劉明
由于當(dāng)今社會(huì)人們飲食習(xí)慣的改變,環(huán)境與缺乏鍛煉等因素的結(jié)合,結(jié)直腸癌發(fā)病率逐年上升。結(jié)直腸癌是許多國(guó)家最常見的惡性腫瘤之一,在世界范圍內(nèi),結(jié)直腸癌的發(fā)病率位于第三位,雖然近年來以手術(shù)、放化療治療為主的多種治療方法取得了長(zhǎng)足的進(jìn)展,但其預(yù)后改善不明顯,總體5年生存率仍然較低。并且手術(shù)對(duì)患者創(chuàng)傷大,術(shù)后患者生活質(zhì)量較低?;瘜W(xué)預(yù)防作為減少致癌因素影響的方法之一,越來越受到關(guān)注?;瘜W(xué)預(yù)防可以被定義為給予一種或幾種化學(xué)物質(zhì)預(yù)防癌癥發(fā)生,這些化學(xué)物質(zhì)可以是藥物,也可以是飲食中的天然化學(xué)成分。目前結(jié)直腸癌化學(xué)預(yù)防劑的篩選主要集中在天然植物成分的化學(xué)預(yù)防藥方面。植物化學(xué)物質(zhì)具有成本低,毒副作用小的優(yōu)點(diǎn),是一種理想的化學(xué)預(yù)防劑。
目前的研究認(rèn)為多種植物成分可做為化學(xué)預(yù)防劑,因此,植物化學(xué)預(yù)防針對(duì)結(jié)直腸癌擁有廣闊的研究前景,在化學(xué)預(yù)防的植物成分中,多酚類物質(zhì)所占比例較大,因此本文將討論結(jié)直腸癌多酚類的植物化學(xué)預(yù)防劑機(jī)制的研究進(jìn)展。
結(jié)直腸癌多酚類植物化學(xué)預(yù)防劑
鞣花酸(Ellagic acid)(2,3,7,8-tetrahydroxy-chromeno[5,4,3-cde]chromene-5,10-dione(IUPAC);C14H6O8),分子量為303.20 g/mol,是存在于植物中的一種天然多酚類的化合物,是富含鞣花酸單寧食物提取或存儲(chǔ)過程中常見的物質(zhì),其結(jié)構(gòu)式如圖1。鞣花酸具有抗癌、抗炎抗細(xì)菌、抗血管生成、抗高血糖、抗高血壓和心臟保護(hù)作用[1-4]。鞣花酸通過不同的機(jī)制降低致癌物的致癌作用。這些化合物通常存在于水果(例如石榴,柿子,樹莓,黑樹莓,草莓,桃子,plumes),堅(jiān)果(例如胡桃,杏仁)中。鞣花酸在許多物質(zhì)中顯示出抗癌性,其抗結(jié)直腸癌主要機(jī)制包括:(1)通過影響信號(hào)轉(zhuǎn)導(dǎo)通路抑制細(xì)胞增殖[5-6],阻滯細(xì)胞周期[7],誘導(dǎo)細(xì)胞凋亡;(2)鞣花酸及其衍生物調(diào)節(jié)基因表達(dá),參與炎癥途徑,降低結(jié)腸黏膜中炎癥標(biāo)志物,包括環(huán)加氧酶-2(COX-2),前列腺素E合酶和前列腺素E2,白細(xì)胞介素-3[8];(3)當(dāng)體內(nèi)活性氧自由基(ROS)和活性氮自由基(RNS)產(chǎn)生過多時(shí),氧化系統(tǒng)和抗氧化系統(tǒng)失衡,從而導(dǎo)致組織損傷。鞣花酸及其衍生物降低活性氧的水平,從而減少氧化應(yīng)激[5]。
圖1 鞣花酸結(jié)構(gòu)式示意圖
姜黃素(curcumin)((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione(IUPAC);C21H20O6)分子量為368.37 g/mol,是姜黃中的主要成分。其結(jié)構(gòu)式如圖2。姜黃素具有抗氧化、抗炎、抗癌、抗菌、抗痙攣、抗病毒的活性[9]。當(dāng)姜黃素與常見治療方法聯(lián)合應(yīng)用時(shí),可降低化療中結(jié)直腸癌的耐藥性[10-11]。姜黃素可抑制體內(nèi)外惡性腫瘤,而對(duì)人體正常細(xì)胞不產(chǎn)生影響[12-13]。姜黃素抗結(jié)直腸癌的機(jī)制包括:(1)姜黃素通過抑制核轉(zhuǎn)錄因子kappa B(NF-kappaB),進(jìn)而抑制炎癥通路[14];(2)結(jié)腸癌發(fā)生過程中DNA甲基化,有研究證明姜黃素可以調(diào)節(jié)DNA在結(jié)直腸癌中的甲基化變化[15];(3)下調(diào)在結(jié)直腸癌中表達(dá)增強(qiáng)的酶與蛋白[16];(4)錯(cuò)配修復(fù)系統(tǒng)(MMR)對(duì)結(jié)直腸癌產(chǎn)生顯著的影響,當(dāng)MMR受損時(shí),細(xì)胞表型改變,增強(qiáng)腫瘤的易感性,促進(jìn)腫瘤細(xì)胞抗化療藥物的發(fā)展。姜黃素與5-氟尿嘧啶聯(lián)合應(yīng)用于因DNA的MMR系統(tǒng)缺陷而產(chǎn)生耐藥性的結(jié)直腸癌細(xì)胞時(shí),可增強(qiáng)腫瘤細(xì)胞對(duì)藥物的敏感性。
圖2 姜黃素結(jié)構(gòu)式示意圖
兒茶素-3-沒食子酸([(2R,3R)-5,7-二羥基-2-(3,4,5-三羥基)-3,4-二氫-2H-chromen-3-yl](IUPAC)C22H18O11,分子量為458.37 g/mol,是綠茶中的主要多酚類成分。結(jié)構(gòu)式如圖3。綠茶是世界上最受歡迎的飲料之一,喝茶可以降低膽固醇,降低心臟病發(fā)生的幾率,可以提高免疫力等,綠茶發(fā)揮以上作用主要是其中的兒茶素-3-沒食子酸發(fā)揮作用。兒茶素-3-沒食子酸在結(jié)直腸癌的動(dòng)物模型中可以激活某些基因抑制腫瘤生長(zhǎng)[17-18]。同姜黃素一樣可抑制腫瘤細(xì)胞的生長(zhǎng),但不對(duì)正常細(xì)胞產(chǎn)生影響[14]。兒茶素-3-沒食子酸抗結(jié)直腸癌的機(jī)制包括:(1)DNMTs(DNA甲基轉(zhuǎn)移酶)和HDACS(組蛋白脫乙?;?在結(jié)腸癌發(fā)展過程中具有重要的意義。實(shí)驗(yàn)表明EGCG治療在結(jié)腸癌細(xì)胞系HCT116中可使DNMTs和HDACS這兩種蛋白減少[19],從而重新激活結(jié)腸癌重要監(jiān)管沉默基因[20],進(jìn)而抑制腫瘤的發(fā)生;(2)實(shí)驗(yàn)證明EGCG可激活A(yù)MP激活的蛋白激酶(AMPK),并且降低血管內(nèi)皮生成素(VEGF)水平[21],抑制腫瘤血管生成;(3)在癌細(xì)胞中MMP-9是與腫瘤轉(zhuǎn)移有關(guān),在多種腫瘤細(xì)胞中已被證明MMP-9是最重要的蛋白質(zhì)之一,并且過表達(dá)[22]。實(shí)驗(yàn)證明EGCG可下調(diào)MMP-9蛋白的水平,達(dá)到抑制腫瘤的作用[21]。(4)實(shí)驗(yàn)表明EGCG可將腫瘤細(xì)胞阻滯在G0/G1期,激活caspases(對(duì)細(xì)胞凋亡有促進(jìn)作用),抑制NF-kappaB活性,誘導(dǎo)癌細(xì)胞凋亡[23]。
圖3 兒茶素-3-沒食子酸結(jié)構(gòu)式示意圖
白藜蘆醇(resveratrol)(3,4,5-三羥基-二苯乙烯,分子式C14H12O3),分子量為228.24 g/mol,主要來源于葡萄(紅葡萄酒)、虎杖、花生、桑椹等植物。白藜蘆醇是一種天然多酚類物質(zhì),化學(xué)式見圖4。白藜蘆醇具有抗癌、抗氧化、雌激素調(diào)節(jié)、抗菌消炎和預(yù)防心血管疾病等多方面的生物性能,近年來白藜蘆醇的化學(xué)預(yù)防作用受到越來越多的關(guān)注。白藜蘆醇抗結(jié)腸癌的機(jī)制:(1)實(shí)驗(yàn)研究表明白藜蘆醇具有抗氧化性,可降低細(xì)胞氧化應(yīng)激壓力[24];(2)白藜蘆醇在結(jié)腸癌細(xì)胞中通過激活caspases-3、caspases-7和caspases-9,引起PARP的裂解,最終誘導(dǎo)腫瘤細(xì)胞凋亡[25];(3)Wnt信號(hào)通路在細(xì)胞發(fā)育過程和致癌性上發(fā)揮重要的關(guān)鍵作用。在結(jié)直腸癌中,約90%伴有Wnt信號(hào)通路激活突變。白藜蘆醇可以通過影響Wnt信號(hào)通路進(jìn)一步對(duì)Wnt信號(hào)通路下游的細(xì)胞周期蛋白D1產(chǎn)生影響,抑制結(jié)腸癌的發(fā)展[26]。
圖4 白藜蘆醇結(jié)構(gòu)式示意圖
隨著環(huán)境與飲食習(xí)慣的改變,結(jié)直腸癌的發(fā)病率逐年上升。而植物化學(xué)預(yù)防因毒副作用低的優(yōu)點(diǎn)近年來受到越來越多關(guān)注。結(jié)直腸癌植物化學(xué)預(yù)防劑主要機(jī)制有:(1)抑制信號(hào)轉(zhuǎn)導(dǎo)主要是表皮生長(zhǎng)因子受體和VEGF受體;(2)調(diào)節(jié)表觀遺傳,如雌激素受體β受體和組蛋白去乙?;?;(3)抑制炎癥的發(fā)生。
多酚類物質(zhì)在化學(xué)預(yù)防劑中占有較大比例。研究證明,多酚類物質(zhì)主要在結(jié)腸中儲(chǔ)存,某些多酚類物質(zhì)例如鞣花酸在結(jié)腸中降解的產(chǎn)物尿石酸也具有誘導(dǎo)腫瘤細(xì)胞凋亡的性質(zhì)。細(xì)胞凋亡在腫瘤的發(fā)展過程中具有重大的意義,目前針對(duì)誘導(dǎo)腫瘤凋亡的研究受到廣泛的關(guān)注,但因誘導(dǎo)凋亡的藥物往往會(huì)對(duì)正常細(xì)胞產(chǎn)生損傷,而不能很好的應(yīng)用到臨床當(dāng)中。而多酚類物質(zhì)克服了這一缺陷,由于其主要存在于植物中,實(shí)驗(yàn)表明當(dāng)多酚類化學(xué)預(yù)防劑作用于細(xì)胞時(shí),僅腫瘤細(xì)胞,而對(duì)正常細(xì)胞沒有影響。綜上所述,多酚類物質(zhì)是具有潛力預(yù)防結(jié)直腸癌的化學(xué)預(yù)防劑。
[1] Landete JM.Ellagitannins,ellagic acid and their derived metabolites:a review about source,metabolism,functions and health.Food Res Int,2011,44:1150-1160.
[2] Larrosa M,Garcia-Conesa MT,Espin JC,et al.Ellagitannins,ellagic acid and vascular health.Mol Aspects Med,2010,31:513-539.
[3] Malik A,Afaq S,Shahid M,et al.Influence of ellagic acid on prostate cancer cell proliferation:a caspase-dependent pathway.Asian Pac J Trop Med,2011,4:550-555.
[4] Rosillo MA,Sanchez-Hidalgo M,Cárdeno A,et al.Protective effect of ellagic acid,a natural polyphenolic compound,in a murine model of Crohn's disease.Biochem Pharmacol,2011,82:737-745.
[5] Honglian Yu,Lijuan Liu.In vitro antioxidant and antiproliferative effects of ellagic acid and its colonic metabolite,urolithins,on human bladder cancer T 24 cells.Food and Chemical Toxicology,2013,59:428-437.
[6] Mishra S,Vinayak M.Ellagic acid induces novel and atypical PKC isoforms and promotes caspase-3 dependent apoptosis by blocking energy metabolism.Nutr Cancer,2014,66(4):675-681.
[7] Sujatha Ramasamy,Abdul Wahab.Growth inhibition of human gynecologic and colon cancer cells by phyllanthus watsonii through apoptosis induction.PLoS ONE,2012,20:7(4):34793.
[8] Juan A,Gime nez-Bastida,Mar Larrosa.Intestinal ellagitannin metabolites ameliorate cytokine-induced inflammation and associated molecular markers in human colon fibroblasts.J Agric Food Chem,2012,60:8866-8876.
[9] Kishor Butte,Munira Momin.Optimisation and in vivo evaluation of pectin based drug delivery system containing curcumin for colon.Int J Biomater,2014:924278.
[10] Das RK,Kasoju N,Bora U.Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells.Nanomedicine,2010,6:153-160.
[11] Irving GR,Karmokar A,Berry DP,et al.Curcumin:the potential for efficacy in gastrointestinal diseases.Best Pract Res Clin Gastroenterol,2011,25:519-534.
[12] Wilken R,Veena MS,Wang MB,et al.Curcumin:A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma.Mol Cancer,2011,10:12.
[13] Vyas A,Dandawate P,Padhye S,et al.Perspectives on new synthetic curcumin analogs and their potential anticancer properties.Curr Pharm Des,2013,19(11):2047-2069.
[14] S Santos,Bruno M.Nanoencapsulation of polyphenols for protective effect against colon-rectal cancer.Biotechnology Advances,2013,31:514-523.
[15] Alexander Link,F(xiàn)rancesc Balaguer.Curcumin modulates DNA methylation in colorectal cancer cells.PLOS ONE,2013,8(2):e57709.
[16] Radhakrishnan VM,Ramalingam R.pTyr421 cortactin is overexpressed in colon cancer and is dephosphorylated by curcumin:involvement of non-receptor type 1 protein tyrosine phosphatase(PTPN1).PLoS One,2014,9(1):85796.
[17] Mehdi Shakibaei,Constanze Buhrmann.Curcumin chemosensitizes 5-fluorouracil resistant MMR-deficient human colon cancer cells in high.Density Cultures,2014,Jan 3;9(1):e85397.
[18] Volate SR,Muga SJ,Issa AY,et al.Epigenetic modulation of the retinoid X receptor alpha by green tea in the azoxymethane-Apc Min/+ mouse model of intestinal cancer.Molecular carcinogenesis,2009,48:920-933.
[19] Vondina R,Rebecca W.Green tea polyphenol epigallocatechin 3-gallate,contributes to the degradation of DNMT3A and HDAC3 in HCT 116 human colon cancer cells.Anticancer Res,2013,33(12):5325-5333.
[20] Fang MZ,Wang Y,Ai N,et al.Tea polyphenol(-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines.Cancer research,2003,63:7563-7570.
[21] Song Yi,Chang Hee.Pro-apoptotic and migration-suppressing potential of EGCG,and the involvement of AMPK in the p53-mediated modulation of VEGF and MMP-9 expression.Oncology Letters,2013,6:1346-1350.
[22] Stetler-Stevenson WG.Type IV collagenases in tumor invasion and metastasis.Cancer Metastasis Rev,1990,9:289-303.
[23] Singh BN,Shankar S,Srivastava RK.Green tea catechin,epigallocatechin-3-gallate(EGCG):mechanisms,perspectives and clinical applications.Biochem Pharmacol,2011,82:1807-1821.
[24] Jinhua Wang,Weijia Ding.Three new resveratrol derivatives from the mangrove endophytic fungus alternariasp.Mar Drugs,2014,12:2840-2850.
[25] De Maria,Maria Cartenì.Polydatin,a natural precursor of resveratrol,induces cell cycle arrest and differentiation of human colorectal Caco-2 cell.Journal of Translational Medicine,2013,11:264.
[26] Min-Yu Chung,Gyu Lim,Won Lee.Molecular mechanisms of chemopreventive phytochemicals against gastroenterological cancer development.World J Gastroenterol,2013,19(7):984-993.