• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Resource allocation based on fairness and QoS provisioning for OFDMA-WLAN system

    2014-09-06 10:49:34BaoNanXiaWeiweiShenLianfeng
    關鍵詞:資源分配公平性分配

    Bao Nan Xia Weiwei Shen Lianfeng

    (National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)

    ?

    Resource allocation based on fairness and QoS provisioning for OFDMA-WLAN system

    Bao Nan Xia Weiwei Shen Lianfeng

    (National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)

    To satisfy different service requirements of multiple users in the orthogonal frequency division multiple access wireless local area network (OFDMA-WLAN) system downlink transmission, a resource allocation algorithm based on fairness and quality of service (QoS) provisioning is proposed. Different QoS requirements are converted into different rate requirements to calculate the QoS satisfaction level. The optimization object is revised as a fairness-driven resource optimization function to provide fairness. The complex resource allocation problem is divided into channel allocation and power assignment sub-problems. The sub-problems are solved by the bipartite graph matching and water-filling based method. Compared with other algorithms, the proposed algorithm sacrifices less data rate for higher fairness and QoS satisfaction. The simulation results show that the proposed algorithm is capable of providing QoS and fairness, and performs better in a tradeoff among QoS, fairness and data rate.

    QoS (quality of service) satisfaction level; fairness driven function; bipartite graph matching; water-filling; resource allocation

    The orthogonal frequency division multiple access (OFDMA) scheme has been intensively explored for offering greater flexibility in allocation of frequency resources[1]. IEEE 802.16e and the femtocell system also use the OFDMA to exploit multi-user diversity for higher network capacity[2]. It also has become the mainstream multiple access scheme for the downlink of the 3rd generation partner project long term evolution (3GPP LTE). Many researchers devote themselves to integrating the OFDMA technology into existing wireless communication networks by modifying the corresponding access algorithm[3-4]to solve the problems of multipath fading or multiple access interference[5]. A lot of documents focus on resource allocation of the OFDMA system for the maximum network throughput[6]and spectrum efficiency[7]by using centralized or distributed algorithms. Some researchers combine the OFDMA technology with cognitive radio technology and study on the resource management for resource sharing between primary and secondary networks to ensure that the second user does not interfere with the primary user[8-10]. The IEEE 802.11 work group has been trying to make standards for very high data rate wireless local area network (WLAN)[2]. Some technical improvements have been studied to integrate multiuser dynamic OFDMA into the IEEE 802.11 WLAN[11-12].

    Since the OFDMA technology is important for multiuser system performance, many resource allocation algorithms have been studied for the OFDMA-based systems in the past few years. In the earliest studies, algorithms committed to find an efficient way to maximize the system sum rate with total power constraint[13-15]. Then, the users’ priority is considered during the resource allocation. Weighted sum-rate maximization and weighted sum-power minimization problems are proposed in Ref.[16] and solved by the Lagrange dual decomposition method. It is found that the complexity of the traditional optimization method is high; thus, the evolutionary algorithm is proposed to reduce the complexity[17-18]. However, these references only consider the sum rate. The disadvantage is that maximizing the data rate may lead to unfair transmission and unsatisfied quality of service (QoS), although providing fairness and QoS guarantee will decrease the system data rate. In recent years, QoS and fairness provisioning have been the important research aspects for network resource optimization. Sacchi et al.[19]proposed an OFDMA resource balance strategy based on the game theory, in which the object of optimization is the mean opinion score (MOS) but not data rate. By considering different QoS requirements of users, Ref.[20] integrated power control, relay selection and sub-carrier assign into resource allocation optimization to maximize system throughput, and supported QoS by QoS pricing. The optimal fair number of accessed real-time (RT) users and non-real-time (NRT) users is calculated in Ref.[21], but each RT user is only assigned one sub-channel and how to assign appropriate channels to users is not explained.

    In the above references, different QoS requirements of different services are not considered in resource allocation. If the resource is allocated only for bringing the highest data rate, the heterogeneous QoS requirements cannot be satisfied. When a user with a lower rate requirement is assigned a good channel with a higher data rate, the resource is wasted and it is unfair for other users with higher data requirements. In this paper, channels are assigned according to different users’ QoS requests. Meanwhile, the fairness is considered in the allocation process. To prevent wasting of resources, channels should be properly allocated to users according to their demands. The optimization object is replaced by fairness-driven QoS satisfaction. The simulation results show that, the proposed resource allocation algorithm provides a better tradeoff among fairness, QoS guarantees of heterogeneous services and the system data rate.

    1 System Model and Problem Formulation

    As shown in Fig.1, the OFDMA technique is integrated into the WLAN downlink transmission by the frame aggregation scheme and the link adaption scheme. The channel state information (CSI), available spectrum opportunities and the user’s QoS request, which will be used in the allocation algorithm, are assumed to be available at the access point (AP) and remain unchanged during the allocation time period. AP assigns channels for downlink transmission and determines how much transmit power is allowed. The resource allocation results will be the input parameters of the frame aggregation and fragmentation module and the physical layer (PHY) processing module.

    Fig.1 Downlink transmission model at the AP

    Assume thatNstations (STAs) and one AP shareKsub-channels. In this paper, the resource allocation optimization problem can be described as maximizing the sum satisfaction on the condition of system constraints and QoS constraints. The problem formulations are given as follows:

    (1)

    s.t.

    (2)

    (3)

    (4)

    (5)

    (6)

    2 Resource Allocation for Different QoS Requirements and Fairness

    2.1 QoS-based resource optimization problem

    With the constraints in section 1, the optimal result of problem (1) is difficult to be found. To decrease the complexity of optimization, QoS constraints should be handled first. Note that the data rate should at least reach a lower bound, so that the packet error rate (PER) will be below the threshold and the packet will be delivered in time.

    The PER can be expressed as the increasing function of the average bit error rate (BER), and the data rate can be expressed as the decreasing function of the BER. So constraint (3) can be converted into the same form as constraint (5).

    (7)

    For packets with the time delay threshold, the data rate at the current slot should be large enough to ensure that the most urgent packet can be delivered in time. Since the data rate can be expressed as the decreasing function of the past time after the urgent packet is created, constraint (4) can be converted into the same form as constraint (5).

    (8)

    Now different QoS requirements can be converted into different data rate requirements. According to problem formulations given in section 1, each user’s QoS satisfaction is evaluated by the QoS satisfaction level (QSL), which is given as

    (9)

    So the QoS-based resource optimization problem can be expressed as

    (10)

    s.t.

    constraint (2) and constraint (6)

    2.2 Fairness-driven resource optimization problem

    Problem (10) is a nonlinear programming problem. By relaxing integer constraint (2) to continuous values in range [0,1], problem (10) becomes convex and the optimal result is easy to be found by solving the Lagrangian function. However, problem (10) does not reflect the fairness allocation. Resource may be only assigned to the user with the highest data rate requirement. To achieve fairness, problem (10) can be revised by a fairness-driven utility function[23]as

    (11)

    s.t.

    constraint (2) and constraint (6)

    It is difficult to solve problem (11) because it involves two log functions. One of the log functions is the Shannon formula used for calculating data rate in Eq.(9). The optimal solution cannot be calculated by the Lagrangian function directly, so problem (11) is divided into several small problems to find a suboptimal solution. The channel allocation will be solved first, and then the power will be assigned based on the channel allocation result.

    Given average power assignment, each user can calculate the fairness-driven utility log(si) on each channel. Assume that the number of users is equal to the number of channels. The channel allocation problem can be solved by bipartite graph matching. As shown in Fig.2, letxset include all users, andyset include all the channels. Let the weight of edge is the fairness-driven utility. The object of optimal matching is the object of the maximization problem (11).

    The channel allocation set can be calculated as

    (12)

    s.t. constraint (2)

    Given the channel allocation set, the power assignment

    Fig.2 Bipartite graph matching for channel allocation

    can be solved by the water-filling-based method. The object of power assignment is the same as the object of problem (10). According to Ref.[22], the transmission power is assigned as

    (13)

    2.3 Resource allocation based on fairness and QoS provisioning

    According to the above analysis, the steps of the proposed algorithm for resource allocation based on fairness and QoS provisioning (RAFQ) can be given as follows:

    1) Collect information: The AP collects CSI, available spectrum opportunities and QoS requirements of each user. Different QoS requirements will be converted into different data rate requirements. All the information should be collected at the beginning of every resource allocation circle.

    2) Channel allocation: Given the average power assignment, AP calculates the channel allocation set by solving Eq.(12).

    3) Power assignment: Given the channel allocation set, AP calculates the power assignment result by solving Eq.(13).

    4) Repeat step 1) to 3) at every resource allocation circle.

    3 Simulation Results

    In this section, the performance of the proposed algorithm is evaluated and compared with three other algorithms which are discussed in Ref.[22]. The first algorithm is the maximum rate resource allocation algorithm (MRRA), in which the resource is always allocated to the user bringing the highest data rate. The second algorithm is the QoS provisioning channel allocation (QPCA) algorithm proposed in Ref.[21], in which the channel bringing the highest data rate is assigned to the user with the highest QSL. The third algorithm is the spectrum allocation based on the general genetic (SAGG) algorithm proposed in Ref.[17], but the fitness function is replaced by the QSL. All the parameters used in the simulation are summarized in Tab.1. Channels between the AP and wireless users are modeled as parallel AWGN channels with different channel gains. Each channel can only be allocated to one user.

    Tab.1 Parameters used for evaluation

    A fairness index[24]is used to evaluate the fairness performance of different algorithms. A higher value ofd(x) implies a higher degree of fairness.

    (14)

    In Fig.3, the QSL of user 1 is much lower than that of user 3 when there is no fairness consideration. But with fairness consideration in the proposed algorithm, the QSL of user 1 is greater than that of user 3. This means that some resource of user 3 is re-allocated to user 1 to provide fair allocation. The fairness index with fairness consideration is 0.814 4, and the fairness index without fairness consideration is 0.698 4. The value increases by 16.61%, which means that the fairness of resource allocation is improved.

    Fig.3 The QSL of RAFQ with/without considering fairness

    This result is also confirmed by Fig.4, in which the fairness index of the proposed algorithm is higher than that of other algorithms. In three other algorithms, the object of power assignment is the sum rate; the power is assigned to improve some users’ data rate while some others’ requirements are ignored. Thus the fairness index of the QPCA algorithm decreases after the power allocation. Fig.4 shows that the fairness performance of the proposed algorithm is better than those of three other algorithms.

    Fig.4 Comparison of fairness index

    The total QSL comparison is given in Fig.5. The proposed algorithm has the highest total QSL value. It reveals that the RAFQ algorithm can provide different QoS guarantees and fairness. However, the RAFQ algorithm does not have the highest sum rate in Fig.6. This is because the data rate is not the only target in the RAFQ algorithm; different QoS requirements are integrated into QoS satisfaction level; and the resource allocation process is driven by the fairness. The proposed algorithm sacrifices

    Fig.5 Comparison of total QSL

    Fig.6 Comparison of sum rate

    some data rate to the QoS and fairness guarantee, but it can still obtain the second-highest data rate when it compares with other algorithms. So it is a good trade off among the data rate, QoS and fairness.

    4 Conclusion

    In this paper, a resource allocation algorithm is proposed for dynamic resource optimization with QoS and fairness guarantee. The system model is presumed as the OFDMA-WLAN downlink transmission system. Different QoS requirements of multiple users are converted into different data rate requirements, which are integrated into the QoS satisfaction level. The fairness-driven utility function is used to provide user fairness. The channels are allocated through bipartite graph matching. Power assignment is solved by the water-filling-based method, in which the correction factor is used to obtain fairness. The proposed RAFQ algorithm is compared with three other algorithms on total QSL, fairness index and sum rate. The simulation results show that the proposed algorithm improves fairness and QoS satisfaction with less data rate sacrifice, and performs a good tradeoff among QoS, fairness and data rate.

    [1]Wong I C, Evans B L. Optimal downlink OFDMA resource allocation with linear complexity to maximize ergodic rates [J].IEEETransactionsonWirelessCommunications, 2008, 7(3): 962-971.

    [2]Sahin M E, Guvenc I, Jeong M-R, et al. Handling CCI and ICI in OFDMA femtocell networks through frequency scheduling [J].IEEETransactionsonConsumerElectronics, 2009, 55(4): 1936-1944.

    [3]Alnuweiri H M, Fallah Y P, Nasiopoulos P, et al. OFDMA-based medium access control for next-generation WLANs [J].EURASIPJournalonWirelessCommunicationsandNetworking, 2009, 2009: 512865-01-512865-09.

    [4]Wang D D, Minn H, Al-Dhahir N. A distributed opportunistic access scheme and its application to OFDMA systems [J].IEEETransactionsonCommunications, 2009, 57(3): 738-746.

    [5]Jung Junwoo, Lim Jaesung. Group contention-based OFDMA MAC protocol for multiple access interference-free in WLAN systems [J].IEEETransactionsonWirelessCommunications, 2012, 11(2): 648-658.

    [6]Mokari N, Navaie K, Khoshkholgh M G. Downlink radio resource allocation in OFDMA spectrum sharing environment with partial channel state information [J].IEEETransactionsonWirelessCommunications, 2011, 10(10): 3482-3495.

    [7]Ngo D T, Tellambura C, Nguyen H H. Efficient resource allocation for OFDMA multicast systems with spectrum-sharing control [J].IEEETransactionsonVehicularTechnology, 2009, 58(9): 4878-4889.

    [8]Mitran P, Le L B, Rosenberg C. Queue-aware resource allocation for downlink OFDMA cognitive radio networks [J].IEEETransactionsonWirelessCommunications, 2010, 9(10): 3100-3111.

    [9]Choi K W, Hossain E, Kim D I. Downlink subchannel and power allocation in multi-cell OFDMA cognitive radio networks [J].IEEETransactionsonWirelessCommunications, 2011, 10(7): 2259-2271.

    [10]Ngo D T, Tellambura C, Nguyen H H. Resource allocation for OFDMA-based cognitive radio multicast networks with primary user activity consideration [J].IEEETransactionsonVehicularTechnology, 2010, 59(4): 1668-1679.

    [11]Kwon Hojoong, Seo Hanbyul, Kim Seonwook, et al. Generalized CSMA/CA for OFDMA systems: protocol design, throughput analysis, and implementation issues [J].IEEETransactionsonWirelessCommunications, 2009, 8(8): 4176-4187.

    [12]Valentin S, Freitag T, Karl H. Integrating multiuser dynamic OFDMA into IEEE 802.11 WLANs-LLC/MAC extensions and system performance [C]//IEEEInternationalConferenceonCommunications. Beijing, China, 2008: 3328-3334.

    [13]Jang J, Lee K. Transmit power adaptation for multiuser OFDM systems [J].IEEEJournalonSelectedAreasinCommunications, 2003, 21(2): 171-178.

    [14]Jiao W, Cai L, Tao M. Competitive scheduling for OFDMA systems with guaranteed transmission rate [J].ElsevierComputerCommunications,SpecialIssueonAdaptiveMulticarrierCommunicationsandNetwork, 2009, 32(3): 501-510.

    [15]Tao M, Liang Y C, Zhang F. Resource allocation for delay differentiated traffic in multiuser OFDM systems [J].IEEETransactionsonWirelessCommunications, 2008, 7(6): 2190-2201.

    [16]Seong K, Mohseni M, Cio J M. Optimal resource allocation for OFDMA downlink systems [C]//IEEEInternationalSymposiumonInformationTheory. Seattle, WA, USA, 2006: 1394-1398.

    [17]Zhao Zhijin, Peng Zhen, Zheng Shilian, et al. Cognitive radio spectrum allocation using evolutionary algorithms [J].IEEETransactionsonWirelessCommunications, 2009, 8(9): 4421-4425.

    [18]Koudouridis G P, Qvarfordt C, Cai T, et al. Partial frequency allocation in downlink OFDMA based on evolutionary algorithms [C]//2010IEEE72ndVehicularTechnologyConferenceFall(VTC 2010-Fall). Ottawa, ON, CAN, 2010: 1-5.

    [19]Sacchi C, Granelli F, Schlegel C. A QoE-oriented strategy for OFDMA radio resource allocation based on min-MOS maximization [J].IEEECommunicationsLetters, 2011, 15(5): 494-496.

    [20]Zhang Danhua, Wang Youzheng, Lu Jianhua. QoS aware resource allocation in cooperative OFDMA systems with service differentiation [C]//IEEEInternationalConferenceonCommunications. Cape Town, RSA, 2010: 1-5.

    [21]Alshamrani A, Shen X M, Xie L L. QoS provisioning for heterogeneous services in cooperative cognitive radio networks [J].IEEEJournalonSelectedAreasinCommunications, 2011, 29(4): 819-830.

    [22]Bao Nan, Li Junchao, Xia Weiwei, et al. QoS-aware resource allocation algorithm for OFDMA-WLAN integrated system [C]//2013IEEEWirelessCommunicationsandNetworkingConference. Shanghai, China, 2013: 807-812.

    [23]Peng Chunyi, Zheng Haitao, Zhao Ben Y. Utilization and fairness in spectrum assignment for opportunistic spectrum access [J].MobileNetworksandApplications, 2006, 11(4): 555-576.

    [24]Jain R, Chiu D, Hawe W. A quantitative measure of fairness and discrimination for resource allocation in shared computer systems [R]. Hudson: Digital Institution Corporation, 1984.

    基于公平性和QoS保障的OFDMA-WLAN系統(tǒng)資源分配

    鮑 楠 夏瑋瑋 沈連豐

    (東南大學移動通信國家重點實驗室,南京 210096)

    為了滿足OFDMA-WLAN系統(tǒng)下行通信中多用戶的不同業(yè)務需求,提出一種基于公平性和QoS服務保障的資源分配算法.不同的QoS要求被轉換成不同的速率要求來計算QoS滿意等級;優(yōu)化目標被修改為公平性驅動的優(yōu)化函數(shù)以提供公平性保障;復雜的資源分配問題被劃分為信道分配和功率分配問題,并通過二分圖匹配和注水法得到分配結果.與其他算法相比,所提出的算法犧牲了較少的數(shù)據(jù)速率換取更高的公平性和QoS滿意度.仿真結果表明所提算法具有保障QoS和公平性的能力,且在QoS、公平性和速率之間權衡折中時表現(xiàn)更好.

    QoS滿意等級;公平性驅動函數(shù);二分圖匹配;注水法;資源分配

    TN915

    s:The National Science and Technology Major Project (No.2012ZX03004005-003), the National Natural Science Foundation of China (No.61171081, 61201175), the Science and Technology Support Program of Jiangsu Province (No.BE2011187).

    10.3969/j.issn.1003-7985.2014.01.001

    :Bao Nan, Xia Weiwei, Shen Lianfeng. Resource allocation based on fairness and QoS provisioning for OFDMA-WLAN system[J].Journal of Southeast University (English Edition),2014,30(1):1-6.

    10.3969/j.issn.1003-7985.2014.01.001

    Received 2013-09-14.

    Biographies:Bao Nan (1985—), female, graduate; Shen Lianfeng (corresponding author), male, professor, lfshen@seu.edu.cn.

    猜你喜歡
    資源分配公平性分配
    新研究揭示新冠疫情對資源分配的影響 精讀
    英語文摘(2020年10期)2020-11-26 08:12:20
    應答器THR和TFFR分配及SIL等級探討
    遺產的分配
    一種分配十分不均的財富
    一種基于價格競爭的D2D通信資源分配算法
    測控技術(2018年7期)2018-12-09 08:57:56
    績效考核分配的實踐與思考
    一種提高TCP與UDP數(shù)據(jù)流公平性的擁塞控制機制
    公平性問題例談
    關于公平性的思考
    OFDMA系統(tǒng)中容量最大化的資源分配算法
    計算機工程(2014年6期)2014-02-28 01:25:32
    中文字幕人妻丝袜一区二区| 精品电影一区二区在线| 一级毛片高清免费大全| 亚洲欧美精品综合久久99| 女警被强在线播放| 男插女下体视频免费在线播放| 久久香蕉国产精品| 色吧在线观看| 在线视频色国产色| 精品一区二区三区人妻视频| 黄色成人免费大全| 又黄又粗又硬又大视频| 成人精品一区二区免费| 特大巨黑吊av在线直播| 日韩欧美精品免费久久 | 日韩欧美 国产精品| 免费无遮挡裸体视频| 欧美高清成人免费视频www| 99热6这里只有精品| 69av精品久久久久久| 少妇的逼好多水| 日韩欧美一区二区三区在线观看| 国产乱人视频| 在线观看免费视频日本深夜| 成人永久免费在线观看视频| 日日摸夜夜添夜夜添小说| 亚洲国产中文字幕在线视频| 老司机福利观看| 国产亚洲欧美98| 性色avwww在线观看| 国产黄色小视频在线观看| 女生性感内裤真人,穿戴方法视频| 国产主播在线观看一区二区| 此物有八面人人有两片| 两个人的视频大全免费| www日本在线高清视频| 精品一区二区三区av网在线观看| 亚洲精品456在线播放app | 欧美黑人欧美精品刺激| 亚洲国产高清在线一区二区三| 国产亚洲精品综合一区在线观看| 国产在线精品亚洲第一网站| 成人18禁在线播放| 日韩中文字幕欧美一区二区| 国内精品久久久久精免费| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲精品亚洲一区二区| 成人特级黄色片久久久久久久| 日韩国内少妇激情av| 无限看片的www在线观看| 精品久久久久久久人妻蜜臀av| 夜夜躁狠狠躁天天躁| 久久久久久久亚洲中文字幕 | 成人鲁丝片一二三区免费| 色视频www国产| 欧美中文日本在线观看视频| 午夜激情福利司机影院| 中文字幕精品亚洲无线码一区| 午夜福利视频1000在线观看| 精品久久久久久久末码| 男女视频在线观看网站免费| 国产一区二区三区在线臀色熟女| 国产av不卡久久| 日韩欧美三级三区| 国产精品一及| 亚洲精品色激情综合| 国产91精品成人一区二区三区| 香蕉av资源在线| 国产免费av片在线观看野外av| 欧美在线黄色| av国产免费在线观看| 日本 av在线| 热99在线观看视频| 国产高清激情床上av| 欧美bdsm另类| 国产主播在线观看一区二区| 黄色女人牲交| 搡老岳熟女国产| 亚洲片人在线观看| 精品国产美女av久久久久小说| 他把我摸到了高潮在线观看| 久久婷婷人人爽人人干人人爱| 国产精品久久久久久精品电影| 香蕉av资源在线| 久久精品国产清高在天天线| 亚洲国产欧洲综合997久久,| 亚洲国产欧美人成| 日韩欧美免费精品| 观看美女的网站| 久久久久国内视频| 亚洲aⅴ乱码一区二区在线播放| 午夜亚洲福利在线播放| 18禁美女被吸乳视频| 丝袜美腿在线中文| 午夜福利视频1000在线观看| 亚洲成人久久爱视频| 国产成人av教育| 日本黄色片子视频| 亚洲av电影不卡..在线观看| 内地一区二区视频在线| 亚洲国产精品久久男人天堂| 成人18禁在线播放| 国产成人a区在线观看| 亚洲国产精品久久男人天堂| 国产精品永久免费网站| 欧美日韩亚洲国产一区二区在线观看| 成熟少妇高潮喷水视频| 法律面前人人平等表现在哪些方面| av黄色大香蕉| 国产在线精品亚洲第一网站| 亚洲av中文字字幕乱码综合| 精品国内亚洲2022精品成人| 少妇的逼水好多| 国内精品一区二区在线观看| 少妇高潮的动态图| 99久久久亚洲精品蜜臀av| 日韩欧美精品v在线| 久久精品人妻少妇| 男人舔奶头视频| 男女下面进入的视频免费午夜| 搡女人真爽免费视频火全软件 | 又爽又黄无遮挡网站| 天天躁日日操中文字幕| 亚洲精品影视一区二区三区av| 99riav亚洲国产免费| 久9热在线精品视频| 日韩有码中文字幕| 成人鲁丝片一二三区免费| www.熟女人妻精品国产| 少妇的逼水好多| 久久精品国产亚洲av涩爱 | 久久久精品欧美日韩精品| 欧美性猛交黑人性爽| 天天添夜夜摸| 91在线精品国自产拍蜜月 | 69人妻影院| 国产精品自产拍在线观看55亚洲| 香蕉丝袜av| 岛国在线免费视频观看| 中国美女看黄片| 亚洲成人久久爱视频| 特大巨黑吊av在线直播| 午夜久久久久精精品| 亚洲av中文字字幕乱码综合| 国产精品一区二区三区四区免费观看 | www.色视频.com| 国产精品免费一区二区三区在线| 长腿黑丝高跟| 国产伦人伦偷精品视频| 嫩草影院入口| 黄片大片在线免费观看| 国内精品久久久久久久电影| 熟女少妇亚洲综合色aaa.| 国产色爽女视频免费观看| 色综合婷婷激情| 欧美日韩精品网址| 精品国产亚洲在线| 村上凉子中文字幕在线| 亚洲精品成人久久久久久| 97超视频在线观看视频| 日日干狠狠操夜夜爽| 久久亚洲真实| 麻豆成人午夜福利视频| 精品99又大又爽又粗少妇毛片 | 搡女人真爽免费视频火全软件 | 老熟妇仑乱视频hdxx| 免费看a级黄色片| 欧美在线黄色| 18禁国产床啪视频网站| 国产精品三级大全| 九九热线精品视视频播放| 日韩av在线大香蕉| 精品一区二区三区视频在线 | 麻豆成人av在线观看| 在线观看av片永久免费下载| 3wmmmm亚洲av在线观看| 亚洲,欧美精品.| 香蕉丝袜av| 好男人在线观看高清免费视频| xxxwww97欧美| 色综合欧美亚洲国产小说| 久久久久精品国产欧美久久久| 真人做人爱边吃奶动态| 亚洲专区国产一区二区| 此物有八面人人有两片| 国产高清激情床上av| 俄罗斯特黄特色一大片| 亚洲精品影视一区二区三区av| 美女cb高潮喷水在线观看| 国产成人av教育| 国内久久婷婷六月综合欲色啪| 国产成人a区在线观看| 亚洲av中文字字幕乱码综合| 国产毛片a区久久久久| 91久久精品电影网| 亚洲成人中文字幕在线播放| 欧美黑人欧美精品刺激| 亚洲性夜色夜夜综合| 嫁个100分男人电影在线观看| 桃色一区二区三区在线观看| 国产 一区 欧美 日韩| 欧美日韩精品网址| 日韩人妻高清精品专区| 日本黄大片高清| 波野结衣二区三区在线 | 国产成人欧美在线观看| 天天添夜夜摸| 国产一区二区亚洲精品在线观看| 男女下面进入的视频免费午夜| 成人国产一区最新在线观看| 熟女电影av网| 久久欧美精品欧美久久欧美| 久久这里只有精品中国| АⅤ资源中文在线天堂| 有码 亚洲区| 在线免费观看的www视频| 一区福利在线观看| av欧美777| 舔av片在线| 毛片女人毛片| 法律面前人人平等表现在哪些方面| 可以在线观看毛片的网站| 成人高潮视频无遮挡免费网站| 每晚都被弄得嗷嗷叫到高潮| 国产高清激情床上av| 亚洲av电影在线进入| 毛片女人毛片| 欧美另类亚洲清纯唯美| 中文资源天堂在线| 精品电影一区二区在线| 精品乱码久久久久久99久播| 我要搜黄色片| 18禁黄网站禁片午夜丰满| 最近最新中文字幕大全电影3| 欧美乱色亚洲激情| 国产视频内射| 免费在线观看日本一区| 国产毛片a区久久久久| 午夜福利18| 国产主播在线观看一区二区| 搡老妇女老女人老熟妇| 男插女下体视频免费在线播放| 在线观看日韩欧美| 天堂网av新在线| 精品福利观看| 亚洲成人中文字幕在线播放| 国产精品爽爽va在线观看网站| 久久久色成人| 国产精品永久免费网站| 久久精品亚洲精品国产色婷小说| 此物有八面人人有两片| 亚洲内射少妇av| 母亲3免费完整高清在线观看| 国产成人av教育| 国内精品久久久久精免费| 国产免费男女视频| 亚洲精品亚洲一区二区| 一二三四社区在线视频社区8| 日韩欧美精品免费久久 | 国产亚洲精品久久久com| 欧美黄色淫秽网站| 中文字幕av在线有码专区| 日本黄大片高清| 美女高潮喷水抽搐中文字幕| 久久天躁狠狠躁夜夜2o2o| 国产单亲对白刺激| 精品久久久久久久人妻蜜臀av| 日本黄色视频三级网站网址| 国产精品久久久人人做人人爽| 69av精品久久久久久| 国产69精品久久久久777片| 窝窝影院91人妻| 午夜福利在线观看免费完整高清在 | 日本免费a在线| 精品欧美国产一区二区三| 天堂影院成人在线观看| 少妇熟女aⅴ在线视频| 亚洲欧美日韩无卡精品| 亚洲欧美日韩卡通动漫| 少妇的丰满在线观看| 搡老熟女国产l中国老女人| 精品电影一区二区在线| 亚洲精品美女久久久久99蜜臀| 亚洲av免费高清在线观看| 国产久久久一区二区三区| 国产精品乱码一区二三区的特点| 97碰自拍视频| 国产黄a三级三级三级人| 美女cb高潮喷水在线观看| 九色国产91popny在线| 欧美绝顶高潮抽搐喷水| 999久久久精品免费观看国产| 搡女人真爽免费视频火全软件 | 久久亚洲精品不卡| 岛国在线免费视频观看| 国产97色在线日韩免费| 天堂av国产一区二区熟女人妻| 悠悠久久av| 免费高清视频大片| 欧美色视频一区免费| 成人18禁在线播放| 欧美日韩精品网址| 一区福利在线观看| 亚洲av熟女| 国产av一区在线观看免费| 色老头精品视频在线观看| 亚洲精品成人久久久久久| 观看美女的网站| 欧美成人免费av一区二区三区| 欧美日韩国产亚洲二区| 午夜福利高清视频| 国产欧美日韩精品亚洲av| 嫁个100分男人电影在线观看| 国产 一区 欧美 日韩| 精品国产超薄肉色丝袜足j| 丰满人妻一区二区三区视频av | 又爽又黄无遮挡网站| 又黄又粗又硬又大视频| 久久这里只有精品中国| 美女cb高潮喷水在线观看| av专区在线播放| 国产精品久久久久久久电影 | 法律面前人人平等表现在哪些方面| 久久久久久久久中文| 亚洲 国产 在线| 亚洲精品国产精品久久久不卡| av女优亚洲男人天堂| 免费人成在线观看视频色| 国产一级毛片七仙女欲春2| 深夜精品福利| 嫩草影院入口| 在线播放国产精品三级| 九九在线视频观看精品| 88av欧美| 国产欧美日韩一区二区精品| 久久久精品大字幕| 动漫黄色视频在线观看| 国产精品免费一区二区三区在线| 日本 欧美在线| 真实男女啪啪啪动态图| 午夜福利在线观看免费完整高清在 | 天美传媒精品一区二区| 亚洲人成伊人成综合网2020| 亚洲中文日韩欧美视频| 日韩欧美精品v在线| 色播亚洲综合网| 成人18禁在线播放| 日本成人三级电影网站| 脱女人内裤的视频| 全区人妻精品视频| 亚洲av美国av| 毛片女人毛片| 免费一级毛片在线播放高清视频| 久久久久亚洲av毛片大全| 一个人免费在线观看电影| 成年女人毛片免费观看观看9| 黄色日韩在线| 午夜福利欧美成人| 桃红色精品国产亚洲av| 一级毛片女人18水好多| 在线观看av片永久免费下载| 黄色视频,在线免费观看| 人妻久久中文字幕网| 日韩精品中文字幕看吧| 91麻豆精品激情在线观看国产| 真人一进一出gif抽搐免费| 中文字幕av在线有码专区| 国产午夜精品久久久久久一区二区三区 | 久久久久久久亚洲中文字幕 | 天天一区二区日本电影三级| 欧美日本亚洲视频在线播放| 99国产综合亚洲精品| 免费看日本二区| 国产黄片美女视频| 国产成年人精品一区二区| 国产视频内射| 国产乱人伦免费视频| 中文字幕人妻丝袜一区二区| 国产成人aa在线观看| 一本综合久久免费| 日韩 欧美 亚洲 中文字幕| 性色av乱码一区二区三区2| 成人亚洲精品av一区二区| 女同久久另类99精品国产91| 国产私拍福利视频在线观看| 国产淫片久久久久久久久 | 岛国在线免费视频观看| 亚洲国产中文字幕在线视频| 日韩中文字幕欧美一区二区| 国产一区二区在线av高清观看| 色视频www国产| 亚洲精品一卡2卡三卡4卡5卡| 亚洲熟妇中文字幕五十中出| 国产日本99.免费观看| 久久久久国产精品人妻aⅴ院| 深夜精品福利| 色视频www国产| 精品国产亚洲在线| 少妇裸体淫交视频免费看高清| 亚洲人成网站在线播| 99久久久亚洲精品蜜臀av| 极品教师在线免费播放| 内地一区二区视频在线| 老汉色∧v一级毛片| 99国产综合亚洲精品| 欧美大码av| 亚洲 欧美 日韩 在线 免费| 黄色视频,在线免费观看| 国产成人啪精品午夜网站| 亚洲 欧美 日韩 在线 免费| 欧美性感艳星| 国产v大片淫在线免费观看| 亚洲精品在线美女| 露出奶头的视频| 熟女少妇亚洲综合色aaa.| 1000部很黄的大片| 搡老妇女老女人老熟妇| 看免费av毛片| 亚洲精品一区av在线观看| 18美女黄网站色大片免费观看| 怎么达到女性高潮| 欧美bdsm另类| bbb黄色大片| 欧美不卡视频在线免费观看| 亚洲精品色激情综合| 婷婷丁香在线五月| 悠悠久久av| 丝袜美腿在线中文| 美女被艹到高潮喷水动态| 草草在线视频免费看| 狂野欧美白嫩少妇大欣赏| 亚洲国产精品合色在线| 久久久久久国产a免费观看| 欧美中文综合在线视频| 久久久久久人人人人人| 色播亚洲综合网| 18+在线观看网站| 国产伦精品一区二区三区视频9 | 日韩欧美国产在线观看| 成人特级黄色片久久久久久久| 日本免费a在线| 亚洲天堂国产精品一区在线| 国产爱豆传媒在线观看| 51午夜福利影视在线观看| 国内精品久久久久精免费| 欧美在线黄色| 亚洲国产色片| www日本在线高清视频| 亚洲内射少妇av| svipshipincom国产片| av中文乱码字幕在线| 亚洲精品影视一区二区三区av| 99精品在免费线老司机午夜| 国产一区二区在线观看日韩 | 日本三级黄在线观看| 人妻夜夜爽99麻豆av| 色播亚洲综合网| 人妻丰满熟妇av一区二区三区| 91av网一区二区| 床上黄色一级片| 亚洲欧美一区二区三区黑人| 欧美一级a爱片免费观看看| 啦啦啦免费观看视频1| 可以在线观看的亚洲视频| 亚洲va日本ⅴa欧美va伊人久久| 岛国视频午夜一区免费看| 欧美成人免费av一区二区三区| 悠悠久久av| 中国美女看黄片| 天天一区二区日本电影三级| 有码 亚洲区| 制服人妻中文乱码| 亚洲成人精品中文字幕电影| 国产亚洲av嫩草精品影院| 色老头精品视频在线观看| 麻豆国产97在线/欧美| 色综合欧美亚洲国产小说| 一个人看的www免费观看视频| 一二三四社区在线视频社区8| 欧美成人免费av一区二区三区| 久久精品人妻少妇| 亚洲欧美日韩卡通动漫| 99久久99久久久精品蜜桃| 欧美黑人欧美精品刺激| 99久国产av精品| 99国产极品粉嫩在线观看| www.www免费av| 国产精品亚洲美女久久久| www.999成人在线观看| www.熟女人妻精品国产| 此物有八面人人有两片| 好男人在线观看高清免费视频| 日韩精品中文字幕看吧| 国产精品爽爽va在线观看网站| 男女那种视频在线观看| 欧美av亚洲av综合av国产av| 狂野欧美白嫩少妇大欣赏| 久久香蕉精品热| 日日干狠狠操夜夜爽| 真人做人爱边吃奶动态| 亚洲av成人av| 真实男女啪啪啪动态图| 在线视频色国产色| 操出白浆在线播放| 夜夜看夜夜爽夜夜摸| 免费人成视频x8x8入口观看| 特级一级黄色大片| 99在线人妻在线中文字幕| 法律面前人人平等表现在哪些方面| 国产高潮美女av| 午夜福利视频1000在线观看| 日韩精品中文字幕看吧| 久久久久久大精品| 欧美最黄视频在线播放免费| 国产91精品成人一区二区三区| 老司机福利观看| 最好的美女福利视频网| 久久久久国内视频| 免费无遮挡裸体视频| av视频在线观看入口| 内射极品少妇av片p| av在线天堂中文字幕| 国产精品电影一区二区三区| 亚洲精品美女久久久久99蜜臀| 制服人妻中文乱码| 男女做爰动态图高潮gif福利片| 久久久久性生活片| 嫩草影视91久久| 非洲黑人性xxxx精品又粗又长| 亚洲 欧美 日韩 在线 免费| 99riav亚洲国产免费| 国语自产精品视频在线第100页| 叶爱在线成人免费视频播放| 国产av麻豆久久久久久久| 国产av不卡久久| 午夜精品一区二区三区免费看| 国产精品一及| svipshipincom国产片| 一a级毛片在线观看| 成人鲁丝片一二三区免费| 国产三级中文精品| 久99久视频精品免费| 国产精品一区二区三区四区免费观看 | 国产极品精品免费视频能看的| 欧美xxxx黑人xx丫x性爽| 黄色日韩在线| 母亲3免费完整高清在线观看| 岛国在线观看网站| 深爱激情五月婷婷| 91在线观看av| 极品教师在线免费播放| 亚洲成av人片在线播放无| 天天添夜夜摸| 国产亚洲精品综合一区在线观看| 免费av毛片视频| 熟女少妇亚洲综合色aaa.| 一进一出抽搐gif免费好疼| 好男人在线观看高清免费视频| 999久久久精品免费观看国产| 成人无遮挡网站| 亚洲av五月六月丁香网| 欧美性感艳星| 欧美绝顶高潮抽搐喷水| 亚洲欧美一区二区三区黑人| 国产精品乱码一区二三区的特点| 一夜夜www| 熟妇人妻久久中文字幕3abv| a级毛片a级免费在线| 欧美高清成人免费视频www| 久久久精品欧美日韩精品| 国产激情偷乱视频一区二区| 麻豆国产97在线/欧美| a级一级毛片免费在线观看| 欧美性猛交黑人性爽| 亚洲成av人片在线播放无| 欧美性猛交╳xxx乱大交人| 在线播放无遮挡| 在线观看美女被高潮喷水网站 | 久久草成人影院| 18禁黄网站禁片免费观看直播| 熟女少妇亚洲综合色aaa.| 精品国产三级普通话版| 国产精品 欧美亚洲| 国产蜜桃级精品一区二区三区| av黄色大香蕉| 美女高潮喷水抽搐中文字幕| 尤物成人国产欧美一区二区三区| 国产高清激情床上av| 天堂影院成人在线观看| 亚洲av免费在线观看| xxx96com| 波多野结衣高清作品| 亚洲在线自拍视频| 波多野结衣高清作品| 啦啦啦韩国在线观看视频| 久久精品影院6| 中文字幕av在线有码专区| 亚洲av电影在线进入| 欧美+日韩+精品| 免费人成视频x8x8入口观看| 欧美区成人在线视频| 午夜精品在线福利| 嫩草影视91久久| 美女高潮的动态| eeuss影院久久| 国内久久婷婷六月综合欲色啪| 18禁国产床啪视频网站| 99热这里只有是精品50| 老汉色av国产亚洲站长工具| 免费一级毛片在线播放高清视频| 久久久久久大精品| 成人高潮视频无遮挡免费网站| 在线观看午夜福利视频| 亚洲午夜理论影院| 亚洲av第一区精品v没综合|