王乾芬, 李芊, 周雙, 宋子博, 朱建裕
(中南大學(xué)資源加工與生物工程學(xué)院,長沙410083)
富礦資源由于不斷地開發(fā)利用而日趨貧乏,高效合理地開發(fā)利用低品位難處理金屬礦產(chǎn)資源已經(jīng)成為熱點(diǎn).生物冶金由于低成本、低能耗、少污染成為了處理低品位礦物的有效方法[1-2].礦物生物浸出時(shí),金屬離子是在浸礦微生物-礦物相互作用過程中溶出的[3-4].因此,為了獲得較高的金屬浸出率,研究浸礦微生物-礦物相互作用顯得尤為重要.
微生物與礦物表面的相互作用依賴于若干物理和生化參數(shù).研究顯示微生物通過各種方法吸附在礦物表面:黏液層的分泌,蛋白結(jié)合受體,化學(xué)吸附,靜電、疏水性相互作用,使用多糖-蛋白質(zhì)復(fù)合物或借助于菌毛吸附[5-8],因此,微生物與礦物相互作用受兩者表面性質(zhì)的影響.對于微生物與礦物相互作用研究中表面性質(zhì)的表征來說,確定微生物種類、礦物類型、溶液環(huán)境等都很重要[9-10].因而,通過各種方法來表征作用體系的性質(zhì),有助于加深對微生物與礦物相互作用的理解.微生物與礦物之間實(shí)驗(yàn)分不開的復(fù)雜的物理化學(xué)相互作用使兩者之間相互作用的研究有一定難度.
隨著研究的不斷發(fā)展與深入,各種物理的、化學(xué)的方法以及儀器分析的技術(shù)逐步地應(yīng)用于相互作用領(lǐng)域.目前,微生物與礦物相互作用既可以從宏觀角度分析,也可以從分子或原子的微觀角度來分析.微觀和宏觀層面分析的結(jié)合使相互作用機(jī)制的探討更加深入,并將微生物與礦物相互作用的研究推向了新的高度.本文總結(jié)了浸礦微生物-礦物相互作用的主要研究方法和技術(shù),以便使這些方法技術(shù)進(jìn)一步從不同視角和尺度來研究生物冶金的機(jī)理與過程.
浸礦微生物-礦物相互作用涉及到物理、化學(xué)等各方面的機(jī)理.定性定量描述微生物吸附到礦物表面的機(jī)理包括表面熱力學(xué)方法、經(jīng)典DLVO及擴(kuò)展DLVO理論、等溫吸附模型和微量熱技術(shù)等.
熱力學(xué)方法通過比較浸礦微生物與礦物相互作用前后界面自由能的變化來解釋吸附[11-13],吸附的總自由能表述為[13]:
其中,γsm,γsl和 γml分別為礦物與浸礦微生物,礦物與溶液及浸礦微生物與溶液的界面自由能.當(dāng)△Gadh小于0,浸礦微生物容易吸附到礦物的表面.反之,則不易發(fā)生吸附.
GU Guo-hua等[14]應(yīng)用熱力學(xué)方法計(jì)算Acidithiobacillus ferrooxidans在黃鐵礦表面吸附的自由能,發(fā)現(xiàn)其吸附自由能為正值,無法解釋Acidithiobacillus ferrooxidans在黃鐵礦表面的吸附現(xiàn)象.P.K.Sharma等[13]使用表面熱力學(xué)方法來預(yù)測Paenibacillus polymyxa在黃銅礦和黃鐵礦表面的吸附行為.熱力學(xué)方法表明Paenibacillus polymyxa和2種礦物之間存在著范德華引力和酸堿作用斥力,細(xì)菌與礦物表面之間的吸附自由能都是正值,也就是說細(xì)菌不能吸附到礦物表面,但這與實(shí)驗(yàn)結(jié)果相反.A.Vilinska和 K.Hanumantha Rao[15]用表面熱力學(xué)方法預(yù)測Leptospirillum ferrooxidans在黃鐵礦和黃銅礦表面的吸附情況,結(jié)果表明細(xì)菌與2種礦物表面之間存在范德華引力和酸堿作用引力,兩者之間的吸附自由能為負(fù)值,即Leptospirillum ferrooxidans可以吸附到黃銅礦或者黃鐵礦表面.表面熱力學(xué)方法是對假定為可逆吸附的平衡過程的一種描述,但是忽視了靜電相互作用及吸附自由能和距離之間的關(guān)系.當(dāng)微生物與礦物之間的酸堿作用為引力或者范德華引力大于酸堿作用斥力時(shí),熱力學(xué)方法預(yù)測微生物可以吸附到礦物表面.相反則不能.因此,表面熱力學(xué)方法不能完全解釋吸附動(dòng)力學(xué)特征,甚至還會(huì)出現(xiàn)與細(xì)菌吸附的實(shí)際測定數(shù)據(jù)不相符的結(jié)果.
經(jīng)典DLVO理論包括范德華力和靜電力[12-13,16],相互作用的總能量(Gtotal)等于范德華力能(GLW)和靜電力作用能(GEL)之和,即:Gtotal(H)=GLW(H)+GEL(H).這里H為微生物與礦物表面的距離.范德華相互作用是濃縮狀態(tài)下的分子或者表面的微小引力,它包括永久偶極子之間、永久偶極子與感生偶極子之間及感生偶極子之間的引力,它通過測定微生物及礦物的接觸角來計(jì)算,因而,通過接觸角數(shù)據(jù)可以直觀地表現(xiàn)親疏水性.靜電作用是由于兩界面之間的雙電層相互作用產(chǎn)生的,Zeta電位是連續(xù)相與附著在分散粒子上的流體穩(wěn)定層之間的電勢差,它可以表征分散粒子在連續(xù)相中表面所帶的電荷性質(zhì)及電荷量,因此,測量Zeta電位在確定微生物與礦物之間的靜電相互作用中變得很重要.DLVO理論的缺陷是,只考慮到微生物細(xì)胞與礦物表面間的長程范德華力勢能和靜電力勢能的相互作用.實(shí)際上,二者間還存在諸如疏水力、氫鍵等作用力.后來,Van Oss等[12-13]將酸堿相互作用加入經(jīng)典DLVO理論中.酸堿作用能(GAB)依賴于在溶液中極性部分的電子供體和電子受體之間的相互作用.因此,浸礦微生物與礦物之間的作用勢能曲線被描述為范德華力、靜電力和酸堿作用力關(guān)于作用距離(H)的一種平衡:Gtotal(H)=GLW(H)+GEL(H)+GAB(H).
GU Guo-hua等[14]通過擴(kuò)展DLVO理論建立的范德華力、疏水相互作用和靜電作用自由能與作用距離(H)之間的勢能曲線準(zhǔn)確地預(yù)言了Acidithiobacillus ferrooxidans在黃鐵礦表面的吸附現(xiàn)象.Mohsen F arahat等[17]利用擴(kuò)展DLVO理論來評估Ferroplasma acidiphilum在黃鐵礦表面的吸附情況,根據(jù)擴(kuò)展DLVO理論,在研究的所有pH條件下,細(xì)菌礦物總的相互作用能主要由靜電能貢獻(xiàn),其次是酸堿相互作用能和范德華能.酸堿相互作用比靜電相互作用和范德華相互作用影響大,但是酸堿相互作用是短程的,相互作用面必須足夠近.擴(kuò)展DLVO理論可以解釋所有pH條件下Ferroplasma acidiphilum-黃鐵礦的吸附行為.
吸附等溫曲線是指在一定溫度下微生物在礦物表面的吸附達(dá)到平衡時(shí),微生物在兩相中濃度之間的關(guān)系曲線.根據(jù)吸附實(shí)驗(yàn)獲取的數(shù)據(jù),擬合它們間的關(guān)系,其擬合參數(shù)能概括吸附量、吸附強(qiáng)度和吸附狀態(tài)等特性.Langmuir方程和Freundlich方程己經(jīng)廣泛應(yīng)用于浸礦微生物吸附到礦物表面的模擬中,且能很好地?cái)M合浸礦微生物在礦物表面吸附的實(shí)驗(yàn)數(shù)據(jù)[18-19].Langmuir方程用于微生物-礦物吸附必須提出假設(shè):吸附必須是單層的,均勻的,且吸附的細(xì)胞之間無相互作用.Freundlich方程用于微生物-礦物吸附時(shí)不容易區(qū)分是單層吸附還是多層吸附,主要看細(xì)菌在礦物表面的覆蓋度.LeXian Xia等[20]測定了Acidithiobacillus ferrooxidans ATCC 23270吸附到黃銅礦上的數(shù)量,并且利用Langmuir和Freundlich方程對吸附數(shù)據(jù)進(jìn)行了模擬.2個(gè)方程模擬的相關(guān)系數(shù)都超過了0.9,說明細(xì)菌吸附到礦物表面是一個(gè)涉及到Langmuir和Freundlich特性的很復(fù)雜的過程.S.N.Tan等[21]觀察了Acidithiobacillus ferrooxidans吸附到黃銅礦以及黃鐵礦表面的行為,并對吸附數(shù)據(jù)進(jìn)行了假一級動(dòng)力學(xué)和Langmuir方程的模擬,實(shí)驗(yàn)結(jié)果表明細(xì)菌吸附受底物疏水性質(zhì)的影響,由調(diào)節(jié)趨化性的化學(xué)感應(yīng)系統(tǒng)控制的Acidithiobacillus ferrooxidans的活性位點(diǎn),來應(yīng)對細(xì)菌-礦物的初始接觸.
等溫滴定微量熱法是微量熱測定方法中較常用的一種.等溫滴定微量熱法通過高靈敏度、高自動(dòng)化的微量量熱儀連續(xù)準(zhǔn)確地監(jiān)測和記錄量熱變化[22-23].Xingmin Rong等[24]利用等溫滴定微量熱儀(ITC)和傅立葉紅外光譜儀(FTIR)鑒定Pseudomonas putida在針鐵礦上的吸附,在pH低于針鐵礦等電點(diǎn)時(shí),大量的細(xì)菌吸附到針鐵礦上.ITC的實(shí)驗(yàn)結(jié)果表明細(xì)菌吸附到針鐵礦上是放熱反應(yīng),吸附焓隨著pH和電解質(zhì)濃度的提高而提高.等溫滴定微量熱法通過自動(dòng)記錄反應(yīng)的熱功率(P)隨時(shí)間(t)變化的曲線[25-26],對 P-t曲線與基線之間的峰面積進(jìn)行積分,就得到反應(yīng)焓變(△H),進(jìn)一步可以求出一系列反應(yīng)動(dòng)力學(xué)參數(shù),如熵變、自由能變等,并且還可以獲得反應(yīng)的結(jié)合位點(diǎn)數(shù).等溫滴定微量熱法既可以研究液相、固相、氣相反應(yīng)及兩相間的反應(yīng),也可以長時(shí)間地監(jiān)測緩慢的反應(yīng)過程.Thore Rohwerder等[27]用等溫滴定微量熱法,分批測定化能無機(jī)營養(yǎng)型的浸礦細(xì)菌Acidithiobacillus ferrooxidans單菌,Leptospirillum ferrooxidans單菌及Leptospirillum ferrooxidans和Acidithiobacillus thiooxidans混菌分別氧化黃鐵礦的反應(yīng)能.實(shí)驗(yàn)表明,對比Acidithiobacillus ferrooxidans單菌或者Acidithiobacillus thiooxidans 單菌,Leptospirillum ferrooxidans具有更高的能量儲(chǔ)存效率,利用等溫滴定微量熱測定方法,可以定量礦物的浸出速率.朱建裕等[28]以細(xì)菌胞外聚合物的3種模擬成分葡萄糖、甘露糖和半胱氨酸與黃鐵礦相互作用,通過等溫滴定微量熱技術(shù),考察了它們與黃鐵礦表面相互作用的反應(yīng)熱情況,半胱氨酸與黃鐵礦的吸附和氣體-固體吸附過程相似,符合langmuir單層吸附模型,而葡萄糖和甘露糖為多層吸附.實(shí)驗(yàn)結(jié)果證明胞外聚合物(EPS)介導(dǎo)細(xì)菌吸附到硫化礦上,并與其發(fā)生反應(yīng)導(dǎo)致礦物表面化學(xué)成分的改變.
X射線衍射儀能夠定性定量分析大部分金屬和非金屬粉末樣品[29-30],具有測量精確和樣品制備簡單等特點(diǎn).夏樂先等[31]利用X射線衍射和掃描電子顯微鏡/能譜(SEM/EDX)來分析 Acidithiobacillus ferriooxidans與Acidithiobacillus thiooxidans分別及共同浸出閃鋅礦.XRD確定了太高的三價(jià)鐵離子由于形成黃鉀鐵礬而降低了鋅離子的溶解.另外,通過XRD、SEM和EDX分析無菌條件下,或者只有Acidithiobacillus ferriooxidans條件下,浸出閃鋅礦的殘基,表明存在于礦渣表面的硫?qū)幼璧K了礦物的浸出,Acidithiobacillus thiooxidans浸出的礦渣表面沒有硫?qū)?2種細(xì)菌在共同浸出閃鋅礦過程中展現(xiàn)了不同的功能.Hui Liu等[32]通過XRD和FTIR分析Acidithiobacillus ferrooxidans與黃鐵礦相互作用30 d后的礦渣表明黃鉀鐵礬的形成及無硫?qū)拥拇嬖?,這說明此種浸出情況下,阻礙礦物浸出的是黃鉀鐵礬鈍化層.
傅立葉變換紅外光譜儀能夠定性定量分析樣品,可以分析樣品表面的官能團(tuán),具有分辨率高、重現(xiàn)性好、測定光譜范圍寬等優(yōu)點(diǎn)[33-35].Santhiy等[36]用FTIR分析發(fā)現(xiàn)Acidithiobacillus ferrooxidans吸附在方鉛礦及閃鋅礦表面時(shí),3383cm-1的吸收峰和1 453cm-1的吸收峰因?yàn)槲竭^程中氫鍵的作用發(fā)生偏移.Mengxue Diao等[37]結(jié)合FTIR與SEM分析證明細(xì)菌Acidithiobacillus thiooxidans和Leptospirillum ferrooxidans表面成分及表面附屬物的不同,導(dǎo)致了在AFM測量細(xì)菌與黃鐵礦相互作用過程中縮回曲線的差異.CHEN Ming-lian等[38]通過FTIR分析Acidithiobacillus ferrooxidans和Acidithiobacillus caldus分別與黃銅礦相互作用后的樣品,與Acidithiobacillus ferrooxidans相互作用后的黃銅礦比與Acidithiobacillus caldus相互作用后的黃銅礦變化明顯,將這2種樣品與純黃銅礦樣品的紅外光譜進(jìn)行比較得知:細(xì)胞吸附到了黃銅礦表面,結(jié)合吸附試驗(yàn),Acidithiobacillus ferrooxidans比Acidithiobacillus caldus吸附到黃銅礦表面的量多.
拉曼光譜儀可用于分子結(jié)構(gòu)研究的分析,它能提供簡單快速、可重復(fù)、無損傷的定性定量分析,無需樣品準(zhǔn)備[39-41].R.H.Lara等[42]使用拉曼光譜來分析評估在黃鐵礦電極表面的硫化合物的狀態(tài),被Acidithiobacillus thiooxidans氧化的礦物顆粒樣品的拉曼光譜,證實(shí)了在酸性條件下黃鐵礦的腐蝕過程中元素硫的形成、穩(wěn)定和漸進(jìn)式的結(jié)晶.P.K.Sharma等[43]利用FTIR和拉曼光譜,揭示了硫或黃鐵礦培養(yǎng)的Acidithiobacillus ferrooxidans菌比硫酸亞鐵培養(yǎng)的Acidithiobacillus ferrooxidans菌的表面蛋白含量更高,這表明在不同的生長條件下細(xì)菌合成蛋白成分的差異,導(dǎo)致了細(xì)菌表面電荷的不同.
X射線光電子能譜,根據(jù)光電子的結(jié)合能定性定量分析物質(zhì)的元素種類及化學(xué)形態(tài)[44-47],在研究微生物對礦物的溶解過程中起到獨(dú)特的作用.?ke Sandstr?m等[48]結(jié)合 XRD和 XPS來研究65℃的 2個(gè)不同的還原電位條件下,極端嗜熱微生物Sulfolobus metallicus浸出及化學(xué)浸出黃銅礦所得的礦渣,在這2種情況下黃銅礦的浸出,均比在較低的氧化還原電位時(shí)有較大地提高,這也導(dǎo)致了大量元素硫的形成,但是在化學(xué)浸出時(shí)提高的特別明顯.高的氧化還原電位伴隨著黃鉀鐵礬的生成,而生物浸出可以將硫完全氧化成硫酸.因此,黃銅礦浸出的鈍化層是黃鉀鐵礬.Keiko Sasaki等[49]利用XPS分析有無CE透析膜存在時(shí),Acidithiobacillus caldus與黃銅礦相互作用過程中硫的形成和消失,實(shí)驗(yàn)表明2種情況下黃銅礦表面均形成了一硫化合物和元素硫,并且細(xì)菌直接與礦物接觸更有助于中間化合物的溶解和銅的浸出.
X-射線吸收近邊結(jié)構(gòu)光譜能,能夠獲得吸收X射線的原子周圍的配位原子種類、鍵長、配位數(shù)等電子和幾何的局部結(jié)構(gòu)參數(shù)[50-52],該技術(shù)具有可進(jìn)行元素分辨,對吸收原子的周圍局域結(jié)構(gòu)和化學(xué)環(huán)境敏感等優(yōu)勢.Huan He等[53]結(jié)合 XANES、SEM 和 XRD來研究極端嗜熱微生物Acidianus manzaensis與黃銅礦相互作用過程中硫形態(tài)的變化.SEM表明細(xì)胞吸附到黃銅礦上,相互作用20d后礦物表面被許多絮狀物覆蓋.XRD指出礦渣主要成分是黃銅礦和黃鉀鐵礬,同時(shí)XANES證明Acidianus manzaensis與黃銅礦相互作用的鈍化層主要是黃鉀鐵礬.光譜形貌分析表明:銅藍(lán)是黃銅礦生物浸出過程中的中間硫化合物.
電子顯微鏡采用電子束和電磁透鏡來成像,從而使其分辨率提高至在1 nm下觀察樣品[54-55],EM在浸礦微生物-礦物相互作用的研究中應(yīng)用較早.D.Mikkelsen等[56]通過掃描電子電鏡(SEM)和透射電子顯微鏡(TEM)觀測極端嗜熱微生物Acidianus brierleyi,Metallosphaera sedula 和 Sulfolobus metallicus與黃鐵礦之間的相互作用.隨著黃鐵礦的分解,沉積結(jié)構(gòu)繼續(xù)形成,從亞微米的沉淀物到圓片形的結(jié)構(gòu)分布于礦物表面.曾偉民等[57]利用掃描電子顯微鏡/能譜(SEM/EDX)分析中度嗜熱細(xì)菌浸出黃銅礦電極,結(jié)果表明黃銅礦表面覆蓋有EPS和黃鉀鐵礬,證明了這些物質(zhì)是阻礙銅連續(xù)浸出的鈍化層的主要成分.Hui Liu等[32]利用SEM分析了Acidithiobacillus ferrooxidans與黃鐵礦相互作用30 d后的礦渣,結(jié)果在礦物表面有圓形的、方形的和瘦長形的腐蝕坑的存在,這些腐蝕坑的分布正好與不同的晶面相關(guān),并且所有坑的大小都比不上細(xì)菌的大小.
原子力顯微鏡是研究微生物與礦物之間相互作用的有力工具,它不僅能夠獲取單細(xì)胞在固相表面的吸附等高分辨率的圖像,而且可以在納米距離范圍內(nèi),測定微生物與礦物之間相互作用力隨距離的變化[58-60],具有原子級的分辨率.Jianyu Zhu等[61]利用AFM探測Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans及Leptospirillum ferrooxidans分別與黃銅礦之間的相互作用力,結(jié)果表明細(xì)菌細(xì)胞的表面電荷和疏水性質(zhì)都影響細(xì)菌的吸附力,且EPS缺損時(shí)吸附力減小,這說明EPS對細(xì)菌-礦物相互作用是十分重要的.Weimin Zeng等[62]利用AFM觀測吸附到礦物表面的中度嗜熱微生物Acidithiobacillus caldus快速地產(chǎn)生EPS,并且EPS一旦產(chǎn)生就很難減少或消除,這樣在浸礦后期大量的EPS介入導(dǎo)致黃鉀鐵礬生成,阻礙了銅的繼續(xù)浸出.K.Kinzler等[3]通過AFM來觀察 Acidithiobacillus ferrooxidans R1,R7,C-52 和SPIII/3四株菌對黃鐵礦的吸附情況,實(shí)驗(yàn)數(shù)據(jù)表明在EPS中具有更高三價(jià)鐵離子的菌株展現(xiàn)較好的吸附情況和氧化活性.
熒光顯微鏡用紫外線使被檢測物體發(fā)出熒光,它能夠?qū)ξ矬w的形狀及位置進(jìn)行觀察,與原子力顯微鏡相結(jié)合來做定性定量的研究.N.No?l等[63]靠原子力顯微鏡和熒光顯微鏡的DAPI染色和 FISH探針,來揭示了吸附到黃鐵礦樣品表面的細(xì)菌種類(Acidithiobacillus ferrooxidans,Acidithiobacillus thiooxidans, Acidithiobacillus caldus, Leptospirillum ferrooxidans和 Leptospirillum ferriphilum),微生物可以被詳細(xì)地鑒定至某一特定的種.Leptospirillum ferriphilum引起了聚合,并且提高了細(xì)胞吸附到黃鐵礦樣品表面的量.Acidithiobacillus caldus單獨(dú)不能吸附到黃鐵礦表面,Leptospirillum ferriphilum和Acidithiobacillus caldus混菌吸附試驗(yàn),證明Leptospirillum ferriphilum先吸附到礦物表面才能使Acidithiobacillus caldus發(fā)生吸附,在這種情況下,Leptospirillum ferriphilum是生物膜形成的關(guān)鍵微生物.Stefanie Mangold等[64]利用AFM和EFM來研究吸附的Acidithiobacillus ferrooxidans細(xì)菌及EPS與礦物之間的相互作用.AFM成像提供了細(xì)胞的空間排列和物質(zhì)從溶液到單細(xì)胞之間轉(zhuǎn)換的痕跡.EFM鑒定了生物膜的組分及其分布狀態(tài).AFM與EFM相結(jié)合有助于我們進(jìn)一步豐富微生物-礦物界面作用的相關(guān)知識.
激光掃描共聚焦顯微鏡逐點(diǎn)、逐行、逐面的快速掃描成像,經(jīng)過各種特異性的熒光染色,CLSM能夠排除非焦平面信息以直觀反應(yīng)立體空間分布、無損深層形態(tài)結(jié)構(gòu)地觀察細(xì)胞的形態(tài),及提高分辨率和對比度以定量分析細(xì)胞內(nèi)生化成分等[65-66].S?ren Bellenberg等[67]利用CLSM觀測Acidithiobacillus ferrooxidans ATCC 23270的莢膜多糖,實(shí)驗(yàn)表明細(xì)菌與金屬硫化物降解產(chǎn)物接觸等多方面的影響,誘導(dǎo)了細(xì)菌莢膜多糖的產(chǎn)生.Cindy-Jade Africa等[68]結(jié)合原子力顯微鏡、熒光顯微鏡和激光掃描共聚焦顯微鏡,來鑒定Metallosphaera hakonensis分別吸附到黃銅礦和黃鐵礦樣本表面及細(xì)菌在礦物表面形成的生物膜,礦物表面的細(xì)菌覆蓋率與溫度和時(shí)間相關(guān),細(xì)菌在金屬硫化礦的優(yōu)先吸附和生物膜形成也被觀察到.同時(shí)原子力顯微鏡和熒光顯微鏡的結(jié)合,提高了對微生物與礦物位點(diǎn)特異性結(jié)合的評估.B.Florian等[69]利用AFM、EFM和CLSM觀測微生物與黃鐵礦之間的相互作用,在吸附實(shí)驗(yàn)中,礦物表面某些地方細(xì)菌成簇的吸附,但是有的地方?jīng)]有細(xì)菌吸附,不同菌種的細(xì)菌在礦物表面的分布和空間排布有較大差別,這些實(shí)驗(yàn)結(jié)果有助于進(jìn)一步研究細(xì)菌與礦物之間的特異性相互作用.
綜上所述,經(jīng)典物理化學(xué)分析方法是研究浸礦微生物-礦物相互作用基礎(chǔ)而重要的研究手段.從物理化學(xué)的角度分析浸礦微生物與礦物的相互作用,考慮兩者的靜電相互作用、范德華力和疏水作用等,反應(yīng)過程中的自由能和熱量變化,但是只通過這些分析方法很難獲取浸礦微生物-礦物相互作用的微觀信息.表面成分分析方法和微觀表面探測技術(shù),已應(yīng)用于浸礦微生物和礦物相互作用的機(jī)理研究中,如熒光顯微鏡、X射線光電子能譜以及X-射線吸收近邊結(jié)構(gòu)光譜等技術(shù),以上手段從微觀的角度,揭示了浸礦微生物與礦物相互作用前后形貌的變化和相互作用的基團(tuán)或化學(xué)鍵等信息.經(jīng)典物理化學(xué)分析技術(shù)、表面成分分析方法及微觀表面探測技術(shù)相結(jié)合,在浸礦微生物與礦物相互作用研究中使我們更加了解浸礦微生物與礦物相互作用的機(jī)理,為進(jìn)一步提高生物浸出效率和控制酸性礦坑水的污染提供了有效的信息.
[1]Brierley C L.How will biomining be applied in future[J].Transactions of Nonferrous Metals Society of China,2008,18(6):1302-1310.
[2]Rawlings D E.Heavy metal mining using microbes[J].Annual Review of Microbiology,2002,56:65-91.
[3]Kinzler K,Gehrke T,Telegdi J,et al.Bioleaching-a result of interfacial processes caused by extracellular polymeric substances(EPS)[J].Hydrometallurgy,2003,71(1/2):83-88.
[4]Vera M,Schippers A,Sand W.Progress in bioleaching:fundamentals and mechanisms of bacterial metal sulfide oxidation-part A[J].Applied Microbiology and Biotechnology,2013,97(17):7529-7541.
[5]Sampson M I,Phillips C V,Ball A S.Investigation of the attachment of Thiobacillus ferrooxidans to mineral sulfides using scanning electron microscopy analysis[J].Minerals Engineering,2000,13(6):643-656.
[6]Devasia P,Natarajan K A,Sathyanarayana D N,et al.Surface chemistry of Thiobacillus ferrooxidans relevant to adhesion on mineral surfaces[J].Applied and Environmental Microbiology,1993,59(12):4051-4055.
[7]Gehrke T,Telegdi J,Thierry D,et al.Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching[J].Applied and Environmental Microbiology,1998,64(7):2743-2747.
[8]Gonzalez A,Bellenberg S,Mamani S,et al.AHL signaling molecules with a large acyl chain enhance biofilm formation on sulfur and metal sulfides by the bioleaching bacterium Acidithiobacillus ferrooxidans[J].Applied Microbiology and Biotechnology,2013,97(8):3729-3737.
[9]Ghauri M A,Okibe N,Johnson D B.Attachment of acidophilic bacteria to solid surfaces:The significance of species and strain variations[J].Hydrometallurgy,2007,85(2/3/4):72-80.
[10]Ohmura N,Kitamura K,Saiki H.Selective Adhesion of Thiobacillus ferrooxidans to Pyrite[J].Applied and Environmental Microbiology,1993,59(12):4044-4050.
[11]Bayoudh S,Othmane A,Mora L,et al.Assessing bacterial adhesion using DLVO and XDLVO theories and the jet impingement technique[J].Colloid Surface B:Biointerfaces,2009,73(1):1-9.[12]Hermansson M.The DLVO theory in microbial adhesion[J].Colloids and Surfaces B:Biointerfaces,1999,14(1/2/3/4):105-119.[13]Sharma P K,Rao K H.Adhesion of Paenibacillus polymyxa on chalcopyrite and pyrite:surface thermodynamics and extended DLVO theory[J].Colloids and Surfaces B:Biointerfaces,2003,29(1):21-38.
[14]Gu G H,Wang H,Suo J,et al.Interfacial interaction of bioleaching of pyrite mineral[J].Journal of Central South University of Technology,2008,15(1):49-53.
[15]Vilinska A,Rao K H.Surface thermodynamics and extended DLVO theory of Leptospirillum ferrooxidans cells'adhesion on sulfide minerals[J].Minerals and Metallurgical Processing,2011,28(3):151-158.
[16]Katsikogianni M,Missirlis Y F.Concise review of mechanisms of bacterial adhesion to biomaterial and of techniques used in estimating bacteria-material interactions[J].European Cell and Materials,2004(8):37-57.
[17]Farahat M,Hirajima T,Sasaki K.Adhesion of Ferroplasma acidiphilum onto pyrite calculated from the extended DLVO theory using the van Oss-Good-Chaudhury approach[J].Journal of Colloid and Interface Science,2010,349(2):594-601.
[18]Hameed B H.Equilibrium and kinetics studies of 2,4,6-trichlorophenol adsorption onto activated clay[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,307(1/2/3):45-52.
[19]Ozdemir G,Ceyhan N,Ozturk T,et al.Biosorption of chromium(VI),cadmium(II)and copper(II)by Pantoea sp TEM[J].Chemical Engineering Journal,2004,102(3):249-253.
[20]Xia L X,Shen Z,Vargas T,et al.Attachment of Acidithiobacillus ferrooxidans onto different solid substrates and fitting through Langmuir and Freundlich equations[J].Biotechnology Letters,2013,35(12):2129-2136
[21]Tan S N,Chen M.Early stage adsorption behaviour of Acidithiobacillus ferrooxidans on minerals I:An experimental approach[J].Hydrometallurgy,2012,119:87-94.
[22]Fang L C,Cao Y Y,Huang Q Y,et al.Reactions between bacterial exopolymers and goethite:A combined macroscopic and spectroscopic investigation[J].Water Research,2012,46(17):5613-5620.
[23]Fang L C,Huang Q Y,Wei X,et al.Microcalorimetric and potentiometric titration studies on the adsorption of copper by extracellular polymeric substances(EPS),minerals and their composites[J].Bioresource Technology,2010,101(15):5774-5779.
[24]Rong X M,Huang Q Y,He X M,et al.Interaction of Pseudomonas putida with kaolinite and montmorillonite:A combination study by equilibrium adsorption,ITC,SEM and FTIR[J].Colloids and Surfaces B:Biointerfaces,2008,64(1):49-55.
[25]Rong X M,Huang Q Y,Chen W L.Microcalorimetric investigation on the metabolic activity of Bacillus thuringiensis as influenced by kaolinite,montmorillonite and goethite[J].Applied Clay Science,2007,38(1/2):97-103.
[26]Rong X M,Huang Q Y,Jiang D H,et al.Isothermal microcalorimetry:A review of applications in soil and environmental sciences[J].Pedosphere,2007,17(2):137-145.
[27]Thore Rohwerder,Axel Schippers,Sand W.Determination of reaction energy values for biological pyrite oxidation by calorimetry[J].Thermochimica Acta,1998,309:79-85.
[28]Zhu J Y,Yang P,Li B M,et al.Microcalorimetric studies of interaction between extracellular polymeric substance and sulfide minerals[J].Transactions of Nonferrous Metals Society of China,2008,18(6):1439-1442.
[29]Kahle M,Kleber M,Jahn R.Review of XRD-based quantitative analyses of clay minerals in soils:the suitability of mineral intensity factors[J].Geoderma,2002,109(3/4):191-205.
[30]Srodon J,Drits V A,McCarty D K,et al.Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparations[J].Clay Clay Miner,2001,49(6):514-528.
[31]Xia L X,Liu JS,Xiao L,et al.Single and cooperative bioleaching of sphalerite by two kinds of bacteria-Acidithiobacillus ferriooxidans and Acidithiobacillus thiooxidans[J].Transactions of Nonferrous Metals Society of China,2008,18(1):190-195.
[32]Liu H,Gu G H,Xu Y B.Surface properties of pyrite in the course of bioleaching by pure culture of Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans[J].Hydrometallurgy,2011,108(1/2):143-148.
[33]Dziuba B,Babuchowski A,Nalecz D,et al.Identification of lactic acid bacteria using FTIR spectroscopy and cluster analysis[J].International Dairy Journal,2007,17(3):183-189.
[34]Madejova J.FTIR techniques in clay mineral studies[J].Vibrational Spectroscopy,2003,31(1):1-10.
[35]Wenning M,Buchl N R,Scherer S.Species and strain identification of lactic acid bacteria using FTIR spectroscopy and artificial neural networks[J].Journal of Biophotonics,2010,3(8/9):493-505.
[36]Santhiya D,Subramanian S,Natarajan K A.Surface chemical studies on galena and sphalerite in the presence of thiobacillus thiooxidans with reference to mineral beneficiation[J].Minerals Engineering,2000,13(7):747-763.
[37]Diao M,Taran E,Mahler S,et al.Quantifying adhesion of acidophilic bioleaching bacteria to silica and pyrite by atomic force microscopy with a bacterial probe[J].Colloids and surfaces.B,Biointerfaces,2013,115C:229-236.
[38]Chen M L,Zhang L,Gu G H,et al.Effects of microorganisms on surface properties of chalcopyrite and bioleaching[J].Transactions of Nonferrous Metals Society of China,2008,18(6):1421-1426.
[39]Almarashi J F M,Kapel N,Wilkinson T S,et al.Raman spectroscopy of bacterial species and strains cultivated under reproducible conditions[J].Spectroscopy-an International Journal,2012,27(5/6):361-365.
[40]Jarvis R M,Goodacre R.Discrimination of bacteria using surface-enhanced Raman spectroscopy[J].Analytical Chemistry,2004,76(1):40-47.
[41]White SN.Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals[J].Chemical Geology,2009,259(3/4):240-252.
[42]Lara R H,Valdez-Perez D,Rodriguez A G,et al.Interfacial insights of pyrite colonized by Acidithiobacillus thiooxidans cells under acidic conditions[J].Hydrometallurgy,2010,103(1-4):35-44.
[43]Sharma P K,Das A,Rao K H,et al.Surface characterization of Acidithiobacillus ferrooxidans cells grown under different conditions[J].Hydrometallurgy,2003,71(1/2):285-292.
[44]Biesinger M C,Hart B R,Polack R,et al.Analysis of mineral surface chemistry in flotation separation using imaging XPS[J].Minerals Engineering,2007,20(2):152-162.
[45]Dufrene Y F,van der Wal A,Norde W,et al.X-ray photoelectron spectroscopy analysis of whole cells and isolated cell walls of gram-positive bacteria:comparison with biochemical analysis[J].Journal of Bacteriology,1997,179(4):1023-8.
[46]Kaivosoja E,Virtanen S,Rautemaa R,et al.Spectroscopy in the analysis of bacterial and eukaryotic cell footprints on implant surfaces[J].European Cell and Materials,2012,24:60-73.
[47]Smart R S,Skinner W M,Gerson A R.XPS of sulphide mineral surfaces:Metal-deficient,polysulphides,defects and elemental sulphur[J].Surface and Interface Analysis,1999,28(1):101-105.
[48]Sandstrom A,Shchukarev A,Paul J.XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential[J].Minerals Engineering,2005,18(5):505-515.
[49]Sasaki K,Takatsugi K,Tuovinen O H.Spectroscopic analysis of the bioleaching of chalcopyrite by Acidithiobacillus caldus[J].Hydrometallurgy,2012,127:116-120.
[50]Bovenkamp G L,Zanzen U,Krishna K S,et al.X-Ray Absorption near-edge structure (XANES)spectroscopy study of the interaction of silver ions with staphylococcus aureus,listeria monocytogenes,and escherichia coli[J].Applied and Environmental Microbiology,2013,79(20):6385-6390.
[51]Fleet M E.Xanes spectroscopy of sulfur in earth materials[J].The Canadian Mineralogist,2005,43:1811-1838.
[52]Galoisy L,Calas G,Arrio M A.High-resolution XANES spectra of iron in minerals and glasses:structural information from the pre-edge region[J].Chemical Geology,2001,174(1/2/3):307-319.
[53]He H,Xia JL,Yang Y,et al.Sulfur speciation on the surface of chalcopyrite leached by Acidianus manzaensis[J].Hydrometallurgy,2009,99(1/2):45-50.
[54]Grin I,Schwarz H,Linke D.Electron microscopy techniques to study bacterial adhesion[J].Advances in Experimental Medicine and Biology,2011,715:257-269.
[55]Pfeffer C,Larsen S,Song J,et al.Filamentous bacteria transport electrons over centimetre distances[J].Nature,2012,491(7423):218-221.
[56]Mikkelsen D,Kappler U,Webb R I,et al.Visualisation of pyrite leaching by selected thermophilic archaea:Nature of microorganism-ore interactions during bioleaching[J].Hydrometallurgy,2007,88(1/2/3/4):143-153.
[57]Zeng W M,Qiu G Z,Zhou H B,et al.Electrochemical behaviour of massive chalcopyrite electrodes bioleached by moderately thermophilic microorganisms at 48 degrees C[J].Hydrometallurgy,2011,105(3/4):259-263.
[58]McGuire M M,Heist C A.In situ atomic force microscopy(AFM)investigations of clay mineral swelling[J].Abstracts of Papers of the American Chemical Society,2011:241.
[59]Meyer R L,Zhou X F,Tang L N,et al.Immobilisation of living bacteria for AFM imaging under physiological conditions[J].Ultramicroscopy,2010,110(11):1349-1357.
[60]Nunez M E,Martin M O,Chan P H,et al.Atomic force microscopy of bacterial communities[J].Methods in Enzymology,2005,397:256-268.
[61]Zhu J Y,Li Q,Jiao W F,et al.Adhesion forces between cells of Acidithiobacillus ferrooxidans,Acidithiobacillus thiooxidans or Leptospirillum ferrooxidans and chalcopyrite[J].Colloids and Surfaces B:Biointerfaces,2012,94:95-100.
[62]Zeng W M,Zhou H B,Wan M X,et al.Preservation of Acidithiobacillus caldus:A moderately thermophilic bacterium and the effect on subsequent bioleaching of chalcopyrite[J].Hydrometallurgy,2009,96(4):333-336.
[63]Noel N,Florian B,Sand W.AFM&EFM study on attachment of acidophilic leaching organisms[J].Hydrometallurgy,2010,104(3/4):370-375.
[64]Mangold S,Harneit K,Rohwerder T,et al.Novel combination of atomic force microscopy and epifluorescence microscopy for visualization of leaching bacteria on pyrite[J].Applied and Environmental Microbiology,2008,74(2):410-415.
[65]de Carvalho F G,Puppin-Rontani R M,Soares L E S,et al.Mineral distribution and CLSM analysis of secondary caries inhibition by fluoride/MDPB-containing adhesive system after cariogenic challenges[J].Journal of Dentistry,2009,37(4):307-314.
[66]Mogge B,Loferer C,Agerer R,et al.Bacterial community structure and colonization patterns of Fagus sylvatica L-ectomycorrhizospheres as determined by fluorescence in situ hybridization and confocal laser scanning microscopy[J].Mycorrhiza,2000,9(5):271-278.
[67]Bellenberg S,Leon-Morales C F,Sand W,et al.Visualization of capsular polysaccharide induction in Acidithiobacillus ferrooxidans[J].Hydrometallurgy,2012,129:82-89.
[68]Africa C J,van Hille R P,Sand W,et al.Investigation and in situ visualisation of interfacial interactions of thermophilic microorganisms with metal-sulphides in a simulated heap environment[J].Minerals Engineering,2013,48:100-107.
[69]Florian B,Noel N,Thyssen C,et al.Some quantitative data on bacterial attachment to pyrite[J].Minerals Engineering,2011,24(11):1132-1138.