王業(yè)雙
摘要:反證法是一種重要的證明方法,是中學(xué)生必須掌握和靈活運(yùn)用的一種重要的證明方法。文章介紹了反證法的原理及一般步驟,探索反證法在中學(xué)數(shù)學(xué)中的運(yùn)用。
關(guān)鍵詞:反證法;證明;矛盾;應(yīng)用
中圖分類號:G633.6?搖 文獻(xiàn)標(biāo)志碼:A 文章編號:1674-9324(2014)02-0077-02
在中學(xué)數(shù)學(xué)中,反證法應(yīng)用相當(dāng)廣泛。怎樣正確運(yùn)用反證法是一個難題。本文主要研究的是一些直接證明難以入手甚至無法入手的題目,用反證法就會使證明變得輕而易舉。
一、反證法原理及解題步驟
1.反證法原理。反證法是一種論證方式。它首先假設(shè)某命題不成立,然后推出明顯矛盾的結(jié)論,從而得出原假設(shè)不成立,原命題得證??偟膩碚f反證法就是通過證明原命題的反面不成立來確定原命題正確的一種證明方法。反證法在中學(xué)數(shù)學(xué)中經(jīng)常運(yùn)用。有的問題不易從問題的正面去解答,但若從問題的反面著手卻容易解決,它從否定結(jié)論出發(fā),經(jīng)過正確嚴(yán)格的推理,得到與已知假設(shè)或已成立的數(shù)學(xué)命題相矛盾的結(jié)果,從而得到原命題的結(jié)論是不容否定的正確結(jié)論。
2.反證法的解題步驟。在中學(xué)數(shù)學(xué)題目的求解證明過程中,當(dāng)直接證明一個命題感到困難時,我們經(jīng)常采用反證法的思想。由此,我們總結(jié)出用反證法證明命題的三個步驟:①提出假設(shè):做出與求證結(jié)論相反的假設(shè)。②推出矛盾:與題設(shè)矛盾;與假設(shè)矛盾;恒假命題。③肯定結(jié)論:說明假設(shè)不成立,從而肯定原命題成立。數(shù)學(xué)問題是多種多樣的,盡管大多問題一般使用直接證明,但有些問題直接證明難度較大,而用反證法證明,卻能迎刃而解。下面我們結(jié)合實(shí)例總結(jié)幾種常用反證法的情況。
二、反證法在中學(xué)數(shù)學(xué)中的應(yīng)用
反證法雖然是在平面幾何教材中提出來的,但對數(shù)學(xué)的其他部分內(nèi)容如代數(shù)、三角函數(shù)、立體幾何、解析幾何中都可應(yīng)用反證法。那么,究竟什么樣的命題可以用反證法來證呢?下面就列舉幾種一般用反證法來證比較方便的命題。
1.基本命題?;久}就是學(xué)科中的起始性命題,這類命題由于已知條件及能夠應(yīng)用的定理、公式、法則較少,或由題設(shè)條件所能推出的結(jié)論很少,因而直接證明入手較難,此時應(yīng)用反證法容易奏效。
例1 求證:兩條相交直線只有一個交點(diǎn)。已知:如圖,直線a、b相交于點(diǎn)P,求證:a、b只有一個交點(diǎn)。證明:假定a,b相交不只有一個交點(diǎn)P,那么a,b至少有兩個交點(diǎn)P、Q。于是直線a是由P、Q兩點(diǎn)確定的直線,直線b也是由P、Q兩點(diǎn)確定的直線,即由P、Q兩點(diǎn)確定了兩條直線a,b。
與已知公理“兩點(diǎn)只確定一條直線”相矛盾,則a,b不可能有兩個交點(diǎn),于是兩條相交直線只有一個交點(diǎn)。
2.否定性命題。否定性命題,也就是結(jié)論以否定形式出現(xiàn)的命題,即結(jié)論以“沒有……”“不是……”“不能……”等形式出現(xiàn)的命題,直接證法一般不易人手,而運(yùn)用反證法能使你見到“柳暗花明又一村”的景象。
3.存在性問題。在存在性問題中,結(jié)論若是“至少存在”,其反面是“必定不存在”,由此來推出矛盾,從而否定“必定不存在”,而肯定“至少存在”。我們用反證法來證明。
例2 已知x∈R,a=x2+0.5,b=2-x,c=x2-x+1求證:a,b,c中至少有一個不小于1。證明:假設(shè)a,b,c都小于1,則2x2-2x+3.5<3,而2x2-2x+3.5=2(x-0.5)2+3≥3與2x2-2x+3.5<3相矛盾,假設(shè)不成立,即命題成立。
4.無窮性命題。無窮性命題是指在求證的命題中含有“無窮”、“無限”等概念時,從正面證明往往無從下手時,我們常使用反證法。
例3 證明■是無理數(shù)。證明:假設(shè)■不是無理數(shù),那么■是有理數(shù),不妨設(shè)■=■(m,n為互質(zhì)的整數(shù)), m2=3n2,即有m是3的倍數(shù),又設(shè)m=3q(q是整數(shù)),代人上式得n2=3q2,這又說明n也是3的倍數(shù),那么m與n都是3的倍數(shù),這與我們假設(shè)m、n互相矛盾,∴■是無理數(shù)。
5.唯一性命題。有關(guān)唯一性的題目結(jié)論以“…只有一個…”或者“……唯一存在”等形式出現(xiàn)的命題,用反證證明,常能使證明過程簡潔清楚。
例4 設(shè)0
從而|x1-x2|≤2bsin(x1-x2)/2≤2b(x1-x2)/2=b|x1-x2|,即 |x1-x2|≤b|x1-x2|,此與x1≠x2且0
三、應(yīng)用反證法應(yīng)該注意的問題
對于同一命題,從不同的角度進(jìn)行推理,常??梢酝瞥霾煌再|(zhì)的矛盾結(jié)果,從而得到不同的證明方法,它們中有繁冗復(fù)雜,有簡單快捷,因此,在用反證法證明中,應(yīng)當(dāng)從命題的特點(diǎn)出發(fā),選取恰當(dāng)?shù)耐评矸椒ā?/p>
1.必須正確“否定結(jié)論”。正確否定結(jié)論是運(yùn)用反證法的首要問題。
2.必須明確“推理特點(diǎn)”。否定結(jié)論導(dǎo)出矛盾是反證法的任務(wù),但出現(xiàn)什么樣的矛盾是不能預(yù)測的。一般是在命題的相關(guān)領(lǐng)域里考慮,這正是反證法推理的特點(diǎn)。只需正確否定結(jié)論,嚴(yán)格遵守推理規(guī)則,進(jìn)行步步有據(jù)的推理,矛盾一出現(xiàn),證明即告結(jié)束。
3.了解“矛盾種類”。反證法推理過程中出現(xiàn)的矛盾是多種多樣的,推理導(dǎo)出的結(jié)果可能與題設(shè)或部分題設(shè)矛盾,可能與已知真命題(定義或公理、或定理、或性質(zhì))相矛盾,可能與臨時假設(shè)矛盾,或推出一對相互矛盾的結(jié)果等。
反證法是一種簡明實(shí)用的數(shù)學(xué)解題方法,也是一種重要的數(shù)學(xué)思想。學(xué)會運(yùn)用反證法,它可以讓我們掌握數(shù)學(xué)邏輯推理思想及間接證明的數(shù)學(xué)方法,提高觀察力、思維能力、辨別能力,以及養(yǎng)成嚴(yán)謹(jǐn)治學(xué)的習(xí)慣。我認(rèn)為,只有了解這些知識,在此基礎(chǔ)上再不斷加強(qiáng)訓(xùn)練,并不斷進(jìn)行總結(jié),才能熟練運(yùn)用。
參考文獻(xiàn):
[1]陳志云,王以清.反證法[J].高等函授學(xué)報(自然科學(xué)版),2000,13(6):20-23.
[2]閻平連.淺談反證法在初中數(shù)學(xué)中的運(yùn)用[J].呂梁高等專科學(xué)校學(xué)報,2002,18(1):28-29.
[3]張安平.反證法——證明數(shù)學(xué)問題的重要方法[J].教育教學(xué),2010,1(11):179-180.
[4]張世強(qiáng).淺析“反證法”[J].成都教育學(xué)院學(xué)報,2000,6(06):09-10.
[5]路從條.“反證法”思想在中學(xué)數(shù)學(xué)中的應(yīng)用[J].福建教育學(xué)院學(xué)報,2003,1(03):84-85.
[6]朱慧.反證法在中學(xué)數(shù)學(xué)證明題中的應(yīng)用[J].教育教學(xué)論壇,2010,1(35):53-54.
摘要:反證法是一種重要的證明方法,是中學(xué)生必須掌握和靈活運(yùn)用的一種重要的證明方法。文章介紹了反證法的原理及一般步驟,探索反證法在中學(xué)數(shù)學(xué)中的運(yùn)用。
關(guān)鍵詞:反證法;證明;矛盾;應(yīng)用
中圖分類號:G633.6?搖 文獻(xiàn)標(biāo)志碼:A 文章編號:1674-9324(2014)02-0077-02
在中學(xué)數(shù)學(xué)中,反證法應(yīng)用相當(dāng)廣泛。怎樣正確運(yùn)用反證法是一個難題。本文主要研究的是一些直接證明難以入手甚至無法入手的題目,用反證法就會使證明變得輕而易舉。
一、反證法原理及解題步驟
1.反證法原理。反證法是一種論證方式。它首先假設(shè)某命題不成立,然后推出明顯矛盾的結(jié)論,從而得出原假設(shè)不成立,原命題得證。總的來說反證法就是通過證明原命題的反面不成立來確定原命題正確的一種證明方法。反證法在中學(xué)數(shù)學(xué)中經(jīng)常運(yùn)用。有的問題不易從問題的正面去解答,但若從問題的反面著手卻容易解決,它從否定結(jié)論出發(fā),經(jīng)過正確嚴(yán)格的推理,得到與已知假設(shè)或已成立的數(shù)學(xué)命題相矛盾的結(jié)果,從而得到原命題的結(jié)論是不容否定的正確結(jié)論。
2.反證法的解題步驟。在中學(xué)數(shù)學(xué)題目的求解證明過程中,當(dāng)直接證明一個命題感到困難時,我們經(jīng)常采用反證法的思想。由此,我們總結(jié)出用反證法證明命題的三個步驟:①提出假設(shè):做出與求證結(jié)論相反的假設(shè)。②推出矛盾:與題設(shè)矛盾;與假設(shè)矛盾;恒假命題。③肯定結(jié)論:說明假設(shè)不成立,從而肯定原命題成立。數(shù)學(xué)問題是多種多樣的,盡管大多問題一般使用直接證明,但有些問題直接證明難度較大,而用反證法證明,卻能迎刃而解。下面我們結(jié)合實(shí)例總結(jié)幾種常用反證法的情況。
二、反證法在中學(xué)數(shù)學(xué)中的應(yīng)用
反證法雖然是在平面幾何教材中提出來的,但對數(shù)學(xué)的其他部分內(nèi)容如代數(shù)、三角函數(shù)、立體幾何、解析幾何中都可應(yīng)用反證法。那么,究竟什么樣的命題可以用反證法來證呢?下面就列舉幾種一般用反證法來證比較方便的命題。
1.基本命題。基本命題就是學(xué)科中的起始性命題,這類命題由于已知條件及能夠應(yīng)用的定理、公式、法則較少,或由題設(shè)條件所能推出的結(jié)論很少,因而直接證明入手較難,此時應(yīng)用反證法容易奏效。
例1 求證:兩條相交直線只有一個交點(diǎn)。已知:如圖,直線a、b相交于點(diǎn)P,求證:a、b只有一個交點(diǎn)。證明:假定a,b相交不只有一個交點(diǎn)P,那么a,b至少有兩個交點(diǎn)P、Q。于是直線a是由P、Q兩點(diǎn)確定的直線,直線b也是由P、Q兩點(diǎn)確定的直線,即由P、Q兩點(diǎn)確定了兩條直線a,b。
與已知公理“兩點(diǎn)只確定一條直線”相矛盾,則a,b不可能有兩個交點(diǎn),于是兩條相交直線只有一個交點(diǎn)。
2.否定性命題。否定性命題,也就是結(jié)論以否定形式出現(xiàn)的命題,即結(jié)論以“沒有……”“不是……”“不能……”等形式出現(xiàn)的命題,直接證法一般不易人手,而運(yùn)用反證法能使你見到“柳暗花明又一村”的景象。
3.存在性問題。在存在性問題中,結(jié)論若是“至少存在”,其反面是“必定不存在”,由此來推出矛盾,從而否定“必定不存在”,而肯定“至少存在”。我們用反證法來證明。
例2 已知x∈R,a=x2+0.5,b=2-x,c=x2-x+1求證:a,b,c中至少有一個不小于1。證明:假設(shè)a,b,c都小于1,則2x2-2x+3.5<3,而2x2-2x+3.5=2(x-0.5)2+3≥3與2x2-2x+3.5<3相矛盾,假設(shè)不成立,即命題成立。
4.無窮性命題。無窮性命題是指在求證的命題中含有“無窮”、“無限”等概念時,從正面證明往往無從下手時,我們常使用反證法。
例3 證明■是無理數(shù)。證明:假設(shè)■不是無理數(shù),那么■是有理數(shù),不妨設(shè)■=■(m,n為互質(zhì)的整數(shù)), m2=3n2,即有m是3的倍數(shù),又設(shè)m=3q(q是整數(shù)),代人上式得n2=3q2,這又說明n也是3的倍數(shù),那么m與n都是3的倍數(shù),這與我們假設(shè)m、n互相矛盾,∴■是無理數(shù)。
5.唯一性命題。有關(guān)唯一性的題目結(jié)論以“…只有一個…”或者“……唯一存在”等形式出現(xiàn)的命題,用反證證明,常能使證明過程簡潔清楚。
例4 設(shè)0
從而|x1-x2|≤2bsin(x1-x2)/2≤2b(x1-x2)/2=b|x1-x2|,即 |x1-x2|≤b|x1-x2|,此與x1≠x2且0
三、應(yīng)用反證法應(yīng)該注意的問題
對于同一命題,從不同的角度進(jìn)行推理,常??梢酝瞥霾煌再|(zhì)的矛盾結(jié)果,從而得到不同的證明方法,它們中有繁冗復(fù)雜,有簡單快捷,因此,在用反證法證明中,應(yīng)當(dāng)從命題的特點(diǎn)出發(fā),選取恰當(dāng)?shù)耐评矸椒ā?/p>
1.必須正確“否定結(jié)論”。正確否定結(jié)論是運(yùn)用反證法的首要問題。
2.必須明確“推理特點(diǎn)”。否定結(jié)論導(dǎo)出矛盾是反證法的任務(wù),但出現(xiàn)什么樣的矛盾是不能預(yù)測的。一般是在命題的相關(guān)領(lǐng)域里考慮,這正是反證法推理的特點(diǎn)。只需正確否定結(jié)論,嚴(yán)格遵守推理規(guī)則,進(jìn)行步步有據(jù)的推理,矛盾一出現(xiàn),證明即告結(jié)束。
3.了解“矛盾種類”。反證法推理過程中出現(xiàn)的矛盾是多種多樣的,推理導(dǎo)出的結(jié)果可能與題設(shè)或部分題設(shè)矛盾,可能與已知真命題(定義或公理、或定理、或性質(zhì))相矛盾,可能與臨時假設(shè)矛盾,或推出一對相互矛盾的結(jié)果等。
反證法是一種簡明實(shí)用的數(shù)學(xué)解題方法,也是一種重要的數(shù)學(xué)思想。學(xué)會運(yùn)用反證法,它可以讓我們掌握數(shù)學(xué)邏輯推理思想及間接證明的數(shù)學(xué)方法,提高觀察力、思維能力、辨別能力,以及養(yǎng)成嚴(yán)謹(jǐn)治學(xué)的習(xí)慣。我認(rèn)為,只有了解這些知識,在此基礎(chǔ)上再不斷加強(qiáng)訓(xùn)練,并不斷進(jìn)行總結(jié),才能熟練運(yùn)用。
參考文獻(xiàn):
[1]陳志云,王以清.反證法[J].高等函授學(xué)報(自然科學(xué)版),2000,13(6):20-23.
[2]閻平連.淺談反證法在初中數(shù)學(xué)中的運(yùn)用[J].呂梁高等專科學(xué)校學(xué)報,2002,18(1):28-29.
[3]張安平.反證法——證明數(shù)學(xué)問題的重要方法[J].教育教學(xué),2010,1(11):179-180.
[4]張世強(qiáng).淺析“反證法”[J].成都教育學(xué)院學(xué)報,2000,6(06):09-10.
[5]路從條.“反證法”思想在中學(xué)數(shù)學(xué)中的應(yīng)用[J].福建教育學(xué)院學(xué)報,2003,1(03):84-85.
[6]朱慧.反證法在中學(xué)數(shù)學(xué)證明題中的應(yīng)用[J].教育教學(xué)論壇,2010,1(35):53-54.
摘要:反證法是一種重要的證明方法,是中學(xué)生必須掌握和靈活運(yùn)用的一種重要的證明方法。文章介紹了反證法的原理及一般步驟,探索反證法在中學(xué)數(shù)學(xué)中的運(yùn)用。
關(guān)鍵詞:反證法;證明;矛盾;應(yīng)用
中圖分類號:G633.6?搖 文獻(xiàn)標(biāo)志碼:A 文章編號:1674-9324(2014)02-0077-02
在中學(xué)數(shù)學(xué)中,反證法應(yīng)用相當(dāng)廣泛。怎樣正確運(yùn)用反證法是一個難題。本文主要研究的是一些直接證明難以入手甚至無法入手的題目,用反證法就會使證明變得輕而易舉。
一、反證法原理及解題步驟
1.反證法原理。反證法是一種論證方式。它首先假設(shè)某命題不成立,然后推出明顯矛盾的結(jié)論,從而得出原假設(shè)不成立,原命題得證??偟膩碚f反證法就是通過證明原命題的反面不成立來確定原命題正確的一種證明方法。反證法在中學(xué)數(shù)學(xué)中經(jīng)常運(yùn)用。有的問題不易從問題的正面去解答,但若從問題的反面著手卻容易解決,它從否定結(jié)論出發(fā),經(jīng)過正確嚴(yán)格的推理,得到與已知假設(shè)或已成立的數(shù)學(xué)命題相矛盾的結(jié)果,從而得到原命題的結(jié)論是不容否定的正確結(jié)論。
2.反證法的解題步驟。在中學(xué)數(shù)學(xué)題目的求解證明過程中,當(dāng)直接證明一個命題感到困難時,我們經(jīng)常采用反證法的思想。由此,我們總結(jié)出用反證法證明命題的三個步驟:①提出假設(shè):做出與求證結(jié)論相反的假設(shè)。②推出矛盾:與題設(shè)矛盾;與假設(shè)矛盾;恒假命題。③肯定結(jié)論:說明假設(shè)不成立,從而肯定原命題成立。數(shù)學(xué)問題是多種多樣的,盡管大多問題一般使用直接證明,但有些問題直接證明難度較大,而用反證法證明,卻能迎刃而解。下面我們結(jié)合實(shí)例總結(jié)幾種常用反證法的情況。
二、反證法在中學(xué)數(shù)學(xué)中的應(yīng)用
反證法雖然是在平面幾何教材中提出來的,但對數(shù)學(xué)的其他部分內(nèi)容如代數(shù)、三角函數(shù)、立體幾何、解析幾何中都可應(yīng)用反證法。那么,究竟什么樣的命題可以用反證法來證呢?下面就列舉幾種一般用反證法來證比較方便的命題。
1.基本命題?;久}就是學(xué)科中的起始性命題,這類命題由于已知條件及能夠應(yīng)用的定理、公式、法則較少,或由題設(shè)條件所能推出的結(jié)論很少,因而直接證明入手較難,此時應(yīng)用反證法容易奏效。
例1 求證:兩條相交直線只有一個交點(diǎn)。已知:如圖,直線a、b相交于點(diǎn)P,求證:a、b只有一個交點(diǎn)。證明:假定a,b相交不只有一個交點(diǎn)P,那么a,b至少有兩個交點(diǎn)P、Q。于是直線a是由P、Q兩點(diǎn)確定的直線,直線b也是由P、Q兩點(diǎn)確定的直線,即由P、Q兩點(diǎn)確定了兩條直線a,b。
與已知公理“兩點(diǎn)只確定一條直線”相矛盾,則a,b不可能有兩個交點(diǎn),于是兩條相交直線只有一個交點(diǎn)。
2.否定性命題。否定性命題,也就是結(jié)論以否定形式出現(xiàn)的命題,即結(jié)論以“沒有……”“不是……”“不能……”等形式出現(xiàn)的命題,直接證法一般不易人手,而運(yùn)用反證法能使你見到“柳暗花明又一村”的景象。
3.存在性問題。在存在性問題中,結(jié)論若是“至少存在”,其反面是“必定不存在”,由此來推出矛盾,從而否定“必定不存在”,而肯定“至少存在”。我們用反證法來證明。
例2 已知x∈R,a=x2+0.5,b=2-x,c=x2-x+1求證:a,b,c中至少有一個不小于1。證明:假設(shè)a,b,c都小于1,則2x2-2x+3.5<3,而2x2-2x+3.5=2(x-0.5)2+3≥3與2x2-2x+3.5<3相矛盾,假設(shè)不成立,即命題成立。
4.無窮性命題。無窮性命題是指在求證的命題中含有“無窮”、“無限”等概念時,從正面證明往往無從下手時,我們常使用反證法。
例3 證明■是無理數(shù)。證明:假設(shè)■不是無理數(shù),那么■是有理數(shù),不妨設(shè)■=■(m,n為互質(zhì)的整數(shù)), m2=3n2,即有m是3的倍數(shù),又設(shè)m=3q(q是整數(shù)),代人上式得n2=3q2,這又說明n也是3的倍數(shù),那么m與n都是3的倍數(shù),這與我們假設(shè)m、n互相矛盾,∴■是無理數(shù)。
5.唯一性命題。有關(guān)唯一性的題目結(jié)論以“…只有一個…”或者“……唯一存在”等形式出現(xiàn)的命題,用反證證明,常能使證明過程簡潔清楚。
例4 設(shè)0
從而|x1-x2|≤2bsin(x1-x2)/2≤2b(x1-x2)/2=b|x1-x2|,即 |x1-x2|≤b|x1-x2|,此與x1≠x2且0
三、應(yīng)用反證法應(yīng)該注意的問題
對于同一命題,從不同的角度進(jìn)行推理,常??梢酝瞥霾煌再|(zhì)的矛盾結(jié)果,從而得到不同的證明方法,它們中有繁冗復(fù)雜,有簡單快捷,因此,在用反證法證明中,應(yīng)當(dāng)從命題的特點(diǎn)出發(fā),選取恰當(dāng)?shù)耐评矸椒ā?/p>
1.必須正確“否定結(jié)論”。正確否定結(jié)論是運(yùn)用反證法的首要問題。
2.必須明確“推理特點(diǎn)”。否定結(jié)論導(dǎo)出矛盾是反證法的任務(wù),但出現(xiàn)什么樣的矛盾是不能預(yù)測的。一般是在命題的相關(guān)領(lǐng)域里考慮,這正是反證法推理的特點(diǎn)。只需正確否定結(jié)論,嚴(yán)格遵守推理規(guī)則,進(jìn)行步步有據(jù)的推理,矛盾一出現(xiàn),證明即告結(jié)束。
3.了解“矛盾種類”。反證法推理過程中出現(xiàn)的矛盾是多種多樣的,推理導(dǎo)出的結(jié)果可能與題設(shè)或部分題設(shè)矛盾,可能與已知真命題(定義或公理、或定理、或性質(zhì))相矛盾,可能與臨時假設(shè)矛盾,或推出一對相互矛盾的結(jié)果等。
反證法是一種簡明實(shí)用的數(shù)學(xué)解題方法,也是一種重要的數(shù)學(xué)思想。學(xué)會運(yùn)用反證法,它可以讓我們掌握數(shù)學(xué)邏輯推理思想及間接證明的數(shù)學(xué)方法,提高觀察力、思維能力、辨別能力,以及養(yǎng)成嚴(yán)謹(jǐn)治學(xué)的習(xí)慣。我認(rèn)為,只有了解這些知識,在此基礎(chǔ)上再不斷加強(qiáng)訓(xùn)練,并不斷進(jìn)行總結(jié),才能熟練運(yùn)用。
參考文獻(xiàn):
[1]陳志云,王以清.反證法[J].高等函授學(xué)報(自然科學(xué)版),2000,13(6):20-23.
[2]閻平連.淺談反證法在初中數(shù)學(xué)中的運(yùn)用[J].呂梁高等專科學(xué)校學(xué)報,2002,18(1):28-29.
[3]張安平.反證法——證明數(shù)學(xué)問題的重要方法[J].教育教學(xué),2010,1(11):179-180.
[4]張世強(qiáng).淺析“反證法”[J].成都教育學(xué)院學(xué)報,2000,6(06):09-10.
[5]路從條.“反證法”思想在中學(xué)數(shù)學(xué)中的應(yīng)用[J].福建教育學(xué)院學(xué)報,2003,1(03):84-85.
[6]朱慧.反證法在中學(xué)數(shù)學(xué)證明題中的應(yīng)用[J].教育教學(xué)論壇,2010,1(35):53-54.