• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electronic Structures and Optical Properties of Ilmenite-Type Hexagonal ZnTiO3

    2014-10-14 03:44:10ZHANGXiaoChaoFANCaiMeiLIANGZhenHaiHANPeiDe
    物理化學(xué)學(xué)報(bào) 2014年5期
    關(guān)鍵詞:張志勇鈦鐵礦局域

    ZHANG Xiao-Chao FAN Cai-Mei,* LIANG Zhen-Hai HAN Pei-De

    (1Institute of Clean Technique for Chemical Engineering,Taiyuan University of Technology,Taiyuan 030024,P.R.China;2College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,P.R.China)

    Electronic Structures and Optical Properties of Ilmenite-Type Hexagonal ZnTiO3

    ZHANG Xiao-Chao1FAN Cai-Mei1,*LIANG Zhen-Hai1HAN Pei-De2

    (1Institute of Clean Technique for Chemical Engineering,Taiyuan University of Technology,Taiyuan 030024,P.R.China;2College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,P.R.China)

    Abstract:The electronic structures of ilmenite(IL)-type hexagonal ZnTiO3were investigated using the generalized gradient approximation(GGA)and local density approximation(LDA)based on density functional theory(DFT).The optical properties of ZnTiO3were also calculated by the LDA method.The calculated results were compared with experimental data.Results show that the structural parameters obtained by the LDA calculation are rather close to the experimental values.IL-type hexagonal ZnTiO3is a kind of direct bandgap(Eg=3.11 eV)semiconductor material at theZpoint in the Brillouin zone.An analysis of the density of states(DOS)and the Mulliken charge population clearly reveal that the Zn―O bond is a typical ionic bond whereas the Ti―O bond,which is similar to the Ti―O bond in perovskites ATiO3(A=Sr,Pb,Ba),is covalent in character.Furthermore,the dielectric function,absorption spectrum,and refractive index were obtained and analyzed on the basis of electronic band structures and the DOS for radiation up to 50 eV.

    Key Words:First-principles;Electronic structure;Optical property;Ilmenite-type hexagonal ZnTiO3

    Fundamental studies concerning the phase diagram and characterization of the ZnO/TiO2system have been published by several researchers[1-4].There are three zinc titanate compounds that exist in ZnO/TiO2system:Zn2TiO4(cubic),ZnTiO3(hexag-onal),and Zn2Ti3O8(cubic).Among these compounds,ilmenite(IL)-type hexagonal zinc titanate(ZnTiO3)has attracted great attention due to its potential application,such as microwave dielectrics[5-6],gas sensors[7],ceramics[8-9],photoluminescence materials[10],sorbents for the desulfurization of hot coal gases and paint pigments[11-13].Recent studies[14-15]had also found that the pure hexagonal ZnTiO3prepared by a modified alcoholysis may be a promising photocatalyst in large-scale application of the photocatalysis under solar light irradiation for photodegradation of water contamination and environmental pollution.

    Although the ATiO3(A=Sr,Pb,Ba,Zn,Fe,etc.)materials have been investigated at least for half a century,a proper description of their electronic and optical properties is still an active research area from theoretical point of view.Since 1990s,the electronic structures and optical properties of perovskites ATiO3(A=Sr,Pb,Ba)had been calculated successfully using first-principles methods by several research groups[16-22].In the beginning of 1990s,Cohenet al.[16-17]examined successfully the ferroelectric properties of cubic BaTO3and PbTO3perovskite crystals by the full-potential linearized augmented plane wave(FP-LAPW)approach within the local density approximation(LDA).A few years later,Tinte and Stachiotti[18]reported the results of the generalized gradient approximation(GGA)in the scheme of Perdew-Burke-Erzernhof(PBE)calculations for structural and dynamical properties of perovskite oxides.Soon after,bulk properties and electronic structures of cubic SrTiO3,BaTiO3,and PbTiO3perovskites had been published using anab initioHF/DFT study by Piskunovet al.[19].In 2007,the cohesive energy and electronic properties of PbTiO3had been studied using the FP-LAPW method together with the LDA and GGA methods based on DFT by Hosseiniet al.[20].Most recently,Zhanget al.[21]studied the electronic structures and optical properties of cubic and tetragonal BaTiO3perovskite using the LDA,GGA,and pseudo-potential plane wave(PP-PW)methods,respectively.The effect of In and Scp-type doping on the structural stability,electronic structure,and optical properties of SrTiO3perovskite was investigated by first-principles calculations of PP-PW based on DFT by Yun and Zhang[22].Their calculated results are in good agreement with the experimental data in Refs.[16-22].However,there has been little theoretical work on the electronic structures and optical properties for IL-type hexagonal ZnTiO3,thus it is necessary for us to use the first-principles method to explore the electronic structures and optical properties of IL-type hexagonal ZnTiO3,and we hope the calculated results can provide a theoretical basis for the experimental process and practical application of hexagonal ZnTiO3.

    In this paper,the lattice constants of IL-type hexagonal Zn-TiO3were firstly optimized using the LDA in the scheme of Ceperley-Aider and Perdew-Zunger(CA-PZ)and GGA in the scheme of PBE based on DFT,and the calculated lattice constants were compared with experimental data.In addition,a systematic study of the electronic structures,density of states,Mulliken charge population,optical properties of IL-type hexagonal ZnTiO3were conducted and analyzed using the LDA(CA-PZ)method.It is found that our calculated results are in good agreement with experimental data.

    1 Computational method

    All of the calculations were performed using the well tested CASTEP code[23]in Material Studio 4.1 based on DFT.In the present calculation,the exchange and correlation potential were described with LDA in the scheme of CA-PZ[24]and GGA in the scheme of PBE[25].The states of Zn 3d104s2,Ti 3d24s2,and O 2s22p4were treated as valence states.The cutoff energy of a plane-wave was set at 340 eV.The maximum root-meansquare convergent tolerance was less than 2×10-5eV·atom-1.The force imposed on each atom was not greater than 0.1 eV·nm-1and a stress of less than 0.03 GPa.The Brillouin zone integrations were approximated using the specialk-point sampling scheme of Monkhorst-Pack[26],and a 3×3×4k-point grid was used.

    2 Results and discussion

    2.1 Geometry optimization

    In order to describe IL-type hexagonal ZnTiO3crystals,it is necessary to optimize structural parameters,which would be suitable for the electronic structure calculations of crystals.The lattice constants of ZnTiO3were optimized using the GGA(PBE)and LDA(CA-PZ),respectively.The results and a set of experimental data[2]are listed in Table 1 for comparison.X-ray powder diffraction data(PDF:26-1500)(a=b=0.5079 nm,c=1.3927 nm,α=β=90°,γ=120°,c/a=2.7421,Vo=0.3111 nm3,Z=6)[2]were used as a starting point for geometry optimization.The unit cell of hexagonal ZnTiO3contains six molecules as shown in Fig.1.The space group isR3.

    Table 1 Comparison between calculated structural data and experimental data

    2.2 Band structure,density of states and Mulliken charge population

    The electronic band structures along the symmetry lines of the Brillouin zone for IL-type hexagonal ZnTiO3using LDA calculation are shown in Fig.2.The results demonstrate that the IL-type hexagonal ZnTiO3is a direct band gap semiconductor material atZpoint in the Brillouin zone.The calculated band gap(Eg)is about 3.11 eV,which is a little smaller than the experimental value(3.34 eV[29])of hexagonal ZnTiO3.The reason for this disagreement is the well-known shortcoming of the theoretical frame of the LDAcalculation based on DFT[30].

    Total density of state(TDOS)and partial density of states(PDOSs)of IL-type hexagonal ZnTiO3are shown in Fig.3.As shown in Figs.(2-3),the valence band(VB)of ZnTiO3can be divided into two main zones:a lower valence band zone(-17.79--15.86 eV)and an upper one(-5.92-0.00 eV).The top of the upper VB is mainly dominated by the contribution of O 2pstates,which is very similar to those of perovskites ATiO3(A=Sr,Pb,Ba)[16,19-22]and IL-type ZnSnO3[28].Moreover,Zn 3dorbital in ZnTiO3not only distinctly contributes to the whole valence band but also has a strong interaction with O 2p,which is also similar to the case of Zn in IL-type ZnSnO3[28].However,Zn 3din ZnTiO3is quite different from the A site atom in perovskites ATiO3(A=Sr,Pb,Ba)[16,19-22].Therefore,IL-type ZnTiO3would have more covalent features than the previous studied perovskites ATiO3(A=Sr,Pb,Ba).An additional valence band between-17.37 and-15.92 eV mainly consists of O 2sstates.In addition,the other two VBs,-32.28--31.90 eV and-55.44--55.37 eV,are not considered,because their interaction with the two main mentioned VBs is very weak.For the conduction band(CB),the bottom of CB mainly originates from the contribution of Ti 3dstates,which also gives the main contribution to CB at about the lowest portion of the spectrum.There are some small contributions from O 2pstates to this part of the spectrum by analyzing TDOS and PDOSs of IL-type ZnTiO3.

    In order to understand bonding behavior,the Mulliken charge population for IL-type ZnTiO3was performed and analyzed and the results are listed in Table 2.For IL-type ZnTiO3,the net charge of Zn(+0.99e)is 1.01eless than its+2eformal charges,whereas O atom is with-0.67enegative charges and Ti atom carries+1.02epositive charges,which are much smaller than their-2eand+4eformal charges by 1.33eand 2.98e,respectively.The analysis shows that the Ti—O bond possesses a stronger covalent bonding strength than the Zn—O bond,which agrees well with the DOS analysis for ZnTiO3.Therefore,we have a conclusion that the bond between Zn—O is typically ionic whereas Ti—O bond has covalent character,these results are very similar to those of perovskites ATiO3(A=Sr,Pb,Ba)[16,1922].

    From Table 1 it can be clearly seen that the GGA overestimates the lattice parameters while the LDA underestimates them in comparison with the experimental data.These results are consistent with the general trends of these approximations.The lattice parameters from our LDA calculation are about 0.5%smaller than the experimental value,while the GGA results are about 1.1%larger.The LDA approach gives lattice parameters much closer to the experimental data.The volume change value(+0.0129 nm3)by GGA calculation is also larger than the LDA value(-0.0123 nm3).These trends are very similar to those of the calculated findings of perovskite BaLiF3using the GGA and LDA approaches by Amaraet al.[27]and IL-type ZnSnO3using GGA approach by Gouet al.[28].More importantly,the 0.5%error of the lattice parameters using LDA implies that the LDA approach should be a suitable method for calculating a system like IL-type hexagonal ZnTiO3material.

    2.3 Optical properties

    The optical properties of matter can be described by the complex dielectric functionε(ω),which represents the linear response of the system to an external electromagnetic fi eld with a small wave vector.It can be expressed as[31]:

    Calculations ignore excitonic effects but include the local field effect.The interband contribution to the imaginary part ofdielectric function is calculated by taking all possible transitions from occupied to unoccupied states.The imaginary part of the dielectric function ε2(ω)is then given by[32-33]:

    Table 2 Mulliken charge population of IL-type ZnTiO3

    where M is the dipole matrix,i and j denote the initial and fi nal states,respectively,fiis the Fermi distribution function for the ith state,and Eiis the energy of the electron in the ith state.

    The real part ε1(ω)of the dielectric function can be extracted from the imaginary part using the Kramers-Kroning relation[34]:

    where P is the principal value of the integral.The knowledge of both the real and imaginary parts of the dielectric function allows the calculation of important optical functions.Expressions for the absorption coefficient I(ω),refractive index n(ω),and extinction coefficient k(ω)are given below[35-36]:

    To give an overview of the optical properties of ZnTiO3and in particular to show the different optical interband transitions,Figs.(4-6)show the calculated complex dielectric function ε(ω),absorption coefficient I(ω),refractive index n(ω),and extinction coefficient k(ω)in an energy region of 0 to 50 eV using LDA(CA-PZ)method.

    Fig.4 shows the results of calculated dielectric function of ZnTiO3.The imaginary part ε2(ω)of the dielectric function has three prominent peaks of A(4.15 eV),B(19.8 eV),and C(35.8 eV).The peak A mainly corresponds to the transition of O 2p electron VB into Ti 3d CB states.The peak B originates from the transition of O 2s electron VB into Ti 3d CB states.The peak C is assigned to the transition of inner electrons from Ti 3p levels to the CB.Therefore the origin of these peaks includes the indirect and direct transitions of the inner electrons in materials.

    The main features of the dispersive part ε1(ω)of the dielectric function are:a maximum peak in the curve at around 3.2 eV and a minimum peak at around 5.0 eV;there is a rather steep decrease from 3.2 to 5.0 eV;after the minimum peak(5.0 eV),ε1(ω)rises slowly up to 34.5 eV,and then ε1(ω)has a little obvious decrease from 34.5 eV to 36.5 eV followed by a slow increase toward the value of 1.0 at high energies.For ε1(ω),the most important quantity is the zero frequency limit ε1(0),which gives the static dielectric constant of 3.50.These features show that IL-type ZnTiO3could be a good transparent conductive film material.

    The calculated absorption coefficient I(ω)of IL-type ZnTiO3is displayed in Fig.5.Three peaks are found in the range of 0 to 50 eV,locating at 5.0,20.0 and 35.9 eV,respectively,which are very similar to the peaks of ε2(ω).Besides,based on the analysis of the transitions of the electrons,the origins of the three peaks structure in the absorption coefficient spectra are consistent with the origin of peaks A,B and C in ε2(ω),respectively.As a material of photo-electron transition,IL-type ZnTiO3may have a promising application not only in the transparent conductive film,but also in the photoelectrocatalysis.There are three main reasons[37]for the application of IL-type ZnTiO3in the high transparent conductive film material:the electrons are not easy to transition,the rather weak absorption of IL-type ZnTiO3is in the lowest(0-3.0 eV)and middle energy regions(10.0-33.5 eV),and IL-type ZnTiO3itself is the wide band gap(3.1 eV).In addition,IL-type ZnTiO3owns the rather strong absorption in the lower energy region(3.1-6.2 eV),which is well consistent with the experiment data(200-401 nm).In the experiment of photocatalytic degradation of the azo dye methyl violet,IL-type ZnTiO3sample exhibits the maximum photocatalytic performance in the ultraviolet range(200-401 nm)[14].

    The extinction coefficient k(ω)and the refractive index n(ω)have been calculated and showed in Fig.6.The local maxima of k(ω)corresponds to the zero of ε1(ω)(E=4.73 eV).The extinction coefficient and the refractive index of IL-type ZnTiO3have resonance in the two energy regions(from 1.77 to 10.0 eV,from 33.6 to 37.8 eV).For n(ω),the static value n2(0)=1.87 represents the important quantity.The value of n(ω)increases with the energy increasing in the transparency region and reaches a peak in the ultraviolet at about 3.40 eV.Moreover,we note that the obtained refractive index spectra k(ω)and the extinction coefficient n(ω)is similar to the imaginary part ε2(ω)of the dielectric function and the dispersive part ε1(ω)of the dielectric function,respectively.

    3 Conclusions

    The electronic structures of IL-type hexagonal ZnTiO3were investigated using the LDA and GGA based on the DFT,and the optical properties of ZnTiO3were also calculated by the LDA method.The obtained results are in good agreement with the experimental data.From the above calculations,the following conclusions can be given.

    (1)The lattice constants from LDA calculation are about 0.5%smaller than the experimental value,while the GGA results are about 1.1%larger.It is clear that the LDA approximation gives lattice parameters rather close to the experimental values.

    (2)The top of the valence band of IL-type hexagonal ZnTiO3is mainly dominated by the contribution of the hybridization Ti 3d and O 2p states.The bottom of the conduction band mainly originates from the contribution of Ti 3d states.The calculated energy band structure shows that the hexagonal ZnTiO3is a direct band gap(Eg=3.11 eV)semiconductor materials.

    (3)The analysis of the density of states and Mulliken charge population indicates that the bond Zn—O is typically ionic whereas Ti—O bond has covalent character.

    1 Dulin,F.H.;Rase,D.E.J.Am.Ceram.Soc.,1960,43:125

    2 Bartram,S.F.;Slepetys,A.J.Am.Ceram.Soc.,1961,44:493

    3 Chang,Y.S.;Chang,Y.H.;Chen,I.G.;Chen,G.J.;Chai,Y.L.J.Cryst.Growth,2002,43:319

    4 Botta,P.M.;Aglietti,E.F.;Lopez,J.M.P.J.Mater.Sci.,2004,39:5195

    5 Kim,H.T.;Byun,J.D.;Kim,Y.Mater.Res.Bull.,1998,33:963

    6 Kim,H.T.;Byun,J.D.;Kim,Y.Mater.Res.Bull.,1998,33:975

    7 Obayashi,H.;Sakurai,Y.;Gejo,T.J.Solid State Chem.,1976,17:299

    8 Chang,Y.S.;Chang,Y.H.;Chen,I.G.;Chen,G.J.;Chai,Y.L.;Fang,T.H.;Wu,S.A.Ceram.Int.,2004,30:2183

    9 Chaouchi,A.;Aliouat,M.;Marinel,S.;Bourahla,H.Ceram.Int.,2007,33:245

    10 Wang,S.F.;Lü,M.K.;Gu,F.;Song,C.F.;Dong,X.;Yuan,D.R.;Zhou,G.J.;Qi,Y.X.Inorg.Chem.Commun.,2003,6:185

    11 Mojmhedi,W.;Abbasian,J.Energy Fuels,1995,9:429

    12 Chen,Z.X.;Derking,A.;Koot,W.;Van-Dijk,M.P.J.Catal.,1996,161:730

    13 Huang,J.J.;Zhao,J.T.;Wei,X.F.;Wang,Y.;Bu,X.P.Powd.Technol.,2008,180:196

    14 Kong,J.Z.;Li,A.D.;Zhai,H.F.;Li,H.;Yan,Q.Y.;Ma,J.;Wu,D.J.Hazard.Mater.,2009,171:918

    15 Simin,J.D.;Mahjoub,A.R.J.Alloy.Compd.,2009,486:805

    16 Cohen,R.E.;Krakauer,H.Phys.Rev.B,1990,42:6416

    17 Cohen,R.E.Nature,1992,358:136

    18 Tinte,S.;Stachiotti,M.G.Phys.Rev.B,1998,58:11959

    19 Piskunov,S.;Heifets,E.;Eglitis,R.I.;Borstel,G.Comput.Mater.Sci.,2004,9:165

    20 Hosseini,S.M.;Movlarooy,T.;Kompany,A.Physica B,2007,391:316

    21 Zhang,Z.Y.;Yang,D.L.;Liu,Y.H.;Cao,H.B.;Shao,J.X.;Jing,Q.Acta Phys.-Chim.Sin.,2009,25:1731 [張子英,楊德林,劉云虎,曹海濱,邵建新,井 群.物理化學(xué)學(xué)報(bào),2009,25:1731]

    22 Yun,J.N.;Zhang,Z.Y.Acta Phys.-Chim.Sin.,2010,26:751[贠江妮,張志勇.物理化學(xué)學(xué)報(bào),2010,26:751]

    23 Segall,M.D.;Lindan,P.L.D.;Probert,M.J.J.Phys.-Condes.Matter,2002,14:2717

    24 Payne,M.C.;Teter,M.P.;Allan,D.C.Rev.Mod.Phys.,1992,64:1045

    25 Perdew,J.P.;Burke,K.;Ernzerhof,M.Phys.Rev.Lett.,1996,77:3865

    26 Monkhorst,H.J.;Pack,J.D.;Freeman,D.L.Solid State Commun.,1979,29:723

    27 Korba,S.A.;Meradji,H.;Ghemid,S.;Bouhafs,B.Comput.Mater.Sci.,2009,44:1265

    28 Gou,H.Y.;Gao,F.M.;Zhang,J.W.Comput.Mater.Sci.2010,49:552

    29 Ye,C.;Pan,S.S.;Teng,X.M.Appl.Phys.A,2008,90:375

    30 Jones,R.O.;Gunnarsson,O.Rev.Mod.Phys.,1989,61:689

    31 Tell,J.S.Phys.Rev.,1956,104:1760

    32 Sharma,S.;Ambrosch-Draxl,C.;Khan,M.A.;Blaha,P.;Auluck,S.Phys.Rev.B,1999,60:8610

    33 Puschnig,P.;Ambrosch-Draxl,C.Phys.Rev.B,2002,66:165105

    34 Ambrosch-Draxl,C.;Sofo,J.O.Comput.Phys.Commun.,2006,175:1

    35 Delin,A.;Eriksson,O.;Ahuja,R.;Johansson,B.Phys.Rev.B,1996,54:1673

    36 Fox,M.Optical properties of solids.New York:Oxford University Press,2001

    37 Zhang,F.C.;Zhang,Z.Y.;Zhang,W.H.;Yan,J.F.;Yun,J.N.Acta Chim.Sin.,2008,66:1863 [張富春,張志勇,張威虎,閻軍峰,贠江妮.化學(xué)學(xué)報(bào),2008,66:1863]

    鈦鐵礦型六方相ZnTiO3的電子結(jié)構(gòu)和光學(xué)性質(zhì)

    張小超1樊彩梅1,*梁鎮(zhèn)海1韓培德2

    (1太原理工大學(xué)潔凈化工研究所,太原030024;2太原理工大學(xué)材料科學(xué)與工程學(xué)院,太原030024)

    分別采用基于密度泛函理論(DFT)的局域密度近似(LDA)和廣義梯度近似(GGA)方法對(duì)鈦鐵礦型六方相ZnTiO3的電子結(jié)構(gòu)進(jìn)行了第一性原理計(jì)算,并在局域密度近似下計(jì)算了六方相ZnTiO3的光學(xué)性質(zhì),并將計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)進(jìn)行了對(duì)比.結(jié)果表明,在局域密度近似下計(jì)算得到的結(jié)構(gòu)參數(shù)更接近實(shí)驗(yàn)數(shù)據(jù).理論預(yù)測六方相ZnTiO3屬于直接帶隙半導(dǎo)體材料,其禁帶寬度(布里淵區(qū)Z點(diǎn))為3.11 eV.電子態(tài)密度和Mulliken電荷布居分析表明Zn―O鍵是典型的離子鍵而Ti―O鍵是類似于鈣鈦礦型ATiO3(A=Sr,Pb,Ba)的Ti―O共價(jià)鍵.在50 eV的能量范圍內(nèi)研究了ZnTiO3的介電函數(shù)、吸收光譜和折射率等光學(xué)性質(zhì),并基于電子能帶結(jié)構(gòu)和態(tài)密度對(duì)光學(xué)性質(zhì)進(jìn)行了解釋.

    第一性原理;電子結(jié)構(gòu);光學(xué)性質(zhì);鈦鐵礦型六方相ZnTiO3

    O641

    Received:August 2,2010;Revised:October 27,2010;Published on Web:November 17,2010.

    ?Corresponding author.Email:fancm@163.com;Tel:+86-351-6018193,+86-13007011210.

    The project was supported by the National Natural Science Foundation of China(20876104,20771080)and Science and Technology Foundation of Shanxi Province,China(20090311082).

    國家自然科學(xué)基金(20876104,20771080)和山西省科技攻關(guān)項(xiàng)目(20090311082)資助

    猜你喜歡
    張志勇鈦鐵礦局域
    Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures:An ensemble Monte Carlo simulation
    苯甲羥肟酸浮選鈦鐵礦的作用機(jī)理
    鋼鐵釩鈦(2022年4期)2022-09-19 08:18:50
    第四次出獄之后
    方圓(2022年12期)2022-09-15 00:58:22
    第四次出獄后,他相信自己不會(huì)再碰毒品了
    方圓(2022年13期)2022-09-14 15:08:02
    元山子鈦鐵礦礦區(qū)水文地質(zhì)特征分析
    Designing of spin filter devices based on zigzag zinc oxide nanoribbon modified by edge defect?
    微細(xì)粒鈦鐵礦磁選回收率低原因分析
    局域積分散列最近鄰查找算法
    電子測試(2018年18期)2018-11-14 02:30:34
    利用鈦鐵礦制備納米鈦基功能材料
    PET成像的高分辨率快速局域重建算法的建立
    欧美一区二区国产精品久久精品| 97人妻精品一区二区三区麻豆| 999久久久精品免费观看国产| 永久网站在线| 人人妻人人澡欧美一区二区| 午夜福利在线在线| 日本色播在线视频| 亚洲熟妇中文字幕五十中出| 欧美性感艳星| 偷拍熟女少妇极品色| 一夜夜www| 麻豆成人午夜福利视频| 国产69精品久久久久777片| 国内久久婷婷六月综合欲色啪| 亚洲在线自拍视频| 欧美激情国产日韩精品一区| 国产乱人伦免费视频| 久久香蕉精品热| 国产精品综合久久久久久久免费| 三级国产精品欧美在线观看| 亚洲国产高清在线一区二区三| 久久欧美精品欧美久久欧美| 国产精品,欧美在线| 欧美性猛交╳xxx乱大交人| 亚洲欧美日韩卡通动漫| 天天躁日日操中文字幕| 麻豆国产av国片精品| 中文字幕免费在线视频6| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品456在线播放app | 国产精品国产高清国产av| 亚洲成人免费电影在线观看| 国产爱豆传媒在线观看| 1000部很黄的大片| 亚洲精品在线观看二区| 少妇丰满av| 天堂动漫精品| 18禁在线播放成人免费| 成人无遮挡网站| 日韩 亚洲 欧美在线| 免费看日本二区| 亚洲天堂国产精品一区在线| 午夜视频国产福利| 免费无遮挡裸体视频| 在线观看av片永久免费下载| 五月伊人婷婷丁香| 亚洲熟妇熟女久久| 日本a在线网址| 国产亚洲av嫩草精品影院| 日韩高清综合在线| 午夜精品久久久久久毛片777| 成人二区视频| 91麻豆av在线| 国产私拍福利视频在线观看| 久久久久久国产a免费观看| 两个人视频免费观看高清| 最后的刺客免费高清国语| 久久久久性生活片| 99久久成人亚洲精品观看| 看黄色毛片网站| av天堂中文字幕网| 又粗又爽又猛毛片免费看| 黄色女人牲交| 国产亚洲91精品色在线| 嫩草影院新地址| 国产亚洲精品久久久com| 啦啦啦啦在线视频资源| 久久久久国产精品人妻aⅴ院| 午夜福利18| av在线天堂中文字幕| 久久久久性生活片| 国产白丝娇喘喷水9色精品| 精品久久久久久,| 88av欧美| 欧美日韩乱码在线| 啪啪无遮挡十八禁网站| 1024手机看黄色片| 亚洲avbb在线观看| 亚洲成av人片在线播放无| 国产亚洲精品久久久久久毛片| av在线观看视频网站免费| 久久久久久久久久黄片| 欧美性猛交╳xxx乱大交人| 免费观看的影片在线观看| 夜夜夜夜夜久久久久| 国产 一区 欧美 日韩| 尾随美女入室| 欧美日韩黄片免| 午夜a级毛片| 久久久久久国产a免费观看| www.www免费av| 国产69精品久久久久777片| 国产av麻豆久久久久久久| 日韩人妻高清精品专区| 精品免费久久久久久久清纯| 国产综合懂色| 久久欧美精品欧美久久欧美| 欧美黑人巨大hd| 成人亚洲精品av一区二区| 欧美高清成人免费视频www| 欧美激情久久久久久爽电影| 久久精品国产亚洲av天美| 在线观看舔阴道视频| 欧美又色又爽又黄视频| 黄片wwwwww| 在线观看美女被高潮喷水网站| a在线观看视频网站| 狂野欧美白嫩少妇大欣赏| 校园春色视频在线观看| 内射极品少妇av片p| 男人舔奶头视频| 九九久久精品国产亚洲av麻豆| 中文字幕熟女人妻在线| 久久欧美精品欧美久久欧美| 超碰av人人做人人爽久久| 人妻少妇偷人精品九色| 亚洲第一电影网av| 国产精品伦人一区二区| 亚洲av成人av| 亚洲性夜色夜夜综合| 男人的好看免费观看在线视频| 男人狂女人下面高潮的视频| 美女被艹到高潮喷水动态| 国语自产精品视频在线第100页| 无遮挡黄片免费观看| 久久久久久国产a免费观看| 最新在线观看一区二区三区| 国产精品亚洲一级av第二区| 亚洲精品国产成人久久av| 国产精品伦人一区二区| 国产精品1区2区在线观看.| 久久中文看片网| 亚洲国产色片| 欧美日韩国产亚洲二区| 国产成年人精品一区二区| 国产精品美女特级片免费视频播放器| 久久久久国产精品人妻aⅴ院| 校园春色视频在线观看| 一区二区三区四区激情视频 | 国产又黄又爽又无遮挡在线| 免费观看在线日韩| 少妇的逼好多水| 国产真实乱freesex| 国内精品宾馆在线| 色噜噜av男人的天堂激情| 亚洲va在线va天堂va国产| 美女 人体艺术 gogo| 内射极品少妇av片p| 日韩欧美精品v在线| 久久6这里有精品| 国产在视频线在精品| 免费在线观看影片大全网站| 69人妻影院| 中文在线观看免费www的网站| 欧美一区二区精品小视频在线| 最近视频中文字幕2019在线8| 中文字幕免费在线视频6| 日本黄色视频三级网站网址| 亚洲性夜色夜夜综合| 亚洲不卡免费看| 亚洲人成网站在线播放欧美日韩| av在线天堂中文字幕| 亚洲图色成人| 2021天堂中文幕一二区在线观| 丝袜美腿在线中文| 中文字幕久久专区| 热99在线观看视频| 很黄的视频免费| 白带黄色成豆腐渣| 欧美日韩中文字幕国产精品一区二区三区| 蜜桃久久精品国产亚洲av| 一区二区三区激情视频| 国产黄色小视频在线观看| 黄色丝袜av网址大全| 22中文网久久字幕| 精品久久久久久久末码| 国产亚洲精品av在线| 亚洲美女视频黄频| 99热6这里只有精品| 不卡视频在线观看欧美| 欧美精品国产亚洲| 亚洲欧美精品综合久久99| 国产老妇女一区| 女生性感内裤真人,穿戴方法视频| 免费看av在线观看网站| 人妻夜夜爽99麻豆av| 听说在线观看完整版免费高清| 免费黄网站久久成人精品| 国产一级毛片七仙女欲春2| 国内毛片毛片毛片毛片毛片| 天堂网av新在线| 亚洲av五月六月丁香网| 国产一区二区三区av在线 | 麻豆精品久久久久久蜜桃| 国产精品久久久久久久久免| 日本一本二区三区精品| 搞女人的毛片| 不卡一级毛片| 国产精品无大码| 日日撸夜夜添| 天美传媒精品一区二区| 性插视频无遮挡在线免费观看| av女优亚洲男人天堂| xxxwww97欧美| 国产在线精品亚洲第一网站| 免费看光身美女| 91午夜精品亚洲一区二区三区 | 麻豆精品久久久久久蜜桃| 三级毛片av免费| 免费人成在线观看视频色| 一进一出抽搐gif免费好疼| 变态另类丝袜制服| 日韩 亚洲 欧美在线| 亚洲av中文字字幕乱码综合| 国内少妇人妻偷人精品xxx网站| 午夜福利欧美成人| 99在线人妻在线中文字幕| 91在线精品国自产拍蜜月| 美女cb高潮喷水在线观看| 久久精品国产99精品国产亚洲性色| 精品国内亚洲2022精品成人| 亚洲中文字幕一区二区三区有码在线看| 亚洲国产精品sss在线观看| 露出奶头的视频| 欧美成人一区二区免费高清观看| 性欧美人与动物交配| 国产精品永久免费网站| 尾随美女入室| 人人妻人人澡欧美一区二区| 中文字幕熟女人妻在线| 色av中文字幕| 国产乱人伦免费视频| 香蕉av资源在线| 久久6这里有精品| 国产精品伦人一区二区| 一个人看的www免费观看视频| 亚洲综合色惰| 午夜精品久久久久久毛片777| 色5月婷婷丁香| 久久精品久久久久久噜噜老黄 | 亚洲三级黄色毛片| 日日啪夜夜撸| 亚洲黑人精品在线| 国产探花在线观看一区二区| 欧美日本亚洲视频在线播放| 岛国在线免费视频观看| 亚洲第一电影网av| 国产精品综合久久久久久久免费| 中文字幕熟女人妻在线| 老司机福利观看| 夜夜看夜夜爽夜夜摸| 久久精品综合一区二区三区| 如何舔出高潮| 成年女人看的毛片在线观看| 亚洲精品国产成人久久av| 亚洲欧美精品综合久久99| 国产亚洲精品久久久久久毛片| 国国产精品蜜臀av免费| 国产v大片淫在线免费观看| 亚洲人成网站在线播放欧美日韩| 琪琪午夜伦伦电影理论片6080| 成年女人毛片免费观看观看9| 变态另类成人亚洲欧美熟女| 女生性感内裤真人,穿戴方法视频| x7x7x7水蜜桃| 亚洲三级黄色毛片| 一级黄色大片毛片| 日本 av在线| 性插视频无遮挡在线免费观看| 久久国产精品人妻蜜桃| 亚洲第一区二区三区不卡| 国产高清激情床上av| 男女之事视频高清在线观看| 亚洲欧美日韩高清专用| 国产单亲对白刺激| 赤兔流量卡办理| 免费在线观看影片大全网站| 精品乱码久久久久久99久播| 99riav亚洲国产免费| 精品无人区乱码1区二区| 亚洲av成人精品一区久久| 亚洲国产高清在线一区二区三| 久久久久久伊人网av| 亚洲av熟女| 久久草成人影院| 免费看光身美女| 日韩欧美一区二区三区在线观看| 春色校园在线视频观看| 午夜视频国产福利| 美女大奶头视频| 亚洲七黄色美女视频| 亚洲图色成人| 亚洲av中文av极速乱 | 一个人看视频在线观看www免费| 免费av毛片视频| 精品一区二区三区视频在线| 国产精品乱码一区二三区的特点| 国产蜜桃级精品一区二区三区| 男人和女人高潮做爰伦理| 国产伦在线观看视频一区| 亚洲av.av天堂| 麻豆国产av国片精品| 久久久久久久久久久丰满 | 国产 一区精品| 亚洲av第一区精品v没综合| 成人美女网站在线观看视频| 日韩一本色道免费dvd| 亚洲欧美日韩卡通动漫| 美女被艹到高潮喷水动态| 日韩精品有码人妻一区| 午夜爱爱视频在线播放| 国产白丝娇喘喷水9色精品| 男女边吃奶边做爰视频| 亚洲不卡免费看| 男人舔奶头视频| 久久久久国内视频| 91在线观看av| 欧美黑人欧美精品刺激| 精品午夜福利视频在线观看一区| 成人毛片a级毛片在线播放| av视频在线观看入口| av专区在线播放| 国产蜜桃级精品一区二区三区| xxxwww97欧美| 国产午夜福利久久久久久| 一夜夜www| av专区在线播放| www.色视频.com| 麻豆av噜噜一区二区三区| 999久久久精品免费观看国产| 91在线精品国自产拍蜜月| 99热精品在线国产| 他把我摸到了高潮在线观看| 免费在线观看成人毛片| 国产午夜福利久久久久久| 亚洲av熟女| 在线国产一区二区在线| 一进一出好大好爽视频| 国产单亲对白刺激| 日本免费一区二区三区高清不卡| 一边摸一边抽搐一进一小说| 特级一级黄色大片| 变态另类丝袜制服| 尤物成人国产欧美一区二区三区| av天堂在线播放| 男人和女人高潮做爰伦理| 乱系列少妇在线播放| 亚洲精品一卡2卡三卡4卡5卡| 国产精品自产拍在线观看55亚洲| 校园春色视频在线观看| 婷婷精品国产亚洲av在线| 成年人黄色毛片网站| 国产精品一区二区三区四区免费观看 | 国产综合懂色| 村上凉子中文字幕在线| 久久亚洲真实| 成人美女网站在线观看视频| 国产乱人视频| 一个人免费在线观看电影| 日韩欧美在线二视频| 中文字幕av成人在线电影| 在线观看午夜福利视频| 国内精品一区二区在线观看| 亚洲无线在线观看| 淫妇啪啪啪对白视频| 久久亚洲精品不卡| 久久久国产成人精品二区| 三级国产精品欧美在线观看| 欧美xxxx黑人xx丫x性爽| 熟妇人妻久久中文字幕3abv| 99在线人妻在线中文字幕| 日韩欧美国产在线观看| 亚洲成人中文字幕在线播放| 在线免费观看不下载黄p国产 | 最近在线观看免费完整版| 国产精品1区2区在线观看.| 国产黄色小视频在线观看| 亚洲中文日韩欧美视频| 五月玫瑰六月丁香| 尤物成人国产欧美一区二区三区| 一级a爱片免费观看的视频| 在线免费观看不下载黄p国产 | bbb黄色大片| 午夜福利在线观看免费完整高清在 | 色综合色国产| 国产精品精品国产色婷婷| 成人综合一区亚洲| 我的女老师完整版在线观看| 欧美另类亚洲清纯唯美| 日本色播在线视频| 久久久久性生活片| 在线观看av片永久免费下载| 日本欧美国产在线视频| av天堂中文字幕网| а√天堂www在线а√下载| 国产精品不卡视频一区二区| 国产一区二区激情短视频| 国产又黄又爽又无遮挡在线| 久久这里只有精品中国| 91麻豆av在线| 最好的美女福利视频网| 在线免费观看不下载黄p国产 | 在线免费观看不下载黄p国产 | 亚洲人与动物交配视频| 成年女人看的毛片在线观看| 欧美xxxx黑人xx丫x性爽| 成年版毛片免费区| 日本a在线网址| 伦精品一区二区三区| or卡值多少钱| av专区在线播放| 久久久久久久久久黄片| 乱码一卡2卡4卡精品| 亚洲美女视频黄频| 亚洲avbb在线观看| 欧美日韩精品成人综合77777| xxxwww97欧美| 神马国产精品三级电影在线观看| av女优亚洲男人天堂| 亚洲中文字幕一区二区三区有码在线看| 最近最新免费中文字幕在线| 伦理电影大哥的女人| 欧美成人性av电影在线观看| av在线亚洲专区| 国产一区二区三区在线臀色熟女| 少妇的逼水好多| 女生性感内裤真人,穿戴方法视频| 亚洲在线自拍视频| 免费av毛片视频| 直男gayav资源| 国产主播在线观看一区二区| 91精品国产九色| 人妻夜夜爽99麻豆av| 免费观看人在逋| 精品国内亚洲2022精品成人| 国产精品久久久久久精品电影| 很黄的视频免费| 动漫黄色视频在线观看| 久久6这里有精品| 欧美潮喷喷水| 久久中文看片网| 男人狂女人下面高潮的视频| 成年女人看的毛片在线观看| 国产精品自产拍在线观看55亚洲| 99久久成人亚洲精品观看| 美女免费视频网站| 美女 人体艺术 gogo| 国产精品国产高清国产av| 麻豆国产97在线/欧美| 欧洲精品卡2卡3卡4卡5卡区| 12—13女人毛片做爰片一| 嫁个100分男人电影在线观看| 色5月婷婷丁香| 国国产精品蜜臀av免费| 亚洲av成人精品一区久久| 久久亚洲精品不卡| 日本黄色片子视频| 亚洲国产精品sss在线观看| 日韩欧美三级三区| 麻豆精品久久久久久蜜桃| 午夜福利在线观看免费完整高清在 | 中文字幕人妻熟人妻熟丝袜美| 国产午夜精品久久久久久一区二区三区 | 大型黄色视频在线免费观看| 91久久精品国产一区二区三区| 色av中文字幕| 午夜a级毛片| aaaaa片日本免费| 国产av在哪里看| 国产亚洲欧美98| 亚洲精品在线观看二区| 国产真实乱freesex| 久久久久久九九精品二区国产| 嫩草影院入口| 久久久久国产精品人妻aⅴ院| 欧美成人性av电影在线观看| 亚洲,欧美,日韩| 成人特级av手机在线观看| 久久久久久久久中文| 久久久久久大精品| netflix在线观看网站| av在线天堂中文字幕| 国产伦一二天堂av在线观看| 美女xxoo啪啪120秒动态图| 国产精品久久久久久久电影| 国产一区二区三区在线臀色熟女| 日韩在线高清观看一区二区三区 | 免费看av在线观看网站| 日本色播在线视频| 校园春色视频在线观看| 久久婷婷人人爽人人干人人爱| 国产av一区在线观看免费| 免费电影在线观看免费观看| 亚洲在线自拍视频| 国产黄a三级三级三级人| 国产在线男女| 俄罗斯特黄特色一大片| 久久久久免费精品人妻一区二区| 校园人妻丝袜中文字幕| 欧美不卡视频在线免费观看| 性插视频无遮挡在线免费观看| 免费无遮挡裸体视频| 午夜福利在线观看吧| 在线天堂最新版资源| 午夜福利视频1000在线观看| 国产熟女欧美一区二区| 校园人妻丝袜中文字幕| 国产欧美日韩精品一区二区| 在线免费观看的www视频| 国产aⅴ精品一区二区三区波| 久久久久久伊人网av| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品一区av在线观看| 国产麻豆成人av免费视频| 国产一级毛片七仙女欲春2| 嫩草影院入口| 久久精品国产亚洲av涩爱 | 亚洲无线观看免费| or卡值多少钱| 美女被艹到高潮喷水动态| 少妇的逼好多水| 欧美一级a爱片免费观看看| 亚洲18禁久久av| 国产精品永久免费网站| 香蕉av资源在线| 国产色婷婷99| 精品午夜福利在线看| 麻豆一二三区av精品| 国产一区二区亚洲精品在线观看| 免费观看精品视频网站| 欧美精品国产亚洲| 人妻丰满熟妇av一区二区三区| 变态另类丝袜制服| 国产精品不卡视频一区二区| 国内毛片毛片毛片毛片毛片| 真人做人爱边吃奶动态| 国产精品爽爽va在线观看网站| 国产精品亚洲美女久久久| 国产伦人伦偷精品视频| 真人做人爱边吃奶动态| 亚洲av日韩精品久久久久久密| 国产欧美日韩精品一区二区| 香蕉av资源在线| 国产精品电影一区二区三区| 国产一区二区在线av高清观看| 日日摸夜夜添夜夜添av毛片 | 国产免费男女视频| 嫩草影院入口| 人妻夜夜爽99麻豆av| 麻豆精品久久久久久蜜桃| 美女免费视频网站| 中文在线观看免费www的网站| 国产黄a三级三级三级人| 国产成人一区二区在线| 日韩av在线大香蕉| 国产视频一区二区在线看| 麻豆成人午夜福利视频| 午夜福利18| 欧美高清性xxxxhd video| 欧美黑人欧美精品刺激| 国产亚洲精品综合一区在线观看| 两个人视频免费观看高清| 在线a可以看的网站| 99久久精品国产国产毛片| 亚洲专区中文字幕在线| 国产精品久久久久久久久免| 国产私拍福利视频在线观看| 看片在线看免费视频| 国内毛片毛片毛片毛片毛片| 免费av不卡在线播放| 亚洲欧美日韩高清专用| 色在线成人网| 国产在视频线在精品| 欧美性猛交黑人性爽| 伦理电影大哥的女人| 亚洲欧美日韩高清专用| 国产午夜精品久久久久久一区二区三区 | 一个人免费在线观看电影| 国产高清不卡午夜福利| 麻豆成人午夜福利视频| 亚洲国产精品sss在线观看| 最近最新中文字幕大全电影3| 露出奶头的视频| 波野结衣二区三区在线| 乱系列少妇在线播放| 午夜福利欧美成人| 亚洲三级黄色毛片| 午夜亚洲福利在线播放| 成人特级黄色片久久久久久久| 亚洲欧美激情综合另类| 国产蜜桃级精品一区二区三区| 啦啦啦韩国在线观看视频| 我要搜黄色片| 国产精品久久久久久久电影| 国产日本99.免费观看| 他把我摸到了高潮在线观看| 波多野结衣巨乳人妻| 亚洲黑人精品在线| ponron亚洲| 99热这里只有精品一区| 精品久久久久久久久av| 日韩精品中文字幕看吧| av女优亚洲男人天堂| eeuss影院久久| 欧美最黄视频在线播放免费| 岛国在线免费视频观看| 国产一级毛片七仙女欲春2| 欧美中文日本在线观看视频| 丰满的人妻完整版| 国产色婷婷99| 亚洲无线在线观看| 不卡视频在线观看欧美| 亚洲无线在线观看| 99久久九九国产精品国产免费| 在现免费观看毛片|