香蕉久久网| 亚洲精品国产av成人精品| 永久免费av网站大全| 国产日韩欧美视频二区| bbb黄色大片| 91成人精品电影| 欧美中文综合在线视频| www.999成人在线观看| 大片免费播放器 马上看| 亚洲欧美一区二区三区黑人| 午夜两性在线视频| 国产成人一区二区三区免费视频网站| 亚洲欧美色中文字幕在线| svipshipincom国产片| 91精品三级在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲一码二码三码区别大吗| 在线观看www视频免费| 亚洲人成电影免费在线| 国产成人系列免费观看| 久久影院123| 日韩熟女老妇一区二区性免费视频| 无限看片的www在线观看| 老鸭窝网址在线观看| 婷婷色av中文字幕| 国产97色在线日韩免费| 热99久久久久精品小说推荐| 国产免费视频播放在线视频| 中文字幕人妻丝袜制服| 亚洲五月色婷婷综合| 精品国产乱码久久久久久小说| av在线老鸭窝| 亚洲国产精品一区三区| 亚洲性夜色夜夜综合| 欧美日韩精品网址| 中文字幕人妻熟女乱码| 免费少妇av软件| 亚洲国产精品一区三区| 成在线人永久免费视频| 侵犯人妻中文字幕一二三四区| 最黄视频免费看| 91成人精品电影| 久久久久精品国产欧美久久久 | 成人18禁高潮啪啪吃奶动态图| 日韩熟女老妇一区二区性免费视频| 久久精品亚洲熟妇少妇任你| 在线观看免费日韩欧美大片| 极品少妇高潮喷水抽搐| 欧美精品av麻豆av| 国产成人精品在线电影| 亚洲专区国产一区二区| 99热国产这里只有精品6| 在线观看一区二区三区激情| 大片电影免费在线观看免费| www.999成人在线观看| 日韩免费高清中文字幕av| 1024视频免费在线观看| 丝瓜视频免费看黄片| 国产欧美日韩一区二区精品| 日韩制服丝袜自拍偷拍| 午夜久久久在线观看| 在线天堂中文资源库| 国产精品熟女久久久久浪| 青草久久国产| 新久久久久国产一级毛片| 国产高清videossex| 久久久国产精品麻豆| 黄色视频在线播放观看不卡| 一进一出抽搐动态| 两个人免费观看高清视频| 国产1区2区3区精品| 欧美xxⅹ黑人| 丝袜在线中文字幕| 久久久国产一区二区| 亚洲国产日韩一区二区| 美女国产高潮福利片在线看| 操出白浆在线播放| 久久精品aⅴ一区二区三区四区| 一级毛片精品| 精品福利永久在线观看| 91字幕亚洲| √禁漫天堂资源中文www| 性高湖久久久久久久久免费观看| 欧美精品亚洲一区二区| 亚洲国产av新网站| kizo精华| 亚洲欧美清纯卡通| 欧美成狂野欧美在线观看| 丝袜喷水一区| 精品少妇久久久久久888优播| 日本a在线网址| 亚洲国产欧美日韩在线播放| 欧美日韩亚洲国产一区二区在线观看 | 亚洲成人手机| 女性生殖器流出的白浆| 亚洲国产欧美网| 大陆偷拍与自拍| 美国免费a级毛片| 叶爱在线成人免费视频播放| 国产1区2区3区精品| 久久女婷五月综合色啪小说| 精品少妇一区二区三区视频日本电影| 日本vs欧美在线观看视频| 国产91精品成人一区二区三区 | 亚洲欧美色中文字幕在线| 午夜免费鲁丝| 亚洲欧美一区二区三区黑人| 欧美日韩亚洲高清精品| 欧美日韩亚洲国产一区二区在线观看 | 高清欧美精品videossex| 国产精品偷伦视频观看了| 波多野结衣av一区二区av| 精品一区二区三区av网在线观看 | 国产成人影院久久av| 国产欧美日韩一区二区三区在线| 免费av中文字幕在线| 久久国产精品大桥未久av| 黑人巨大精品欧美一区二区mp4| 女人精品久久久久毛片| 99国产精品免费福利视频| 国产老妇伦熟女老妇高清| 日本一区二区免费在线视频| 久久久欧美国产精品| netflix在线观看网站| 青草久久国产| 青春草视频在线免费观看| 国产免费视频播放在线视频| 久久久久国内视频| 少妇精品久久久久久久| 亚洲精品av麻豆狂野| 99国产精品一区二区蜜桃av | 国产一区二区三区在线臀色熟女 | 水蜜桃什么品种好| 在线观看免费日韩欧美大片| 老熟女久久久| 多毛熟女@视频| 国产精品九九99| 久久久久网色| 欧美精品一区二区免费开放| av天堂在线播放| 精品久久蜜臀av无| 蜜桃在线观看..| 91精品伊人久久大香线蕉| 91av网站免费观看| 黄色视频在线播放观看不卡| 别揉我奶头~嗯~啊~动态视频 | 首页视频小说图片口味搜索| 国产精品国产av在线观看| 精品第一国产精品| 国产有黄有色有爽视频| 久热爱精品视频在线9| 热99re8久久精品国产| 久热这里只有精品99| 成人18禁高潮啪啪吃奶动态图| 午夜福利在线免费观看网站| a 毛片基地| 欧美人与性动交α欧美精品济南到| 男人舔女人的私密视频| 国产激情久久老熟女| 精品少妇黑人巨大在线播放| 99久久综合免费| 国产成人精品久久二区二区91| 国产日韩欧美视频二区| 国产欧美日韩综合在线一区二区| 91成人精品电影| 久久久精品94久久精品| 岛国毛片在线播放| 热99国产精品久久久久久7| 嫁个100分男人电影在线观看|