• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Approach to estimating non-point pollutant load removal rates based on water environmental capacity: a case study in Shenzhen

    2014-09-06 10:49:43LiuLiangLiuAnGuanYuntao
    關(guān)鍵詞:量體裁衣環(huán)境容量面源

    Liu Liang Liu An Guan Yuntao,3

    (1Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China)(2School of Environment, Tsinghua University, Beijing 100084, China)(3State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua University, Beijing 100084, China)

    ?

    Approach to estimating non-point pollutant load removal rates based on water environmental capacity: a case study in Shenzhen

    Liu Liang1,2Liu An1Guan Yuntao1,3

    (1Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China)(2School of Environment, Tsinghua University, Beijing 100084, China)(3State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua University, Beijing 100084, China)

    An innovative approach based on water environmental capacity for non-point source(NPS) pollution removal rate estimation was discussed by using both univariate and multivariate data analysis. Taking Shenzhen city as the study case, a 67% to 74% NPS pollutant load removal rate can lead to meeting the chemical oxygen demand (COD) pollution control target for most watersheds. In contrast, it is hardly to achieve the ammonia nitrogen (NH4-N), total phosphorus (TP) and biological oxygen demand (BOD5) pollution control target by simply removing NPS pollutants. This highlights that the pollution control strategies should be taken according to different pollutant species and sources in different watersheds, rather than “one-size-fits-all”.

    environmental capacity estimation; non-point source(NPS)pollution; removal rate; control strategy

    In recent decades, the Chinese government has made a lot of efforts to improve urban water quality, but the deterioration of the urban water environment has progressively become a serious problem in many cities[1-4]. This can be attributed to the lack of knowledge regarding urban water pollutant source identification and ineffective pollution control strategies.

    Point and non-point sources(NPS) are the two primary sources of urban water environment pollution. Generally, the point source pollution such as municipal sewage and industrial wastewater has been treated as a major concern for many years. However, non-point source pollution has not received sufficient attention even though it is also among the most important contributors of water environment deterioration in China[5]. Especially in recent years, with the development of point source pollution control technology, NPS pollution has played an increasingly prominent role in influencing urban water environment pollution[6]. Contrary to point source pollution, NPS is characterized by random and intermittent occurrence, complex mechanisms and processes, and difficulties in monitoring, simulation and control[7]. It comes from many diffuse sources such as agriculture, stormwater runoff and deposition of atmospheric pollutants. Among them, stormwater runoff plays a dominant role[8]. The runoff can pick up significant loads of pollutants accumulated on the surface and transport them into the receiving water body. As early as in 1995, the US EPA has classified urban stormwater runoff as the third largest source of water environment pollution[9]. This highlights the immediate need to develop an effective NPS pollution control strategy for urban areas. In this regard, how to estimate the removal rate of the NPS pollution in order to meet a planned water quality objective is an essential step during the control strategy development.

    In this research, we provide an innovative approach to estimating the removal rate of NPS pollutant load based on the water environmental capacity. The water environmental capacity represents a threshold, namely how much pollutant loads the water environment can receive without leading to water quality deterioration[10]. Based on this concept, the removal rates of pollutant loads from different pollution sources (point source and NPS) can be estimated. Taking Shenzhen city as the study case, NPS pollutant removal rates based on the water environmental capacity concept were estimated. Appropriate control strategies for different pollutants in each watershed were also investigated using both univariate and multivariate data analysis technique. Although this research study was based on Shenzhen city, the created knowledge can contribute to the development of NPS pollution control strategies in other rapidly urbanizing cases in China.

    1 Material and Methods

    1.1 Study site selection

    The study site, Shenzhen city, is located in the Pearl River estuary, close to Hong Kong. All the 74 main rivers in the city are rain source typed[11]. According to the distribution of these rivers, Shenzhen city has been divided into nine river basins. In this research, the five major terrestrial basins are focused on. They are Maozhou watershed, Longgang watershed, Shenzhen watershed, Guanlan watershed and Pingshan watershed (see Fig.1). Each of the five watersheds covers more than 100 km2and is located away from coasts.

    Fig.1 Location map of the study sites

    1.2 Study approach

    The research study was undertaken in the following steps. First, for each watershed, the annual pollutant loads exported from point source, NPS and the watershed background were estimated based on the data obtained from a broad literature review, and the total annual pollutant loads can be obtained by adding these three types up. Secondly, the water environmental capacity was estimated by a one-dimensional water quality analytical model based on “Environmental Quality Control Planning of Shenzhen City” (2006—2020)[12]. Accordingly, pollution emission thresholds were determined for total annual pollutant loads, and then the removal rate of each pollutant load was obtained. Finally, the relationship among pollutants, pollution sources and watersheds was investigated using both univariate and multivariate data analysis techniques. Visual PROMETHEE software[13]was used in this research to undertake multivariate data analysis. PROMETHEE (preference ranking organization method for enrichment evaluations) is a non-parametric method providing ranking for objects on the basis of a range of variables while graphical analysis for interactive assistance (GAIA) visually shows the results of PROMETHEE using principal component analysis (PCA). A detailed discussion of PROMETHEE is provided by Keller et al[14-15]. The analysis process for estimating NPS pollutant load removal rates is shown in Fig.2.

    Fig.2 Flow chart for estimating NPS pollutant load removal rates

    It is noteworthy that in this research, the estimation of point source pollutant load was undertaken without considering industrial wastewater because of its much lower pollution emission load compared with municipal wastewater. From 2007 to 2010, the COD pollution generated from industrial wastewater decreased from 5592 to 3582 t/a. By contrast, the COD pollution generated from municipal wastewater ranged from 49 625 to 31 134 t/a, which is almost ten times larger than that of industrial wastewater[16]. In addition, this was supported by the research objective of developing an approach to estimating the NPS removal rate rather than estimating total pollutant loads. In this context, only municipal wastewater was considered during the estimation of point source pollutant loads in this research.

    1.3 Mathematical models

    As rivers are the main receiving water bodies in Shenzhen city, a one-dimensional water quality analytical model for estimating environmental capacity is used based on river self-purification as follows:

    (1)

    whereCis the planned water quality, mg/L;C0is the threshold of pollution emission, mg/L;kis the attenuation coefficient, 1/d;xis the river length, km;uis the flow velocity, km/d.

    As the river water is considered to be evenly mixed, the uniform mixture model is applied in this research. In addition, taking into account the planned water quality, the summation of pollutant loads from point source, NPS and watershed background should be smaller than the thresholdC0mentioned above. The water environmental capacity calculation model is

    (2)

    whereLis the annual pollution emission threshold of each watershed, t/a;Q0andC0are the total quantity of surface water in a watershed, m3, and the threshold of pollution emission, mg/L, respectively;QB,CBare the river flow volume without wastewater inflow, m3, and the background value of river pollution, mg/L;QM,CMare the quantity of wastewater generated from point source pollution, m3, and the pollutant concentration of wastewater generated from point source pollution, mg/L;QN,CNare the quantity of wastewater generated from NPS pollution, m3, and the pollutant concentration of wastewater generated from NPS pollution, mg/L, respectively.

    Based on this concept, the removal rates of the NPS pollutant load can be obtained in the combination of Eq.(1) and Eq.(2).

    2 Results and Discussion

    2.1 Environmental capacity estimation

    2.1.1 Quantity estimation

    The stormwater runoff volume from the five watersheds were estimated based on land use information and fractions of surface types data provided by “Land use planning of Shenzhen city” (2006—2020)[17]. The surfaces were categorized into two types, namely grass surfaces (pervious surfaces) and impervious surfaces, which are two important surface types in terms of runoff volume estimations. Areas of grass and impervious surfaces in each watershed are shown in Tab.1.

    Tab.1 Areas of different kinds of surfaces in each watershed in 2020

    SurfacetypeMaozhouGuanlanShenzhenLonggangPingshanGrassland184 7124 585 3186 190 4Impervioussurface123 1121 362 7116 635 9

    Xu and Guo[18]noted that the average runoff coefficient of pervious surfaces such as grassland is 0.15 while the corresponding value can reach more than 0.9 for impervious surfaces. Taking into account the relevant data given by past research studies and “Code for design of outdoor wastewater engineering” (GB 50014—2006)[19], 0.15 and 0.8 were selected for the runoff coefficients for grass surfaces and impervious surfaces, respectively. Accordingly, the estimated runoff volumes are shown in Tab.2.

    Tab.2 Estimated water quantities of different pollution sources in each watershed in 2020

    Quantity/(108m3·a-1)MaozhouGuanlanShenzhenLonggangPingshanQR1 9061 8780 9711 8050 556QR10 5360 3610 2480 5400 262QM2 7094 4043 1713 8651 261QB2 5701 9422 0432 8991 421

    Note:QRis the quantity of stormwater runoff generated from impervious surfaces;QR1is the quantity of stormwater runoff generated from grass lands.

    In terms of municipal wastewater volume estimation, considering the development of sewer systems, the collection efficiency of municipal wastewater would increase to 90% in 2020. Therefore, based on the volume of WWTP effluent, the annual quantity of municipal wastewater in each watershed is obtained. Tab.2 summarizes the results of relevant quantity estimations of municipal wastewater volume. Additionally, river flow volume which is referred to in Zhang’s research outcomes[20]are also included in Tab.2.

    2.1.2 Quality estimation

    Tab.3 lists the predicted outcomes of each pollutant’s concentration generated by municipal wastewater, NPS pollution and river background in 2020. “Environmental quality standards for surface water” (GB 3838—2002)[21]are also shown in Tab.3. Each pollutant concentration of WWTP enfluent has been identified according to the “Environmental quality control planning of Shenzhen city” (2006—2020). Furthermore, the quality of WWTP effluent was also predicted based on the current water quality of WWTP effluent in Shenzhen.

    Taking the “Environmental quality control planning of Shenzhen city” (2006—2020) into account, the surface water quality in Shenzhen city should at least meet Grade Ⅳ of “Code for design of outdoor wastewater engineering (GB 50014—2006)” by 2020. For the five watersheds, Longgang, Pingshan, Maozhou and Shenzhen should meet Grade Ⅳ while Guanlan should meet Grade Ⅲ. As shown in Tab.3, in 2010, the organic pollutants concentration of WWTP effluent (COD and BOD5) met Grade Ⅳ standard while NH4-N and TP were still worse than Grade V. This implies that further treatment needs to be undertaken for NH4-N and TP in order to meet Grade Ⅳ by 2020. Consequently, the effluent concentrations of COD (20.98 mg/L) and BOD5(2.96 mg/L) in 2010 were applied to estimate the removal rates while the concentrations of NH4-N (1.50 mg/L) and TP (0.30 mg/L), which are the values of Grade Ⅳ, were used. For NPS pollution, the pollutant concentrations of stormwater runoff generated by grass lands and impervious surfaces were determined respectively based on data obtained from previous research studies[22-24]. The estimation results are shown in Tab.3.

    Tab.3 Prediction of each pollutant’s concentration generated from different sources mg/L

    CategoryofpollutantCODNH4?NTPBOD5MunicipalwastewaterInfluent230 0030 004 50130 00Effluentin201020 983 990 832 96Estimatedeffluentin202020 981 500 302 96Stormwaterrunoff(NPS)Grasssurface120 371 800 747 35Impervioussurface140 183 350 6113 50Backgroundvalue15 000 100 043 00EnvironmentalqualitystandardsⅢ20 001 000 204 00Ⅳ30 001 500 306 00Ⅴ40 002 000 4010 00

    Based on the predicted water quantity and quality results, pollutant loads of each watershed and the environmental capacity can be calculated by using the mathematical models (Eq.(1) and Eq.(2)). As a result, the parameterCin Eq.(1) was determined by referring to the water quality shown in Tab.3;k’s value is set to be 0.2, 0.1, 0.1, 0.3 for COD, NH4-N, TP and BOD5, respectively;u’s value is set to be 1m/s[12]; the river length is considered as 30.9, 22.0, 31.8, 39.3, 23.0 km for Mouzhou, Guanlan, Shenzhen, Longgang and Pingshan river, respectively. Therefore, the parameterC0which indicates the threshold of pollution emission can be obtained.

    2.2 NPS removal rates for different pollutants in each watershed

    2.2.1 Univariate data analysis

    The comparisons of pollutant loads, pollution sources and watersheds are initially investigated using univariate data analysis as shown in Fig.3 and Tab.4.

    It is evident from Fig.3 that the contribution of NPS pollution to water environment deterioration cannot be ignored. Especially for COD, the pollutant load generated from NPS has exceeded the municipal wastewater. This indicates that other than strengthening the municipal wastewater treatment efficiency, reducing pollutant loads from stormwater runoff should be also essential in terms of improving water environment quality.

    It is noted that although Shenzhen and Pingshan watersheds have a similar size, the pollutant load from both municipal wastewater and NPS in Shenzhen watershed are almost twice as high as than that of Pingshan. This may be due to the frequent anthropogenic influence since Shenzhen watershed is a highly developed area while Pingshan watershed is less developed. This highlights that the anthropogenic activities can lead to more municipal wastewater discharge and accumulation of pollutants on urban surfaces.

    (a) (b)

    (c) (d)

    Tab.4 compares the removal rates of municipal wastewater and stormwater runoff (NPS pollution) for each pollutant species. For COD, except in Guanlan watershed, a 67% to 74% NPS pollutant load removal rate can lead to meeting the threshold of water environmental capacity. In contrast, only Shenzhen watershed can achieve the control target by only removing the municipal wastewater pollutant loads. This further confirms that NPS pollution plays a dominant role in COD pollution. However, NH4-N acted totally contrary to COD, the required NPS pollutant load removal rate under the environmental capacity restriction all exceeded 100%. By contrast, a 47% to 92% removal rate for municipal wastewater was enough, which suggests that municipal wastewater plays a dominant role in NH4-N pollution. For TP, only Maozhou and Pingshan watershed can meet the threshold of water environmental capacity by only removing NPS pollutants. However, the required removal rate for municipal wastewater ranged from 47% to 92%. Similarly, municipal wastewater plays a dominant role in BOD5pollution. This indicates that for the development of NH4-N, TP and BOD5control strategies, improving municipal wastewater treatment processes is an effective way, while for COD, stormwater runoff control measures will play even larger roles. This implies the need to take comprehensive NPS and municipal wastewater control strategies in order to meet the requirement of the water environmental capacity.

    Tab.4 Predicting removal rate of each pollutant in five watersheds in 2020 %

    WatershedCODNH4?NTNTPMNMNMNMNMaozhou—70 8262 69—62 1477 7266 5595 18Guanlan——91 28—91 46—95 31—Shenzhen91 6373 3255 72—49 86—55 62—Longgang—70 4658 42—55 32—57 70—Pingshan—66 5646 85—46 2078 6954 18—

    Note: M is the municipal wastewater pollutant; N is the NPS pollution generated from stormwater runoff; “—” means larger than 100%.

    In conclusion, the above outcomes imply that pollution control strategies should be taken based on pollutant species in each watershed and the control strategies should differ in different watersheds rather than “one-size-fits-all”. Additionally, for NH4-N, TP and BOD5, improving the water quality of municipal wastewater discharged from WWTP is an effective way to meet the threshold of water environmental capacity. While for COD, the NPS pollution should be focused on. This highlights that apart from improving wastewater treatment processes, control measures such as LID for stormwater runoff quantity reduction and quality improvement are also important for the improvement of water environment.

    2.2.2 Multivariate data analysis

    Using PROMETHEE and GAIA, the multivariate data analysis on relationships among pollutant loads, pollution sources and watersheds are investigated. Two pollutant sources (municipal wastewater and NPS pollution) in five watersheds are considered as objects while four pollutant loads (COD, NH4-N, TP and BOD5) are seen as variables. Accordingly, the data matrix (10×4) is submitted to PROMETHEE and GAIA. Fig.4 shows the resulting GAIA biplots.

    It is observed from Fig.4 that TP, NH4-N and BOD5vectors show a close relationship with municipal wastewater objects while COD vector indicates a strong correlation with NPS pollution objects, particularly Maozhou, Longgang and Guanlan watersheds. These observations further confirm that the pollutant generations vary highly with pollutant sources and watersheds. For NH4-N, TP and BOD5the primary pollutant source is municipal wastewater while COD is primarily generated from NPS pollution. However, Pingshan watershed does not have a close relationship with either of the pollution sources. This could be due to the lesser quantity of municipal waste water outflow and higher greening ratio in the watershed, which suggests that increasing pervious surfaces could potentially remove a relatively large percentage of the NPS pollution.

    Fig.4 GAIA biplot for relationships among pollutant loads, pollution sources and watersheds (Δ=99.99%). (M—Maozhou; G—Guanlan; S—Shenzhen; L—Longgang; P—Pingshan; W—Municipal wastewater; N—Non-point source pollution; e.g. M-W represents the municipal wastewater pollution in Maozhou watershed)

    3 Conclusion

    This paper details the outcomes of a research study undertaken to investigate the contribution of point source and NPS pollution of five major watersheds in Shenzhen. An innovative approach to estimating the removal rates of NPS pollutant load based on environmental capacity concepts was presented. In terms of Shenzhen, COD is the primary non-point pollutant for most watersheds and a 67% to 74% removal rate of COD from non-point sources can lead to meeting the threshold of water environmental capacity. In contrast, it is hardly to achieve the NH4-N, TP and BOD5pollution control target by simply removing NPS pollutant loads in most watersheds. This highlights that urban water pollutant loads exported vary highly with pollutant species, pollutant sources and watersheds. In order to keep the water environment from continuing to deteriorate, NPS pollution control strategies should be taken in different watersheds rather than “one-size-fits-all”. Although this research study is based on Shenzhen city, the provided approach can be applied in other rapidly urbanizing cases in order to assist in water quality enhancement.

    [1]Zhang J, Erik J S. Modelling of point and non-point nutrient loadings from a watershed [J].EnvironmentalModelling&Software, 2005, 20(5): 561-574.

    [2]Peng Shenghua, Yin Kuihao, Liang Yongxian, et al. Study on river water pollution control and storm water utilization in Shenzhen [J].JournalofEnvironmentalEngineeringTechnology, 2011, 1(6): 495-504. (in Chinese)

    [3]Yin Z, Walcott S. An analysis of the relationship between spatial patterns of water quality and urban development in Shanghai, China [J].Computers,EnvironmentandUrbanSystems, 2005, 29(2): 197-221.

    [4]Li C. Ecohydrology and good urban design for urban storm water-logging in Beijing, China [J].Ecohydrology&Hydrobiology, 2012, 12(4): 287-300.

    [5]Li Jinxiu, Ma Wei, Shi Xiaoxin, et al. Determination of allowable total discharge amount of pollutant [J].JournalofHydraulics, 2005, 36(7): 812-817. (in Chinese)

    [6]State Environment Protection Administration of China. Report on the state of the environment in China [R]. Beijing: China Environment Science Press, 2000. (in Chinese)

    [7]Shen Z, Liao Q. An overview of research on agricultural non-point source pollution modelling in China [J].SeparationandPurificationTechnology, 2012, 84: 104-111.

    [8]Ongley E D,Zhang X L. Current status of agricultural and rural non-point source pollution assessment in China [J].EnvironmentalPollution, 2010, 158(5): 1159-1168.

    [9]US EPA. National Water Quality Inventory. Report to congress executive summary [R]. Washington DC: US EPA, 1995:344.

    [10]Chen Dingjiang, Lü Jun, Jin Peijian, et al. Uncertainty analysis of water environmental capacity in the nonpoint source polluted river [J].EnvironmentalScience, 2010, 31(5): 1215-1219. (in Chinese)

    [11]Meteorological Bureau of Shenzhen Municipality. The Year Book of Shenzhen City (2012) [EB/OL]. (2013-03-01) [2013-10-12]. http://www.szmb.gov.cn/article/XinXiGongKai.

    [12]Urban Planning Land and Resource Commission of Shenzhen Municipality. Environmental quality control planning of Shenzhen city (2006—2020) [EB/OL]. (2007-07-12)[2013-10-12]. http://wenku.baidu.com/view/550695c758f5f61fb73666e9.html.

    [13]Bertrand Mareschal. Operation manual for visual PROMETHEE [EB/OL]. (2013-09-05)[2013-10-12]. http://www.promethee-gaia.net/vpa.html.

    [14]Herngren L,Goonetilleke A. Analysis of heavy metals in road-deposited sediments [J].AnalyticaChimicaActa, 2006, 571(2): 270-278.

    [15]Keller H R, Massart D L. Multicriteria decision making: a case study [J].ChemometricsandIntelligentLaboratorySystems, 1991, 11(2): 175-189.

    [16]Environmental Protection Bureau of Shenzhen Municipality. Report of the environmental quality in Shenzhen city (2006—2010) [EB/OL]. (2011-09-23)[2013-10-12]. http://www.docin.com/p-262454505.html.

    [17]Urban Planning Land and Resource Commission of Shenzhen Municipality. Land use planning of Shenzhen city (2006—2020) [EB/OL]. (2013-03-26)[2013-10-12]. http://www.szpl.gov.cn/xxgk/ghjh/td/201303/P020130326414200155682.pdf.

    [18]Xu Zhenci, Guo Yongchen. Simulation test of runoff on different underlying surfaces in urban area [J].South-to-NorthWaterTransfersandWaterScience&Technology, 2007(1): 64-66. (in Chinese)

    [19]Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB 50014—2006 Code for design of outdoor wastewater engineering [S]. Beijing: China Planning Press, 2006. (in Chinese)

    [20]Zhang Yuying. Analysis on the utilization of the surface water in Shenzhen [J].GuangdongWaterResourcesandHydropower, 2001(5): 26-27. (in Chinese)

    [21]Ministry of Environmental Protection of the People’s Republic of China. GB 3838—2002 Environmental quality standards for surface water [S]. Beijing: China Environmental Science Press, 2003. (in Chinese)

    [22]Li L, Yin C. First flush of storm runoff pollution from an urban catchment in China [J].JournalofEnvironmentalSciences, 2007, 19(3): 295-299.

    [23]Lee J H, Bang K W. First flush analysis of urban storm runoff [J].ScienceoftheTotalEnvironment, 2002, 293(1/2/3): 163-175.

    [24]Zheng Jieyuan, Huang Guoru, Wang Zhijun, et al. Analysis of temporal and spatial variation of rainfall in Guangzhou city at recent years [J].WaterResourcesandPower, 2011(3): 5-8. (in Chinese)

    基于水環(huán)境容量的面源污染削減率估算方法探討:以深圳市為例

    劉 梁1,2劉 安1管運(yùn)濤1,3

    (1清華大學(xué)深圳研究生院, 深圳 518055) (2清華大學(xué)環(huán)境學(xué)院, 北京 100084) (3清華大學(xué)國家環(huán)境保護(hù)環(huán)境微生物利用與安全控制重點(diǎn)實(shí)驗(yàn)室, 北京 100084)

    以深圳市為例,采用單元分析與多元分析相結(jié)合的手段,探討了一種基于城市水環(huán)境容量估算面源污染負(fù)荷削減率的方法在環(huán)境規(guī)劃中的實(shí)際應(yīng)用.計(jì)算結(jié)果表明:對于COD指標(biāo),67%~74%的面源污染負(fù)荷削減率即可滿足深圳市規(guī)劃后環(huán)境容量的限制;而對于NH4-N, TP和BOD5,僅依靠削減面源污染負(fù)荷則無法滿足規(guī)劃要求.因此,在城市水環(huán)境質(zhì)量規(guī)劃過程中,應(yīng)針對不同流域及目標(biāo)污染物種類,制定“量體裁衣”式的水環(huán)境控制策略,而非采用一成不變的措施.

    環(huán)境容量估算; 面源污染; 削減率; 控制策略

    X321

    s:The National Science and Technology Major Project of China(No.2012ZX07301-001), the Shenzhen Environmental Research Project, China Postdoctoral Science Foundation (No.2013M530642).

    :Liu Liang, Liu An, Guan Yuntao.Approach to estimating non-point pollutant load removal rates based on water environmental capacity: a case study in Shenzhen[J].Journal of Southeast University (English Edition),2014,30(2):143-149.

    10.3969/j.issn.1003-7985.2014.02.002

    10.3969/j.issn.1003-7985.2014.02.002

    Received 2013-10-19.

    Biographies:Liu Liang (1988—), male, graduate; Guan Yuntao (corresponding author), male, professor, guanyt@mail.tsinghua.edu.cn.

    猜你喜歡
    量體裁衣環(huán)境容量面源
    駐馬店市十三五期間大氣環(huán)境容量和緊缺度核算及分析
    農(nóng)業(yè)面源污染的危害與治理
    澄江市農(nóng)業(yè)面源污染成因及對策
    量體裁衣
    川南經(jīng)濟(jì)區(qū)年大氣環(huán)境容量核算的初步研究
    基于SWAT模型的漳河流域面源污染模擬研究
    量體裁衣
    自貢市貢井區(qū)河流水環(huán)境容量分析
    量體裁衣
    讀寫算(上)(2016年9期)2016-02-27 08:45:02
    農(nóng)業(yè)面源污染對水質(zhì)的影響及防治對策
    99久久精品一区二区三区| 国产午夜精品久久久久久| 美女高潮喷水抽搐中文字幕| 亚洲av电影在线进入| 免费搜索国产男女视频| www.www免费av| 日韩欧美在线乱码| 免费无遮挡裸体视频| 一级黄色大片毛片| 一区二区三区高清视频在线| 日韩人妻高清精品专区| 国产蜜桃级精品一区二区三区| 嫩草影院精品99| a在线观看视频网站| 欧美色欧美亚洲另类二区| 精品午夜福利视频在线观看一区| 91麻豆av在线| 久久热在线av| 日韩欧美在线二视频| 国产久久久一区二区三区| 男女那种视频在线观看| 香蕉久久夜色| 999精品在线视频| 97人妻精品一区二区三区麻豆| 久久婷婷人人爽人人干人人爱| 最近视频中文字幕2019在线8| 麻豆av在线久日| 少妇的丰满在线观看| 在线看三级毛片| 色av中文字幕| 亚洲在线观看片| 国产免费男女视频| 国内少妇人妻偷人精品xxx网站 | 欧美成人一区二区免费高清观看 | 亚洲电影在线观看av| 好男人电影高清在线观看| 亚洲国产精品999在线| 免费电影在线观看免费观看| 亚洲av成人av| 十八禁网站免费在线| 搡老妇女老女人老熟妇| 欧美成人一区二区免费高清观看 | 人妻夜夜爽99麻豆av| 色在线成人网| 亚洲精品美女久久久久99蜜臀| 午夜福利视频1000在线观看| 亚洲欧美日韩高清在线视频| 又黄又爽又免费观看的视频| 1000部很黄的大片| av天堂在线播放| 国产精品一及| 精品国产乱码久久久久久男人| 这个男人来自地球电影免费观看| 久久九九热精品免费| 热99re8久久精品国产| 欧美黄色淫秽网站| 757午夜福利合集在线观看| 成人三级黄色视频| а√天堂www在线а√下载| 欧美丝袜亚洲另类 | 成人午夜高清在线视频| 亚洲国产精品久久男人天堂| 国产精品久久久久久久电影 | 禁无遮挡网站| 美女被艹到高潮喷水动态| 国产高潮美女av| 国产午夜精品久久久久久| 久99久视频精品免费| 日韩大尺度精品在线看网址| 欧美+亚洲+日韩+国产| 亚洲无线在线观看| 国产成人欧美在线观看| 天天一区二区日本电影三级| 巨乳人妻的诱惑在线观看| а√天堂www在线а√下载| 色综合欧美亚洲国产小说| 757午夜福利合集在线观看| 午夜a级毛片| 啪啪无遮挡十八禁网站| 欧美国产日韩亚洲一区| 精品国产亚洲在线| 欧美性猛交黑人性爽| x7x7x7水蜜桃| 欧美精品啪啪一区二区三区| 国产蜜桃级精品一区二区三区| 丝袜人妻中文字幕| 成人一区二区视频在线观看| 99国产极品粉嫩在线观看| 免费看美女性在线毛片视频| 国产精品 欧美亚洲| 亚洲专区国产一区二区| 亚洲精品美女久久久久99蜜臀| 别揉我奶头~嗯~啊~动态视频| 成人一区二区视频在线观看| av天堂在线播放| 日本免费a在线| 老司机午夜福利在线观看视频| 色老头精品视频在线观看| 国产主播在线观看一区二区| 欧美乱妇无乱码| 国产欧美日韩精品一区二区| 村上凉子中文字幕在线| 麻豆av在线久日| 91老司机精品| 91字幕亚洲| 舔av片在线| 国产单亲对白刺激| 日韩精品中文字幕看吧| 久久婷婷人人爽人人干人人爱| 黄片大片在线免费观看| 99国产精品99久久久久| 欧美在线黄色| 夜夜爽天天搞| 国产探花在线观看一区二区| 亚洲乱码一区二区免费版| 国产高清有码在线观看视频| 欧美丝袜亚洲另类 | 精品电影一区二区在线| 三级国产精品欧美在线观看 | 久久午夜亚洲精品久久| 99久久99久久久精品蜜桃| 无遮挡黄片免费观看| 美女高潮喷水抽搐中文字幕| 在线免费观看不下载黄p国产 | 日韩高清综合在线| 麻豆一二三区av精品| 亚洲乱码一区二区免费版| 亚洲aⅴ乱码一区二区在线播放| 亚洲天堂国产精品一区在线| 12—13女人毛片做爰片一| or卡值多少钱| 精品午夜福利视频在线观看一区| 三级男女做爰猛烈吃奶摸视频| 欧美黑人欧美精品刺激| 最新在线观看一区二区三区| 在线观看66精品国产| 亚洲熟妇中文字幕五十中出| 久久久国产成人精品二区| 国产毛片a区久久久久| 在线永久观看黄色视频| 一进一出抽搐动态| 超碰成人久久| 五月玫瑰六月丁香| 久久久国产成人精品二区| av福利片在线观看| 麻豆国产97在线/欧美| 国产亚洲欧美98| 成人国产综合亚洲| 久久香蕉国产精品| 精品99又大又爽又粗少妇毛片 | 免费在线观看亚洲国产| 欧美乱色亚洲激情| 88av欧美| 欧美3d第一页| 亚洲专区国产一区二区| or卡值多少钱| 午夜久久久久精精品| 老熟妇仑乱视频hdxx| 午夜亚洲福利在线播放| 日本一本二区三区精品| 无遮挡黄片免费观看| 免费看十八禁软件| 美女被艹到高潮喷水动态| 亚洲欧美日韩无卡精品| 成年人黄色毛片网站| 9191精品国产免费久久| 国产精品免费一区二区三区在线| 国产亚洲欧美98| av天堂中文字幕网| 极品教师在线免费播放| 黑人欧美特级aaaaaa片| 成人三级黄色视频| 青草久久国产| 老司机深夜福利视频在线观看| 国产精品,欧美在线| 国产麻豆成人av免费视频| 9191精品国产免费久久| 日韩欧美国产一区二区入口| 亚洲中文日韩欧美视频| netflix在线观看网站| 国产精品一区二区精品视频观看| 亚洲乱码一区二区免费版| 亚洲熟妇中文字幕五十中出| 国产亚洲av嫩草精品影院| 黄色丝袜av网址大全| 又黄又粗又硬又大视频| 久久久久亚洲av毛片大全| 99在线人妻在线中文字幕| 一本久久中文字幕| 人妻久久中文字幕网| 中文资源天堂在线| 国产爱豆传媒在线观看| 十八禁网站免费在线| 一边摸一边抽搐一进一小说| 老司机福利观看| 国产一级毛片七仙女欲春2| 国产精品精品国产色婷婷| 欧美国产日韩亚洲一区| 无遮挡黄片免费观看| 男插女下体视频免费在线播放| 国产亚洲精品av在线| 国产欧美日韩一区二区三| bbb黄色大片| 曰老女人黄片| 欧美性猛交╳xxx乱大交人| 欧美大码av| 2021天堂中文幕一二区在线观| 十八禁人妻一区二区| 国产伦精品一区二区三区四那| www日本黄色视频网| 香蕉国产在线看| 欧美绝顶高潮抽搐喷水| 亚洲精品粉嫩美女一区| 日本三级黄在线观看| 欧美一区二区精品小视频在线| 亚洲av熟女| 一级毛片女人18水好多| 99久久精品热视频| 精品久久蜜臀av无| 男人舔女人的私密视频| 高清毛片免费观看视频网站| 国产精品99久久久久久久久| 久久久久久久午夜电影| 男女那种视频在线观看| 国产主播在线观看一区二区| 美女高潮的动态| 日韩中文字幕欧美一区二区| 观看美女的网站| 午夜精品一区二区三区免费看| 少妇人妻一区二区三区视频| 国产淫片久久久久久久久 | 在线观看免费午夜福利视频| 中文亚洲av片在线观看爽| 我要搜黄色片| 少妇的逼水好多| 精品国产美女av久久久久小说| 很黄的视频免费| 国产亚洲av高清不卡| 在线观看美女被高潮喷水网站 | 成人av在线播放网站| 亚洲av五月六月丁香网| a级毛片a级免费在线| 日本在线视频免费播放| 18禁黄网站禁片免费观看直播| 欧美日韩一级在线毛片| 国产亚洲av高清不卡| 欧美日韩乱码在线| netflix在线观看网站| 亚洲av免费在线观看| 亚洲精品456在线播放app | 啪啪无遮挡十八禁网站| 国产精品美女特级片免费视频播放器 | 又黄又爽又免费观看的视频| 日韩人妻高清精品专区| 九色成人免费人妻av| 熟女人妻精品中文字幕| xxx96com| 在线观看免费视频日本深夜| 国产精品久久久久久久电影 | 在线免费观看不下载黄p国产 | 精品人妻1区二区| 精品久久久久久久毛片微露脸| 国产综合懂色| 国产免费av片在线观看野外av| 国产97色在线日韩免费| 好男人电影高清在线观看| 高清毛片免费观看视频网站| 三级男女做爰猛烈吃奶摸视频| 我要搜黄色片| 久久精品国产综合久久久| 在线永久观看黄色视频| 国产成人啪精品午夜网站| 女人高潮潮喷娇喘18禁视频| 99久久国产精品久久久| 老熟妇仑乱视频hdxx| 丝袜人妻中文字幕| 亚洲专区国产一区二区| 欧美黑人巨大hd| 欧美日韩国产亚洲二区| 黄色视频,在线免费观看| 啦啦啦观看免费观看视频高清| 久久这里只有精品中国| 这个男人来自地球电影免费观看| 老司机在亚洲福利影院| 欧美激情在线99| 韩国av一区二区三区四区| 国产欧美日韩精品亚洲av| av黄色大香蕉| 国产免费av片在线观看野外av| 久久草成人影院| 日韩欧美国产一区二区入口| 18禁黄网站禁片午夜丰满| 亚洲 欧美 日韩 在线 免费| a在线观看视频网站| 又黄又爽又免费观看的视频| 亚洲av第一区精品v没综合| 少妇的逼水好多| 免费高清视频大片| 午夜精品一区二区三区免费看| 老汉色av国产亚洲站长工具| 两个人的视频大全免费| 女生性感内裤真人,穿戴方法视频| 欧美日韩亚洲国产一区二区在线观看| 女同久久另类99精品国产91| 久久精品影院6| 99久久国产精品久久久| 熟妇人妻久久中文字幕3abv| 国产不卡一卡二| 嫩草影院入口| 可以在线观看毛片的网站| 欧美日韩黄片免| 听说在线观看完整版免费高清| 亚洲avbb在线观看| 99视频精品全部免费 在线 | 99久久综合精品五月天人人| 色哟哟哟哟哟哟| 久久久久国内视频| 成年版毛片免费区| 国产精品 国内视频| 一个人看视频在线观看www免费 | 色综合欧美亚洲国产小说| 日本与韩国留学比较| 热99re8久久精品国产| 一区二区三区高清视频在线| 在线观看免费午夜福利视频| 亚洲 国产 在线| 久9热在线精品视频| 午夜两性在线视频| 国产亚洲av嫩草精品影院| 国产亚洲av高清不卡| 亚洲精华国产精华精| 老司机深夜福利视频在线观看| 99国产综合亚洲精品| 一区二区三区国产精品乱码| or卡值多少钱| 一本综合久久免费| 精品免费久久久久久久清纯| 岛国在线观看网站| 啪啪无遮挡十八禁网站| 亚洲专区国产一区二区| 99riav亚洲国产免费| 老司机在亚洲福利影院| 麻豆av在线久日| 亚洲欧美精品综合一区二区三区| 国产精品久久视频播放| 女同久久另类99精品国产91| 禁无遮挡网站| 免费在线观看影片大全网站| 在线观看免费午夜福利视频| 日韩欧美国产一区二区入口| e午夜精品久久久久久久| 男人舔奶头视频| 国产成人av教育| 亚洲 国产 在线| bbb黄色大片| 伊人久久大香线蕉亚洲五| 99精品久久久久人妻精品| 麻豆久久精品国产亚洲av| 久久午夜亚洲精品久久| 久久久久久九九精品二区国产| 久9热在线精品视频| 老汉色∧v一级毛片| 国产成人影院久久av| 色综合婷婷激情| 国产蜜桃级精品一区二区三区| 一级作爱视频免费观看| 色老头精品视频在线观看| 国产精品爽爽va在线观看网站| 成人18禁在线播放| 久久精品国产清高在天天线| 国产高清三级在线| 免费高清视频大片| 久久久久久久久中文| 综合色av麻豆| 国产激情欧美一区二区| 噜噜噜噜噜久久久久久91| 黑人操中国人逼视频| 欧美日韩中文字幕国产精品一区二区三区| 久久午夜综合久久蜜桃| 精品久久久久久,| 午夜影院日韩av| 亚洲av片天天在线观看| 日韩人妻高清精品专区| 偷拍熟女少妇极品色| 老司机福利观看| 国产激情偷乱视频一区二区| 亚洲国产看品久久| 毛片女人毛片| 国产亚洲精品一区二区www| 久久婷婷人人爽人人干人人爱| bbb黄色大片| 欧美日韩综合久久久久久 | 欧美黑人欧美精品刺激| 成人亚洲精品av一区二区| 男女下面进入的视频免费午夜| 蜜桃久久精品国产亚洲av| 九九久久精品国产亚洲av麻豆 | 国产一区在线观看成人免费| 在线播放国产精品三级| 99精品欧美一区二区三区四区| 亚洲欧美日韩高清在线视频| 成人特级av手机在线观看| 亚洲av片天天在线观看| 欧美成人性av电影在线观看| 日本成人三级电影网站| 好男人在线观看高清免费视频| 我的老师免费观看完整版| 亚洲人成电影免费在线| 免费看a级黄色片| 两人在一起打扑克的视频| 亚洲欧美日韩无卡精品| 亚洲国产精品久久男人天堂| 男女床上黄色一级片免费看| 国产1区2区3区精品| 国产精品自产拍在线观看55亚洲| 欧美日韩瑟瑟在线播放| 欧美xxxx黑人xx丫x性爽| 亚洲人成网站在线播放欧美日韩| 麻豆国产av国片精品| 18禁观看日本| 狂野欧美激情性xxxx| 国内揄拍国产精品人妻在线| 日本一本二区三区精品| 欧美性猛交黑人性爽| 香蕉久久夜色| 亚洲国产欧美一区二区综合| 色哟哟哟哟哟哟| 狂野欧美白嫩少妇大欣赏| 男女午夜视频在线观看| 法律面前人人平等表现在哪些方面| 久久精品国产清高在天天线| 美女被艹到高潮喷水动态| 亚洲性夜色夜夜综合| 少妇熟女aⅴ在线视频| 午夜福利在线观看吧| 午夜福利在线观看免费完整高清在 | 欧美午夜高清在线| 国产欧美日韩精品一区二区| 日本免费a在线| h日本视频在线播放| 禁无遮挡网站| 91字幕亚洲| 性欧美人与动物交配| 男女下面进入的视频免费午夜| 欧美大码av| 麻豆国产97在线/欧美| 香蕉久久夜色| 午夜福利在线观看吧| 国内精品美女久久久久久| 午夜激情福利司机影院| av国产免费在线观看| 日本在线视频免费播放| 床上黄色一级片| 一本综合久久免费| 免费看十八禁软件| 男人舔女人的私密视频| 亚洲人与动物交配视频| 国产精华一区二区三区| 又黄又粗又硬又大视频| 淫秽高清视频在线观看| 国产综合懂色| 国产精品久久久人人做人人爽| 美女扒开内裤让男人捅视频| 一级a爱片免费观看的视频| 夜夜夜夜夜久久久久| 精品电影一区二区在线| 亚洲欧美日韩高清专用| 国产精品久久久久久久电影 | 国产精品精品国产色婷婷| 麻豆一二三区av精品| 国产黄a三级三级三级人| 亚洲av成人精品一区久久| 国产精品免费一区二区三区在线| 99热这里只有精品一区 | 桃红色精品国产亚洲av| 免费av不卡在线播放| 99riav亚洲国产免费| 亚洲专区中文字幕在线| 成人亚洲精品av一区二区| 亚洲av免费在线观看| 亚洲午夜理论影院| 午夜福利在线观看吧| 欧美一区二区精品小视频在线| 欧美中文日本在线观看视频| 丰满人妻一区二区三区视频av | 老司机在亚洲福利影院| 别揉我奶头~嗯~啊~动态视频| 亚洲自拍偷在线| 国产精品永久免费网站| 色综合站精品国产| 激情在线观看视频在线高清| 午夜精品久久久久久毛片777| 日韩成人在线观看一区二区三区| 观看免费一级毛片| 极品教师在线免费播放| 国产视频一区二区在线看| 国产精品美女特级片免费视频播放器 | 午夜福利视频1000在线观看| 午夜福利在线在线| 欧美国产日韩亚洲一区| 九九热线精品视视频播放| 在线十欧美十亚洲十日本专区| 嫁个100分男人电影在线观看| 欧美+亚洲+日韩+国产| 亚洲男人的天堂狠狠| 波多野结衣高清作品| 欧美乱色亚洲激情| 毛片女人毛片| 在线视频色国产色| 亚洲在线观看片| 免费观看人在逋| 成人特级黄色片久久久久久久| 亚洲欧美激情综合另类| 欧美午夜高清在线| 中文资源天堂在线| 嫁个100分男人电影在线观看| 午夜免费成人在线视频| 级片在线观看| 亚洲av电影在线进入| 国产精品98久久久久久宅男小说| 狂野欧美白嫩少妇大欣赏| 一区福利在线观看| 麻豆一二三区av精品| 母亲3免费完整高清在线观看| 老熟妇仑乱视频hdxx| 欧美极品一区二区三区四区| 哪里可以看免费的av片| www日本在线高清视频| 亚洲欧美日韩高清专用| 国产一区二区在线观看日韩 | 亚洲自偷自拍图片 自拍| 毛片女人毛片| 91av网一区二区| 人妻丰满熟妇av一区二区三区| 搡老妇女老女人老熟妇| 我的老师免费观看完整版| 亚洲欧美精品综合久久99| 长腿黑丝高跟| 手机成人av网站| 精品一区二区三区视频在线 | 日本 欧美在线| 嫩草影视91久久| 高清在线国产一区| 99国产综合亚洲精品| 亚洲国产高清在线一区二区三| 欧美黄色淫秽网站| 亚洲国产欧洲综合997久久,| 欧美日韩瑟瑟在线播放| 操出白浆在线播放| 久久99热这里只有精品18| 亚洲av成人一区二区三| 日韩高清综合在线| 日韩欧美精品v在线| 夜夜躁狠狠躁天天躁| 最近最新中文字幕大全免费视频| av在线蜜桃| 国内精品久久久久久久电影| 日韩欧美精品v在线| 国产精品 欧美亚洲| 搞女人的毛片| 中文字幕人妻丝袜一区二区| 人妻丰满熟妇av一区二区三区| 欧美黑人欧美精品刺激| 蜜桃久久精品国产亚洲av| 亚洲美女视频黄频| 久久午夜综合久久蜜桃| 日韩欧美三级三区| 窝窝影院91人妻| 舔av片在线| 久久久久国产精品人妻aⅴ院| 久久亚洲真实| 亚洲精品在线美女| 18禁黄网站禁片午夜丰满| 欧美又色又爽又黄视频| 久久精品国产99精品国产亚洲性色| 国产主播在线观看一区二区| 最新美女视频免费是黄的| 19禁男女啪啪无遮挡网站| 国产午夜精品论理片| 欧美在线一区亚洲| 亚洲电影在线观看av| 久久这里只有精品19| 国产精品久久久av美女十八| 亚洲国产中文字幕在线视频| 黄片小视频在线播放| 啦啦啦韩国在线观看视频| 18禁美女被吸乳视频| 老熟妇仑乱视频hdxx| 国产高清videossex| 国产伦人伦偷精品视频| ponron亚洲| 伦理电影免费视频| 免费看美女性在线毛片视频| 12—13女人毛片做爰片一| 国产精品 欧美亚洲| 日韩欧美免费精品| 亚洲成人久久性| 成人18禁在线播放| 一个人免费在线观看电影 | 国产亚洲av嫩草精品影院| 国产又色又爽无遮挡免费看| 在线国产一区二区在线| 男人的好看免费观看在线视频| 五月伊人婷婷丁香| 真人做人爱边吃奶动态| 男插女下体视频免费在线播放| 日韩 欧美 亚洲 中文字幕| 国产亚洲精品综合一区在线观看| 欧美乱妇无乱码| 国产伦精品一区二区三区视频9 | 国产黄片美女视频| 色视频www国产| 亚洲精品美女久久av网站| 女同久久另类99精品国产91| 婷婷丁香在线五月|