• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鋰離子電池負(fù)極硅/碳復(fù)合材料的制備及其性能研究(英文)

    2014-10-22 12:17:53魏來劉開宇李艷
    關(guān)鍵詞:鋰離子電池負(fù)極

    魏來+劉開宇+李艷+等

    摘要采用鱗片石墨、納米硅及水合葡萄糖為原料,通過液相固化及高溫?zé)峤夥ㄖ苽淞斯?碳復(fù)合材料.采用X射線衍射光譜法(XRD)、掃描電子顯微鏡法(SEM)、透射電子顯微鏡法(TEM)及電化學(xué)測試表征了該材料的結(jié)構(gòu)及性能.實(shí)驗(yàn)結(jié)果表明:這種復(fù)合材料由納米硅顆粒、鱗片石墨及熱解無定形碳組成,在無定形碳的包覆網(wǎng)絡(luò)中,納米硅顆粒分布在石墨片層上.該材料首次充電容量為733.6 mAh· g-1,首次庫倫效率為69.98%,經(jīng)20次循環(huán)后其容量保持率為80.01%,而純納米硅電極的容量保持率只有15.21%.在不同的電流密度下,該復(fù)合材料也展現(xiàn)了良好的電極循環(huán)性能,電化學(xué)性能的改善被認(rèn)為是該材料的特殊結(jié)構(gòu)以及碳包覆的結(jié)果.

    關(guān)鍵詞硅/碳復(fù)合物;負(fù)極;鋰離子電池;碳包覆

    To address these problems, many efforts have been taken to improve the overall electrochemical performance of Si-based electrode. The synthesis of novel nanostructure of Si have been studied, such as “porous Si” [4], “Si nanowire” [5] “silicon-based thin films” [6], “silicon nano spheres” [7] and “Si-carbon hollow core-shell” [8]. Other methods focus on the combination of Si with other components such as metals [9-10] or compounds [11-12]. Furthermore, the decoration of the surface of nano-Si [13] or the modifying of current collector [14] were also investigated for improving the cohesion force of binder and collector of Si electrode. Comparing with these studies, creating Si/C composites is a promising approach because of their relative mild preparation with stable electrochemical performance. Carbon materials have been frequently used as the active matrix because of its softness, good electronic conductivity and small volume change. Si/C composites were usually synthesized by the way of high energy ball milling with other components [15] or by the phrolysis of different organic carbon sources [16-17]. The types of carbon sources and the methods of preparation seem to be quite important for Si/C composites with good performance.

    In this paper, Si/C composites were prepared by a facile method of dispersing nano-Si and graphite in the solution of glucose monohydrate, followed by carbonization in the high temperature at argon atmosphere. The microstructure, morphology and electrochemical performance of the as-prepared Si/C composites were also investigated by different methods as anode materials for lithium ion batteries, and this material exhibited obviously enhanced electrochemical performance comparing to pristine pure nano-Si and graphite.

    2Experimental

    2.1Preparation of the materials

    The Si/C composites were synthesized as follows: Firstly, glucose monohydrate (C6H12O6·H2O, 1.5g) was dissolved in 50 mL deionized water and ethanol (3∶1 in volume) solution with constant magnetic stirring. The nano-silicon powders (commercial available,>99.9%, Shuitian Materials Technology Co, Ltd, Shanghai, China) and flake graphite powders (200 mesh) were mixed in a ratio of 3:7. Subsequently, the mixture was slowly added into the previous glucose solution with strong magnetic stirring for 12 h, then the solvent was evaporated at 80 ℃ over night to get a solid blend, the obtained solid blend precursor was heated to 750 ℃ under nitrogen atmosphere in a furnace for 2 h (5 ℃·min-1) and cooled naturally to room temperature. The products were grounded and sieved by 200-mesh shifter to obtain the Si/C composites.

    2.2Structural and morphological characterization of the materials

    The morphologies of the composites were investigated by scanning electron microscopy (SEM, Quanta-200). The phase components of the materials were confirmed by powder X-Ray diffraction (XRD, D/maxш, Rigaku) with Cu Kα radiation (10°~80°).The microstructures of the composites were examined by transmission electron microscope (TEM, JEOL-3010).

    2.3Electrochemical measurement

    The composites were evaluated using CR2016 coin-type cells with pure lithium tablets as the counter electrode under the same conditions and instruments. A micro-porous polypropylene (PE) membrane was used as the separator and the electrolyte was LiPF6 (1 M) in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) with a volume ratio of 3∶7. The working electrode was prepared by adding active materials (80 wt. %), acetylene black (10 wt. %) as conducting agent and polyvinylidene fluoride (PVDF, 10wt. %) as binder. The mixture was dispersed in N-methyl pyrrolidinone (NMP) and the obtained slurry was then spread uniformly on a copper foil and dried at 120 ℃ for 12 h. The electrodes were punched into round pellets with diameter of 14 mm and cells were assembled in an argon-filled glove box. The charging/discharging test of cells were carried out on the Land battery tester (CT2001,Wuhan) with the potential ranges of 0.005 V to 1.5 V (vs. Li+/Li) at room temperature. The cyclic voltammogram (CV) was measured with a RST electrochemical analyzer, the scanning rates was 0.1 mV·s-1.

    3Results and discussion

    3.1Structure and morphology of the materials

    Fig.1X-ray diffraction patterns of (a) flake graphite, (b) nano-silicon, (c) glucose pyrolyzed carbon and (d) Si/C composites

    Fig.1 shows X-ray diffraction patterns of flake graphite, nano-Si, pyrolyzed carbon from glucose at the given conditions and the prepared Si/C composites. For the XRD pattern of the Si/C composites, it is clear to find the diffraction peaks of Si (28.4°, 47.3°, 56.1°, 69.1° and 76.4°) and graphite (26.6°, 42.5°, 43.5°, 54.7° and 77.6°), indicating the presence of graphite and silicon, and both silicon and graphite retain its own crystalline structure during the synthesized process, and any other phases (such as SiC or SiO2) are not observed. As for the XRD pattern of pyrolyzed glucose, obvious peaks are not detected except a diffused broad peak around 2θ=23° (amplifying figure in Fig.1), proving that the pyrolyzed carbon in the composites under given conditions was an amorphous phase. This results show that other inactive phases do not exist in the composites, and the composites are the blends of graphite, silicon and amorphous carbon pyrolyzed from glucose.

    The morphology of the raw materials and as-prepared Si/C composites are presented in Fig.2 by SEM investigation. Fig.2 (a) and Fig.2 (b) are the morphology of pristine nano-Si and flake graphite, respectively, which were used to prepare Si/C composites. The nano-Si powders show uniform and nano sized spherical particles, and the average size of the particles is about 100 nm. The flake graphite has primary sizes around 50 μm, and the particles are thin and flat. The image of the as-prepared Si/C composites is shown in Fig.3 (c), indicating that the morphology of the composites is irregular.

    Fig.2SEM images of nano-Si (a), flake graphite (b) and Si/C composites (c)

    The TEM images of Si/C composites are presented in Fig.3. Fig.3 (a) shows that the composites have fine sizes, nano-sized Si particles are bonded to the graphite sheets by the coating of disordered carbon from glucose. However, the Si particles consist of agglomerates of clusters, as particles may not be perfectly dispersed by pyrolysis process. Fig.3 (b) clearly displays the figure of the carbon coated Si particle. It is evident that Si particles are uniformly coated by the carbon layer. The thickness of this layer forming a complete shell is around 10 nm. Fig.3 (c) and Fig.3 (d) are the HRTEM images of the material. The crystal plane spacing fit well with the number of Si (111) and flake graphite (002), indicating that composites are composed of three phases, graphite, nano-Si and disordered carbon from pyrolyzed glucose. Nano-Si and graphite particles are dispersed into carbon networks from glucose, and the structure provides a buffer for Si particles to accommodate the huge stress and the and volume change during the Li+ inserting and extracting processes[18].

    Fig.3TEM images of Si/C composites (a) and (b); HRTEM of Si/C composites (c) and (d)

    3.2Electrochemical performance of the electrode materials

    The charge-discharge curves of the as prepared Si/C composites at different cycles under current density of 50 mA g-1are shown in Fig.4 (a). Obviously, there is a distinct potential platform during the first discharge curve from 0.1 to 0.9 V, which could mainly attribute to the formation of a solid electrolyte interphase (SEI) on the surface of electrode. During this process, a part of Li+ in the electrolyte were consumed to the formation of SEI and the decomposition of the electrolyte, contributing to the irreversible capacity loss of the electrode. After the first cycle, the potential platform disappears, and the structure of crystal structure silicon transforms to amorphous phase, which can be prov

    Fig.4(a) Charge-discharge profile of Si/C composites at different cycles; (b) initial charge-discharge curves of nano-Si, flake graphite and Si/C composites

    ed from the shift of the subsequent discharge curves. The distinct charge potential platform around 0.4 V is due to the extraction of Li+ from Si, while the slope ranging from 0.15 to 0.2 V can be related to the process of lithium ion extracting from the flake graphite [19]. As for the discharge curve, the straight potential platform below 0.2 V is mainly ascribed to the insertion of lithium ion for both silicon and flake graphite, as silicon and graphite possess similar discharge potential vs. Li+ (0~0.1 V, 0~0.2 V, respectively [1,19]). Fig.4 (b) shows the first charge-discharge curves of nano-Si, flake graphite and the as prepared Si/C composites at the current rate of 50 mA· g-1. Visibly, the discharge platform around 0~0.2 V is the Li+ inserting of active materials, including graphite and silicon, and the main extraction process there are several distinct potential platforms can be attributed to nano-Si anode (0.4 V) and flake graphite anode (0.15 V) can also be observed, although the first charge and discharge specific capacity of nano-Si are 1800.18 mAh· g-1 and 3483.56 mAh· g-1, respectively, The initial columbic efficiency is only 51.72% ,which is similar to the previously reports of the nano-Si . The Si/C composites, however, exhibit a first charge capacity of 733.65 mAh· g-1 and discharge capacity of 1048.27 mAh· g-1, along with an initial columbic efficiency of 69.98%, based on the ratio of graphite and nano-Si during the preparation and the theoretical calculating methods of the specific capacity of Si/graphite composites [20], the initial charge and discharge capacity of the material are maintained within reasonable values.

    Fig.5 (a) compares the cycling performance of nano-Si, flake graphite and Si/C composites at 50 mA· g-1. Evidently, the pure nano-Si electrode exhibits high initial charge (1800.18 mAh· g-1) and discharge capacity (3483.56 mAh· g-1), however, the capacity decays rapidly to 274.48 mAh· g-1 after 20 cycles. It is well known that the capacity fade and large initial irreversible capacity for Si anode is owing to the large volume changes during the insertion and extraction processes of Li+, leading to the poor capacity retention of pure Si electrode. The flake graphite exhibits an initial discharge capacity of 433.54 mAh· g-1 and keeps a steady capacity at about 380 mAh· g-1 during the cycling, which is even higher than the theoretical specific capacity of graphite. This result may be due to the previous grinding process during the preparation of the half cells. It has been reported th

    Fig.5(a) Cycling performance of nano-Si, flake graphite and Si/C composites at 50 mA· g-1; (b) cycling performance of Si/C composites at different current densities

    at graphite have a higher reversible capacity after grinding process, and the grinding process of crystalline graphite is essentially a non-graphitization process from a structural chemistry perspective [21]. In this regard, the as-prepared Si/C composites exhibit a relatively stable capacity during the cycling, capacity fading is significantly alleviated and the capacity of 586.98 mAh· g-1 is reserved after 20 cycles with the capacity retention of 80.01%, while that of nano-Si is 15.21%. The cycling performance at different rates of Si/C composites are shown in Fig.5 (b).As seen, at the current density of 150 mA· g-1, 300 mA· g-1, and 600 mA· g-1, the initial capacities of Si/C composites are 664.57 mAh· g-1, 625.35 mAh· g-1 and 431.44 mAh· g-1, respectively, and the coulombic efficiencies of Si/C composites are 69.97%, 69.85% and 69.56%, respectively. After 20 cycles, 83~50%, 77.26% and 85.38% of the initial capacity can be reserved. It is evident that improved capacity retention of the Si/C composites is achieved. The enhanced cycleability can be related to the following reasons: (1) Nano-Si and graphite are coated by the glucose-pyrolyzed carbon, providing the carbon network for the connection between Si particles and flake graphite and maintains stable electrical contact of nano-Si particles in the Si/C composites during the charge-discharge process, that is to say, nano-Si particles and graphite sheets are connected by the electronic conducting network from the glucose-pyrolyzed carbon. (2) The presence of coated carbon on the surface of active materials reduced the direct contact between electrode and electrolyte, which is beneficial for maintaining its mechanical stability by reliving stresses resulting from volume change from Si. (3) The volume change occurred in the Si electrode may lead to the fracture of SEI, resulting in increased Li+ to the formation of new SEI on the surface of electrode during the subsequent processes, the addition of coated carbon and graphite can accommodate the volume change occurred in Si electrode and therefore the enough insertion/extraction of Li+ in the electrolyte is guaranteed.

    Fig.6Cyclic voltammograms of the Si/C composites for first three cycles at scanning rate of 0.1 mV·s-1 from 0~1.5 V

    To further investigate the charge-discharge process of the Si/C composites, cyclic voltammograms (CV) was conducted. Fig.6 displays the first three CV cycles of the materials at the scanning rate of 0.1 mV·s-1. There is a broad cathodic platform ranging from 0.4 to 0.8 V during the first cycle, the platform corresponds to the formation of the SEI on the surface of the electrode, which can be the result of the decomposition of electrolyte, after the first curve, the platform disappears. The distinct cathodic peak below 0.15 V is due to the Li+ insertion into the active material, including both Si and graphite. There are two anodic peaks during the charge process, the anodic peak between 0.15 and 0.3 V is mainly related to the Li+ extraction from flake graphite, while the anodic peak around 0.45 V is related to the extraction of Li+ from nano-Si. The other cathodic peak located at 0.2 V from the 2nd cycle corresponds to dealloying process of crystal Si to amorphous phase. It is evident that all the results are in agreement with the charge-discharge curves discussed above.

    4Conclusion

    Si/C composites were successfully synthesized by steps of liquid solidification and subsequent pyrolysis process. The Si/C composites exhibit high reversible capacity of 733.65 mAh· g-1 with an initial coulombic efficiency of 69.98% at the current of 50 mA· g-1, and improved capacity retention is achieved after 20 cycles at different current. The improved overall electrochemical performance can be attributed to the characters of the composites including the special structure and the uniformly carbon coating. This indicates that the composites may be a promising anode material for lithium ion batteries. However, further studies on optimizing the particle distribution of the raw materials in the composites and promoting the enhanced electrochemical performance of this material are still necessary.

    References:

    [1]WU H, CUI Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012,7(5):414-429.

    [2]HOSSAIN S, KIM Y K, SALEH Y, et al. Comparative studies of mcmb and C-C composite as anodes for lithium-ion battery systems[J]. J Power Sources, 2003,114(2):264-276.

    [3]HANAI K, LIU Y, IMANISH N, et al. Electrochemical studies of the Si-based composites with large capacity and good cycling stability as anode materials for rechargeable lithium ion batteries[J]. J Power Sources, 2005,146(1-2):156-160.

    [4]ZHENG Y, YANG J, WANG J L, et al. Nano-porous Si/C composites for anode material of lithium-ion batteries[J]. Electrochimica Acta, 2007,52(19):5863-5867.

    [5]WU H, CHAN G, CHOI J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature Nanotechnology, 2012,7(5):310-315.

    [6] ZHANG Y, XIA X, WANG X, et al. Three-dimensional porous nano-Ni supported silicon composite film for high-performance lithium-ion batteries[J]. J Power Sources, 2012,213:106-111.

    [7]YAO Y, MCDOWELL M T, RYU I, et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life[J]. Nano letters, 2011,11(7):2949-2954.

    [8]ZHOU X Y, TANG J J, YANG J, et al. Silicon@carbon hollow core-shell heterostructures novel anode materials for lithium ion batteries[J]. Electrochimica Acta, 2013,87:663-668.

    [9]YAN J M, HUANG H Z, ZHANG J, et al. The study of Mg2Si/carbon composites as anode materials for lithium ion batteries[J]. J Power Sources, 2008,175(1):547-552.

    [10]HUANG S, CHENG Y, XIAO H, et al. Characterization of Sn and Si nanocrystals embedded in SiO2 matrix fabricated by magnetron co-sputtering[J]. Surface Coatings Technol, 2010,205(7):2247-2250.

    [11]ZHOU W, UPRET S, WHITTING M S, et al. High performance Si/MgO/graphite composite as the anode for lithium-ion batteries[J]. Electrochem Comm, 2011,13(10):1102-1104.

    [12]HWA Y, KIM W S, YU B C, et al. Enhancement of the cyclability of a Si anode through Co3O4 coating by the sol-gel method[J]. J Phy Chem C, 2013,117(14):7013-7017.

    [13]NAM S H, KIM K S, SHIM H S, et al. Probing the lithium ion storage properties of positively and negatively carved Silicon[J]. Nano letters, 2011,11(9):3656-3662.

    [14]KIM Y L, SUN Y K, LEE S M, et al. Enhanced electrochemical performance of Silicon-based anode material by using current collector with modified surface morphology[J]. Electrochimica Acta, 2008,53(13):4500-4504.

    [15]LEE H Y, LEE S M. Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries[J]. Electrochem Comm, 2004,6(5):465-469.

    [16]WANG M S, FAN L Z. Silicon/carbon nanocomposite pyrolyzed from phenolic resin as anode materials for lithium-ion batteries[J]. J Power Sources, 2013, 244:570-574.

    [17]CAI J J, ZUO P J, CHENG X Q, et al. Nano-Silicon/polyaniline composite for lithium storage[J]. Electrochemi Comm, 2010,12(11):1572-1575.

    [18]LAI J, GUO H J, Wang Z X, et al. Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries[J]. J Alloys Comp, 2012,530:30-35.

    [19]SU M R, WANG Z X, GUO H, et al. Silicon, flake graphite and phenolic resin-pyrolyzed carbon based Si/C composites as anode material for lithium-ion batteries[J]. Adv Powder Technol, 2013,24(6):921-925.

    [20]DIMOV N, KUGINO S, YOSHIO M, et al. Mixed silicon-graphite composites as anode material for lithium ion batteries[J]. J Power Sources, 2004,136(1):108-114.

    [21]ALACNTARA R, LAVELA P, ORTIZ G F, et al. Electrochemical, textural and microstructural effects of mechanical grinding on graphitized petroleum coke for lithium and sodium batteries[J]. Carbon, 2003,41(15):3003-3013.

    (編輯楊春明)

    [11]ZHOU W, UPRET S, WHITTING M S, et al. High performance Si/MgO/graphite composite as the anode for lithium-ion batteries[J]. Electrochem Comm, 2011,13(10):1102-1104.

    [12]HWA Y, KIM W S, YU B C, et al. Enhancement of the cyclability of a Si anode through Co3O4 coating by the sol-gel method[J]. J Phy Chem C, 2013,117(14):7013-7017.

    [13]NAM S H, KIM K S, SHIM H S, et al. Probing the lithium ion storage properties of positively and negatively carved Silicon[J]. Nano letters, 2011,11(9):3656-3662.

    [14]KIM Y L, SUN Y K, LEE S M, et al. Enhanced electrochemical performance of Silicon-based anode material by using current collector with modified surface morphology[J]. Electrochimica Acta, 2008,53(13):4500-4504.

    [15]LEE H Y, LEE S M. Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries[J]. Electrochem Comm, 2004,6(5):465-469.

    [16]WANG M S, FAN L Z. Silicon/carbon nanocomposite pyrolyzed from phenolic resin as anode materials for lithium-ion batteries[J]. J Power Sources, 2013, 244:570-574.

    [17]CAI J J, ZUO P J, CHENG X Q, et al. Nano-Silicon/polyaniline composite for lithium storage[J]. Electrochemi Comm, 2010,12(11):1572-1575.

    [18]LAI J, GUO H J, Wang Z X, et al. Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries[J]. J Alloys Comp, 2012,530:30-35.

    [19]SU M R, WANG Z X, GUO H, et al. Silicon, flake graphite and phenolic resin-pyrolyzed carbon based Si/C composites as anode material for lithium-ion batteries[J]. Adv Powder Technol, 2013,24(6):921-925.

    [20]DIMOV N, KUGINO S, YOSHIO M, et al. Mixed silicon-graphite composites as anode material for lithium ion batteries[J]. J Power Sources, 2004,136(1):108-114.

    [21]ALACNTARA R, LAVELA P, ORTIZ G F, et al. Electrochemical, textural and microstructural effects of mechanical grinding on graphitized petroleum coke for lithium and sodium batteries[J]. Carbon, 2003,41(15):3003-3013.

    (編輯楊春明)

    [11]ZHOU W, UPRET S, WHITTING M S, et al. High performance Si/MgO/graphite composite as the anode for lithium-ion batteries[J]. Electrochem Comm, 2011,13(10):1102-1104.

    [12]HWA Y, KIM W S, YU B C, et al. Enhancement of the cyclability of a Si anode through Co3O4 coating by the sol-gel method[J]. J Phy Chem C, 2013,117(14):7013-7017.

    [13]NAM S H, KIM K S, SHIM H S, et al. Probing the lithium ion storage properties of positively and negatively carved Silicon[J]. Nano letters, 2011,11(9):3656-3662.

    [14]KIM Y L, SUN Y K, LEE S M, et al. Enhanced electrochemical performance of Silicon-based anode material by using current collector with modified surface morphology[J]. Electrochimica Acta, 2008,53(13):4500-4504.

    [15]LEE H Y, LEE S M. Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries[J]. Electrochem Comm, 2004,6(5):465-469.

    [16]WANG M S, FAN L Z. Silicon/carbon nanocomposite pyrolyzed from phenolic resin as anode materials for lithium-ion batteries[J]. J Power Sources, 2013, 244:570-574.

    [17]CAI J J, ZUO P J, CHENG X Q, et al. Nano-Silicon/polyaniline composite for lithium storage[J]. Electrochemi Comm, 2010,12(11):1572-1575.

    [18]LAI J, GUO H J, Wang Z X, et al. Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries[J]. J Alloys Comp, 2012,530:30-35.

    [19]SU M R, WANG Z X, GUO H, et al. Silicon, flake graphite and phenolic resin-pyrolyzed carbon based Si/C composites as anode material for lithium-ion batteries[J]. Adv Powder Technol, 2013,24(6):921-925.

    [20]DIMOV N, KUGINO S, YOSHIO M, et al. Mixed silicon-graphite composites as anode material for lithium ion batteries[J]. J Power Sources, 2004,136(1):108-114.

    [21]ALACNTARA R, LAVELA P, ORTIZ G F, et al. Electrochemical, textural and microstructural effects of mechanical grinding on graphitized petroleum coke for lithium and sodium batteries[J]. Carbon, 2003,41(15):3003-3013.

    (編輯楊春明)

    猜你喜歡
    鋰離子電池負(fù)極
    小小觀察家
    小小觀察家
    小讀者(2023年18期)2023-09-27 04:38:38
    負(fù)極材料LTO/G和LTO/Ag-G的合成及其電化學(xué)性能
    我國各種新能源汽車的優(yōu)缺點(diǎn)及發(fā)展趨勢
    科技傳播(2016年19期)2016-12-27 15:26:41
    溶劑—凝膠法制備鋰離子電池的陰極材料LiMn2O4及其性能研究
    鋰離子電池的安全性能評價(jià)技術(shù)
    鋰離子電池石墨烯復(fù)合電極材料專利分析
    手機(jī)鋰離子電池充電電路的設(shè)計(jì)與實(shí)現(xiàn)
    高功率鈦酸鋰電池倍率及低溫性能研究
    科技視界(2016年10期)2016-04-26 21:21:15
    分步電沉積法制備Cu-Sn-Sb合金負(fù)極材料
    亚洲成人精品中文字幕电影| 国产视频一区二区在线看| 在线免费观看不下载黄p国产 | 久久人妻av系列| 亚洲av二区三区四区| 亚洲欧美日韩高清专用| 床上黄色一级片| 久久国产乱子伦精品免费另类| 日本成人三级电影网站| 看黄色毛片网站| 欧洲精品卡2卡3卡4卡5卡区| 99在线视频只有这里精品首页| 亚洲av电影在线进入| 五月伊人婷婷丁香| 国产极品精品免费视频能看的| 亚洲无线观看免费| 最近最新中文字幕大全电影3| 18禁黄网站禁片午夜丰满| 欧美zozozo另类| 色哟哟·www| 91麻豆精品激情在线观看国产| 色在线成人网| 国产一级毛片七仙女欲春2| 波野结衣二区三区在线| 在线观看舔阴道视频| 国产在线精品亚洲第一网站| 国产精品永久免费网站| 又爽又黄无遮挡网站| 午夜激情福利司机影院| 搡老妇女老女人老熟妇| 久久久久久国产a免费观看| 国产欧美日韩一区二区三| 亚洲自拍偷在线| 亚洲成人免费电影在线观看| 在线观看舔阴道视频| 怎么达到女性高潮| xxxwww97欧美| 亚洲国产精品成人综合色| 麻豆国产97在线/欧美| 国产主播在线观看一区二区| 国产爱豆传媒在线观看| 三级国产精品欧美在线观看| 少妇高潮的动态图| 观看免费一级毛片| 中文字幕免费在线视频6| 国产成人aa在线观看| 日韩欧美免费精品| 精品久久久久久久久av| 国产精品爽爽va在线观看网站| 十八禁网站免费在线| 久久久久久久久大av| 欧美bdsm另类| 亚洲欧美日韩无卡精品| 永久网站在线| 国产免费男女视频| 级片在线观看| bbb黄色大片| 欧美性猛交╳xxx乱大交人| 在线观看美女被高潮喷水网站 | 国产一区二区激情短视频| 男女下面进入的视频免费午夜| 日本与韩国留学比较| 国产高清视频在线播放一区| 国产黄片美女视频| 特级一级黄色大片| 午夜日韩欧美国产| 最近最新中文字幕大全电影3| 极品教师在线视频| 无人区码免费观看不卡| 美女cb高潮喷水在线观看| 观看美女的网站| 在线免费观看的www视频| 在线观看一区二区三区| 精品人妻偷拍中文字幕| 在线观看免费视频日本深夜| 国产亚洲精品综合一区在线观看| 国产在视频线在精品| 麻豆av噜噜一区二区三区| 午夜精品在线福利| 性欧美人与动物交配| 国产激情偷乱视频一区二区| 伦理电影大哥的女人| 国产黄片美女视频| ponron亚洲| 精品国产三级普通话版| 免费高清视频大片| 亚洲七黄色美女视频| 熟女人妻精品中文字幕| 亚洲国产精品久久男人天堂| 中文字幕久久专区| 亚洲在线观看片| 日日摸夜夜添夜夜添小说| 怎么达到女性高潮| 日日摸夜夜添夜夜添av毛片 | 人妻丰满熟妇av一区二区三区| 天堂av国产一区二区熟女人妻| 久久亚洲真实| 男女之事视频高清在线观看| 亚洲五月婷婷丁香| 老司机午夜十八禁免费视频| 中文字幕人妻熟人妻熟丝袜美| 日日夜夜操网爽| av福利片在线观看| 一个人看的www免费观看视频| 一区二区三区高清视频在线| 久久精品人妻少妇| 国产真实伦视频高清在线观看 | 每晚都被弄得嗷嗷叫到高潮| 日韩中文字幕欧美一区二区| 国产白丝娇喘喷水9色精品| 国产午夜福利久久久久久| 日韩中文字幕欧美一区二区| 成人国产一区最新在线观看| 日本五十路高清| 亚洲精品成人久久久久久| 久久99热这里只有精品18| 国产蜜桃级精品一区二区三区| 日韩欧美精品v在线| 精品人妻视频免费看| 五月伊人婷婷丁香| 女生性感内裤真人,穿戴方法视频| 国产精品女同一区二区软件 | 国产单亲对白刺激| 在线国产一区二区在线| 99视频精品全部免费 在线| 91字幕亚洲| 久久国产乱子免费精品| 亚洲美女黄片视频| 精华霜和精华液先用哪个| 又粗又爽又猛毛片免费看| 免费看a级黄色片| 亚洲专区中文字幕在线| 中文字幕av成人在线电影| 亚洲美女黄片视频| 欧美在线黄色| 美女免费视频网站| 中文字幕人成人乱码亚洲影| 美女免费视频网站| 宅男免费午夜| АⅤ资源中文在线天堂| 欧美午夜高清在线| 久久这里只有精品中国| 精华霜和精华液先用哪个| 国产三级在线视频| 久久精品人妻少妇| 网址你懂的国产日韩在线| 亚洲,欧美,日韩| 亚洲经典国产精华液单 | 少妇人妻一区二区三区视频| 日韩中字成人| 久久精品久久久久久噜噜老黄 | 天美传媒精品一区二区| 偷拍熟女少妇极品色| 69人妻影院| 一区二区三区四区激情视频 | 亚洲午夜理论影院| 日本熟妇午夜| 国产男靠女视频免费网站| 精品午夜福利在线看| 亚洲精品久久国产高清桃花| 亚洲欧美日韩高清专用| 热99re8久久精品国产| 一级黄片播放器| 国产单亲对白刺激| 别揉我奶头 嗯啊视频| 怎么达到女性高潮| 成人美女网站在线观看视频| 少妇熟女aⅴ在线视频| 一区二区三区高清视频在线| 3wmmmm亚洲av在线观看| 国产精品女同一区二区软件 | 欧美黄色片欧美黄色片| 色综合亚洲欧美另类图片| 男人舔女人下体高潮全视频| 国产午夜精品久久久久久一区二区三区 | 亚洲av免费高清在线观看| 久久午夜亚洲精品久久| 好男人在线观看高清免费视频| 桃红色精品国产亚洲av| 国产亚洲精品久久久com| 18禁黄网站禁片午夜丰满| 免费看日本二区| 黄色丝袜av网址大全| 国产在线精品亚洲第一网站| 国产精品野战在线观看| 91狼人影院| 少妇熟女aⅴ在线视频| 久久久久久大精品| 欧美一区二区国产精品久久精品| 欧美性猛交黑人性爽| 欧美zozozo另类| 嫁个100分男人电影在线观看| 高清毛片免费观看视频网站| av女优亚洲男人天堂| 首页视频小说图片口味搜索| 高清在线国产一区| 午夜精品一区二区三区免费看| 亚洲成a人片在线一区二区| 国产日本99.免费观看| 精品日产1卡2卡| 美女 人体艺术 gogo| 久久性视频一级片| 欧美性感艳星| 亚洲av第一区精品v没综合| 欧美成人一区二区免费高清观看| 成年人黄色毛片网站| 国产精品美女特级片免费视频播放器| 99热这里只有是精品在线观看 | 亚洲av成人不卡在线观看播放网| 99国产极品粉嫩在线观看| 欧美在线黄色| 长腿黑丝高跟| 女生性感内裤真人,穿戴方法视频| 亚洲av电影在线进入| 天美传媒精品一区二区| 性插视频无遮挡在线免费观看| 欧美xxxx黑人xx丫x性爽| 性色avwww在线观看| av女优亚洲男人天堂| 日本撒尿小便嘘嘘汇集6| 久久精品国产99精品国产亚洲性色| 免费看日本二区| 欧美另类亚洲清纯唯美| 亚洲久久久久久中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 国产在线精品亚洲第一网站| 日日夜夜操网爽| 日日摸夜夜添夜夜添小说| 日韩欧美在线乱码| 亚洲国产精品合色在线| h日本视频在线播放| 身体一侧抽搐| 日韩人妻高清精品专区| 精品人妻1区二区| 深夜a级毛片| 国产伦精品一区二区三区视频9| 国产蜜桃级精品一区二区三区| 久久精品国产清高在天天线| 欧美精品国产亚洲| 少妇的逼好多水| 听说在线观看完整版免费高清| 99国产综合亚洲精品| 欧美激情在线99| 亚洲精品影视一区二区三区av| 最后的刺客免费高清国语| 狂野欧美白嫩少妇大欣赏| 欧美3d第一页| a级一级毛片免费在线观看| 国产白丝娇喘喷水9色精品| 在线a可以看的网站| 1000部很黄的大片| 日韩欧美国产一区二区入口| 成人三级黄色视频| 国产精品久久久久久精品电影| 精品午夜福利在线看| 丰满乱子伦码专区| 亚洲av第一区精品v没综合| 精品久久久久久久末码| 日韩亚洲欧美综合| 中文字幕精品亚洲无线码一区| 中出人妻视频一区二区| www.熟女人妻精品国产| 欧美潮喷喷水| 欧美日本视频| 国产精品一区二区三区四区免费观看 | 国产探花极品一区二区| .国产精品久久| 亚洲中文字幕一区二区三区有码在线看| 国内少妇人妻偷人精品xxx网站| 美女大奶头视频| 日韩欧美一区二区三区在线观看| 久久久久久久久久黄片| 极品教师在线免费播放| 久久6这里有精品| 男人的好看免费观看在线视频| 国产视频内射| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 午夜免费男女啪啪视频观看 | 日本 av在线| 国产精品久久久久久精品电影| 欧美精品国产亚洲| 日韩av在线大香蕉| av女优亚洲男人天堂| 国产69精品久久久久777片| 香蕉精品网在线| 亚洲精品一区蜜桃| 精品视频人人做人人爽| 国产伦理片在线播放av一区| 国产探花在线观看一区二区| 久久久欧美国产精品| 亚洲人成网站高清观看| 日韩视频在线欧美| 国产伦在线观看视频一区| 女人久久www免费人成看片| 亚洲欧美一区二区三区黑人 | 另类亚洲欧美激情| h日本视频在线播放| 中文字幕av成人在线电影| 亚洲美女视频黄频| 舔av片在线| 春色校园在线视频观看| 美女高潮的动态| 又黄又爽又刺激的免费视频.| 亚洲国产精品999| 免费大片黄手机在线观看| 深夜a级毛片| 听说在线观看完整版免费高清| 国产在视频线精品| 国产在线一区二区三区精| 国产毛片a区久久久久| 亚洲国产精品专区欧美| 99热全是精品| 国产成人精品福利久久| 精品国产乱码久久久久久小说| 日韩免费高清中文字幕av| 国产日韩欧美亚洲二区| 精品国产露脸久久av麻豆| 久久精品久久久久久噜噜老黄| 成人漫画全彩无遮挡| 三级国产精品片| 亚洲三级黄色毛片| 国产男女超爽视频在线观看| 美女主播在线视频| 综合色丁香网| 美女视频免费永久观看网站| 国产伦在线观看视频一区| 欧美xxⅹ黑人| 日本wwww免费看| 青青草视频在线视频观看| 老司机影院成人| 欧美高清性xxxxhd video| 人人妻人人看人人澡| 制服丝袜香蕉在线| 免费播放大片免费观看视频在线观看| 国产亚洲午夜精品一区二区久久 | 在线观看人妻少妇| 日韩国内少妇激情av| 91午夜精品亚洲一区二区三区| 九九久久精品国产亚洲av麻豆| 激情 狠狠 欧美| 精品久久久精品久久久| 国产色爽女视频免费观看| 亚洲国产高清在线一区二区三| 菩萨蛮人人尽说江南好唐韦庄| 偷拍熟女少妇极品色| 国产中年淑女户外野战色| 欧美97在线视频| 精品熟女少妇av免费看| 各种免费的搞黄视频| 国产av国产精品国产| 香蕉精品网在线| 免费看光身美女| 亚洲欧美日韩无卡精品| 少妇猛男粗大的猛烈进出视频 | 黄色一级大片看看| 亚洲精品久久久久久婷婷小说| 日本猛色少妇xxxxx猛交久久| 日本欧美国产在线视频| 别揉我奶头 嗯啊视频| 亚洲成人av在线免费| 少妇人妻一区二区三区视频| 精品久久国产蜜桃| 日本欧美国产在线视频| 欧美成人午夜免费资源| www.av在线官网国产| 亚洲精品久久久久久婷婷小说| 免费观看性生交大片5| 精品一区二区三卡| 天天躁夜夜躁狠狠久久av| 免费大片18禁| 国产一级毛片在线| 伦精品一区二区三区| 只有这里有精品99| 舔av片在线| a级毛色黄片| av在线亚洲专区| 国产精品秋霞免费鲁丝片| 亚洲最大成人手机在线| 国产成人精品一,二区| 久久久久久久久久人人人人人人| 少妇丰满av| 少妇裸体淫交视频免费看高清| 最近2019中文字幕mv第一页| 在线观看人妻少妇| 成人亚洲欧美一区二区av| eeuss影院久久| 超碰av人人做人人爽久久| 麻豆乱淫一区二区| 99久久精品一区二区三区| 亚洲欧美一区二区三区黑人 | www.av在线官网国产| 精品久久久久久久久亚洲| 噜噜噜噜噜久久久久久91| 国产人妻一区二区三区在| 亚洲天堂国产精品一区在线| 精品酒店卫生间| 91aial.com中文字幕在线观看| 91久久精品国产一区二区三区| 最近2019中文字幕mv第一页| 亚洲人成网站高清观看| 肉色欧美久久久久久久蜜桃 | 高清欧美精品videossex| 热re99久久精品国产66热6| 国产成人一区二区在线| 91aial.com中文字幕在线观看| 国产高清国产精品国产三级 | 日本一二三区视频观看| 丝袜喷水一区| 欧美xxⅹ黑人| 亚洲av福利一区| 久久国内精品自在自线图片| 国产精品蜜桃在线观看| 成人高潮视频无遮挡免费网站| eeuss影院久久| 国产精品久久久久久av不卡| 乱码一卡2卡4卡精品| 日本-黄色视频高清免费观看| av又黄又爽大尺度在线免费看| 午夜福利视频1000在线观看| 欧美成人午夜免费资源| 三级经典国产精品| 五月伊人婷婷丁香| 亚洲国产精品成人综合色| 国产综合懂色| av在线蜜桃| 亚洲精品国产成人久久av| 久久人人爽人人片av| 色5月婷婷丁香| 久久99蜜桃精品久久| 亚洲色图综合在线观看| 国产久久久一区二区三区| 国产高清不卡午夜福利| 色吧在线观看| 在线 av 中文字幕| 18+在线观看网站| 日本色播在线视频| 王馨瑶露胸无遮挡在线观看| 老女人水多毛片| 国产成人精品久久久久久| 精品一区在线观看国产| 男人狂女人下面高潮的视频| 伦理电影大哥的女人| 又大又黄又爽视频免费| 六月丁香七月| 丝袜喷水一区| 国内精品美女久久久久久| 青青草视频在线视频观看| 成人鲁丝片一二三区免费| 麻豆久久精品国产亚洲av| 欧美激情在线99| 久久精品国产a三级三级三级| 全区人妻精品视频| 欧美性猛交╳xxx乱大交人| 熟妇人妻不卡中文字幕| 国产高潮美女av| 午夜免费鲁丝| 国产免费又黄又爽又色| 日日啪夜夜撸| 18禁在线无遮挡免费观看视频| 丝瓜视频免费看黄片| 中文字幕久久专区| 亚洲伊人久久精品综合| 亚洲欧美日韩另类电影网站 | 如何舔出高潮| 久久久午夜欧美精品| 禁无遮挡网站| 国产毛片a区久久久久| 国产成人精品婷婷| 蜜桃久久精品国产亚洲av| 欧美日韩视频精品一区| 欧美xxxx性猛交bbbb| 高清午夜精品一区二区三区| 国产精品久久久久久av不卡| a级一级毛片免费在线观看| 美女国产视频在线观看| 久久久久国产精品人妻一区二区| 网址你懂的国产日韩在线| 97在线视频观看| 九九爱精品视频在线观看| 亚洲精品亚洲一区二区| 成人漫画全彩无遮挡| 在线观看人妻少妇| 亚洲精品日韩在线中文字幕| 色播亚洲综合网| 久久久精品免费免费高清| 日韩制服骚丝袜av| 性色av一级| 汤姆久久久久久久影院中文字幕| 好男人视频免费观看在线| 国产精品人妻久久久久久| 一本色道久久久久久精品综合| 国产精品久久久久久精品电影小说 | videossex国产| 一个人看视频在线观看www免费| 啦啦啦在线观看免费高清www| 免费看av在线观看网站| 欧美日韩一区二区视频在线观看视频在线 | 国产黄频视频在线观看| 亚洲高清免费不卡视频| 日韩在线高清观看一区二区三区| 五月伊人婷婷丁香| 老司机影院成人| 日本熟妇午夜| 欧美少妇被猛烈插入视频| 欧美高清性xxxxhd video| freevideosex欧美| 毛片女人毛片| 九九在线视频观看精品| 性插视频无遮挡在线免费观看| 免费黄频网站在线观看国产| 日本色播在线视频| 在线 av 中文字幕| 伊人久久精品亚洲午夜| 97超视频在线观看视频| 一级av片app| 寂寞人妻少妇视频99o| 日韩强制内射视频| 亚洲av在线观看美女高潮| 男人舔奶头视频| 好男人视频免费观看在线| 日韩一区二区视频免费看| 精华霜和精华液先用哪个| 简卡轻食公司| 欧美激情久久久久久爽电影| 中文精品一卡2卡3卡4更新| 嘟嘟电影网在线观看| 久久女婷五月综合色啪小说 | 在线观看免费高清a一片| 亚洲av成人精品一区久久| 97人妻精品一区二区三区麻豆| 禁无遮挡网站| 国产探花极品一区二区| 国产欧美另类精品又又久久亚洲欧美| 男人狂女人下面高潮的视频| 亚洲欧美一区二区三区黑人 | 久久影院123| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品久久久久久婷婷小说| 99久久精品热视频| 久久久久性生活片| 2022亚洲国产成人精品| 亚洲精品456在线播放app| 熟女电影av网| 免费观看的影片在线观看| 在线看a的网站| 午夜爱爱视频在线播放| 在线天堂最新版资源| 国内精品宾馆在线| 亚洲精品aⅴ在线观看| av女优亚洲男人天堂| 亚洲激情五月婷婷啪啪| 黄色视频在线播放观看不卡| 大香蕉久久网| 亚洲综合精品二区| 国产精品一区二区性色av| 在线免费观看不下载黄p国产| 神马国产精品三级电影在线观看| 简卡轻食公司| 免费高清在线观看视频在线观看| 秋霞在线观看毛片| 亚洲自拍偷在线| 天堂俺去俺来也www色官网| 亚洲欧美精品专区久久| 亚洲国产成人一精品久久久| 少妇丰满av| 亚洲av在线观看美女高潮| 亚洲av成人精品一二三区| 国产视频内射| 又爽又黄无遮挡网站| 亚洲第一区二区三区不卡| 精品久久久久久久末码| 黄色一级大片看看| 精品一区在线观看国产| 欧美97在线视频| 亚洲av.av天堂| 国产爽快片一区二区三区| 成人黄色视频免费在线看| 最近的中文字幕免费完整| 欧美xxⅹ黑人| 国模一区二区三区四区视频| 九草在线视频观看| 黄色怎么调成土黄色| 午夜免费男女啪啪视频观看| 国产男女内射视频| 国产高清三级在线| 亚洲av成人精品一二三区| 国产精品久久久久久精品古装| 日韩欧美 国产精品| 最近手机中文字幕大全| 白带黄色成豆腐渣| 黄色怎么调成土黄色| 国产精品国产av在线观看| 国产黄a三级三级三级人| 国产高清三级在线| 一区二区av电影网| 内地一区二区视频在线| 亚洲天堂av无毛| 极品教师在线视频| 2021天堂中文幕一二区在线观| 亚洲欧美日韩另类电影网站 | 毛片女人毛片| 中文天堂在线官网| 狂野欧美白嫩少妇大欣赏| 自拍偷自拍亚洲精品老妇| 又爽又黄无遮挡网站| 日韩不卡一区二区三区视频在线| 欧美日韩亚洲高清精品| 亚洲成人中文字幕在线播放| 欧美成人精品欧美一级黄| 精品国产乱码久久久久久小说| 亚洲久久久久久中文字幕| 日韩人妻高清精品专区| 国产老妇伦熟女老妇高清| 日本免费在线观看一区| 春色校园在线视频观看|