唐小洪,葉亞瓊,李道通,馬浩然,歐陽(yáng)丹,陳 健,馬勇江,張 媛,李玉谷
(華南農(nóng)業(yè)大學(xué) 獸醫(yī)學(xué)院,廣東 廣州 510642)
雞脂肪源間充質(zhì)干細(xì)胞的分離與鑒定
唐小洪,葉亞瓊,李道通,馬浩然,歐陽(yáng)丹,陳 健,馬勇江,張 媛,李玉谷
(華南農(nóng)業(yè)大學(xué) 獸醫(yī)學(xué)院,廣東 廣州 510642)
【目的】建立雞脂肪源間充質(zhì)干細(xì)胞的分離與鑒定方法.【方法】用I型膠原酶消化法分離天露黃雞脂肪間充質(zhì)干細(xì)胞(AMSCs),CCK- 8檢測(cè)細(xì)胞生長(zhǎng)活力,RT-PCR鑒定其特異性標(biāo)記物,化學(xué)法對(duì)其進(jìn)行成脂和成骨分化誘導(dǎo).【結(jié)果和結(jié)論】原代及傳代的細(xì)胞呈成纖維細(xì)胞樣形態(tài),并能傳代至10代,其活力無(wú)明顯變化;細(xì)胞生長(zhǎng)曲線呈S型;RT-PCR檢測(cè)顯示AMSCs 的特異性標(biāo)志物CD71、CD44和CD29表達(dá)呈陽(yáng)性,而屬于造血干細(xì)胞的特異性標(biāo)志物CD34和CD45呈陰性;AMSCs通過(guò)不同誘導(dǎo)液被成功誘導(dǎo)分化為成骨細(xì)胞和脂肪細(xì)胞,在成脂分化過(guò)程中有脂滴形成,油紅O染色呈陽(yáng)性,過(guò)氧化物酶體增殖物激活受體基因γ(PPARγ)和脂肪酸基因(FAS)的mRNA表達(dá)量升高;在成骨分化過(guò)程中有鈣結(jié)節(jié)形成,茜素紅染色呈陽(yáng)性,堿性磷酸酶(ALP)活性檢測(cè)對(duì)照組與誘導(dǎo)組比較差異顯著(P﹤0.05),ALP基因和骨形態(tài)發(fā)生蛋白基因(BMP2)的mRNA表達(dá)量升高.研究表明,雞AMSCs具有分化為多種細(xì)胞的潛能.
雞; 間充質(zhì)干細(xì)胞; 分離; 鑒定; 分化誘導(dǎo)
間充質(zhì)干細(xì)胞(Mesenchymal stem cells, MSCs)屬于成體干細(xì)胞,是一種具有自我更新能力和多向分化潛能的細(xì)胞,具有低免疫原性[1-3]和定向遷移能力[4- 6]等特點(diǎn),從而受到生物學(xué)領(lǐng)域和生物醫(yī)學(xué)界的青睞.MSCs最初由Friedenstein等[7]在人骨髓中發(fā)現(xiàn),并證明其在體外可以分化為成骨細(xì)胞和脂肪細(xì)胞.MSCs不僅存在于骨髓,還廣泛分布于其他組織中,脂肪組織已經(jīng)被證明是一種重要的MSCs來(lái)源,國(guó)際脂肪應(yīng)用技術(shù)協(xié)會(huì)在2004年將這種MSCs稱為脂肪間充質(zhì)基質(zhì)細(xì)胞(Adipose mesenchymal stromal cells,AMSCs).目前大部分的研究集中在人以及鼠、兔等哺乳動(dòng)物,而有關(guān)禽類AMSCs的報(bào)道甚少.本試驗(yàn)選取天露黃雞內(nèi)臟表面脂肪中的MSCs為研究對(duì)象,對(duì)其進(jìn)行分離培養(yǎng)、增殖能力檢測(cè)及分化能力鑒定,為家禽干細(xì)胞的研究和臨床應(yīng)用提供基礎(chǔ)材料.
1.1 材料
40日齡天露黃雞由華南農(nóng)業(yè)大學(xué)家禽實(shí)驗(yàn)基地(廣州)提供.
1.2 主要試劑
DMEM、胎牛血清為美國(guó)Gibco公司產(chǎn)品,Ⅰ型膠原酶、地塞米松、抗壞血酸、β-甘油磷酸鈉、吲哚美辛、3-異丁基-1-甲基黃嘌呤、胰島素為美國(guó)Sigma公司產(chǎn)品,Trizol Reagent為美國(guó)Invitrogen公司產(chǎn)品,Tag酶、反轉(zhuǎn)錄試劑盒為TaKaRa公司產(chǎn)品,引物由上海杰瑞基因公司合成,CCK- 8試劑盒、堿性磷酸酶(ALP)檢測(cè)試劑盒為碧云天生物技術(shù)研究所產(chǎn)品.
1.3 雞AMSCs的分離和培養(yǎng)
40日齡健康天露黃雞,喉部放血處死,無(wú)菌條件下取其內(nèi)臟表面脂肪,去除肉眼可見(jiàn)的纖維成分和血管,在含1 000 U雙抗的DMEM中浸泡10 min,DMEM液漂洗3次,充分剪碎,加入1 g/L Ⅰ型膠原酶于37 ℃恒溫箱中消化2 h,期間每10 min充分搖勻1次,加入等量含體積分?jǐn)?shù)為10%的胎牛血清的高糖DMEM培養(yǎng)基,200目濾網(wǎng)過(guò)濾,1 500 r/min離心10 min,去除上層未消化的脂肪組織及油脂,沉淀重懸,DMEM洗3次.用含體積分?jǐn)?shù)為10%胎牛血清、100 U/mL 青霉素、100 U/mL鏈霉素的高糖DMEM重懸,以1×104~5×104mL-1細(xì)胞密度接種至六孔板中.放入37 ℃、體積分?jǐn)?shù)為5 % CO2培養(yǎng)箱中培養(yǎng),24 h后首次半量換液,之后每3 d換液.細(xì)胞達(dá)80%融合后,用0.25%胰酶消化,1∶3傳代接種.
1.4 雞AMSCs的生長(zhǎng)曲線測(cè)定
以第3代細(xì)胞為標(biāo)本,制備單細(xì)胞懸液,調(diào)整密度為1×104mL-1,接種于96孔板,每孔100 μL.24 h后,每天固定時(shí)間取5孔加入CCK- 8溶液10 μL,置37 ℃培養(yǎng)箱孵育2 h.用酶聯(lián)免疫檢測(cè)儀以450 nm波長(zhǎng)檢測(cè)各孔光密度值(D450 nm).
1.5 雞AMSCs特異性標(biāo)記物的RT-PCR鑒定
選擇生長(zhǎng)良好的第3代細(xì)胞接種于六孔板,待細(xì)胞融合達(dá)80%后,使用Trizol法提取總RNA,反轉(zhuǎn)錄成cDNA,用于PCR擴(kuò)增.從NCBI中查詢CD29、CD44、CD71、CD34、CD45基因序列進(jìn)行片段擴(kuò)增.引物由杰瑞生物技術(shù)服務(wù)有限公司合成.引物序列、產(chǎn)物大小見(jiàn)表1.
PCR反應(yīng)體系20 μL:10×PCR Buffer 2.5 μL,Taq酶0.1 μL,dNTP mix 2 μL,ddH2O 10.9 μL,上、下游引物各1 μL,cDNA 2.5 μL.PCR反應(yīng)程序:95 ℃預(yù)變性5 min;95 ℃ 變性30 s,最佳退火溫度57~62 ℃ 45 s,72 ℃ 延伸45 s,30個(gè)循環(huán);72 ℃延伸1 min,產(chǎn)物4 ℃保存.取PCR產(chǎn)物5 μL和1 μL Loding Buffer混勻,用質(zhì)量濃度為20 g/L的瓊脂糖凝膠進(jìn)行電泳,用紫外透射儀檢測(cè)目的基因的表達(dá)情況.
1.6 雞AMSCs向脂肪細(xì)胞和成骨細(xì)胞的誘導(dǎo)及鑒定
1.6.1 成脂分化誘導(dǎo) 取第3代雞AMSCs接種于24孔板,待細(xì)胞融合達(dá)80%后,改用成脂分化誘導(dǎo)培養(yǎng)基(含高糖DMEM,體積分?jǐn)?shù)為10% 胎牛血清,1 μmol/L地塞米松,0.1 mmol/L吲哚美辛,0.5 mmol /L異丁基甲基黃嘌呤,10 μg/mL胰島素,100 U/mL青霉素,100 μg/mL鏈霉素)誘導(dǎo)3周,每3 d換液1次,對(duì)照組加普通培養(yǎng)液.鏡下觀察細(xì)胞形態(tài)變化,3周后吸出誘導(dǎo)培養(yǎng)基,PBS清洗2次,用體積分?jǐn)?shù)為4%的多聚甲醛固定10 min,油紅O染色30 min,鏡檢、拍照.
1.6.2 成骨分化誘導(dǎo) 取第3代雞AMSCs接種于24孔板,待細(xì)胞融合達(dá)80%后,改用成骨分化誘導(dǎo)培養(yǎng)基(含高糖DMEM,體積分?jǐn)?shù)為10% 胎牛血清,0.1 μmol /L地塞米松,300 μmol /L抗壞血酸,10 mmol /Lβ-甘油磷酸鈉)誘導(dǎo)4周,每3 d換液1次,對(duì)照組加普通培養(yǎng)液.鏡下觀察細(xì)胞形態(tài)變化,4周后吸出誘導(dǎo)培養(yǎng)基,PBS清洗2次,用體積分?jǐn)?shù)為4%的多聚甲醛固定30 min,茜素紅S染色10 min,鏡檢、拍照.
表1 RT-PCR檢測(cè)引物Tab.1 Primer sequences used in RT-PCR
1.6.3 堿性磷酸酶活性檢測(cè) 取第3代細(xì)胞,以每孔1×104的密度接種于六孔板中,分別成骨分化誘導(dǎo)3、5、7、9、14 d后,按堿性磷酸酶活性檢測(cè)試劑盒要求進(jìn)行檢測(cè).
1.6.4 RT-PCR檢測(cè)過(guò)氧化物酶體增殖物激活受體基因γ(PPARγ)、脂肪酸基因(FAS)、堿性磷酸酶基因(ALP)和骨形態(tài)發(fā)生蛋白基因(BMP2)mRNA的表達(dá) 取第3代細(xì)胞,以每孔1×104的密度接種于六孔板中,分別成骨、成脂分化誘導(dǎo)1、2、4周后,利用RT-PCR方法檢測(cè)脂肪細(xì)胞、成骨細(xì)胞特異性基因的表達(dá)情況,即成脂分化誘導(dǎo)過(guò)程中試驗(yàn)組與對(duì)照組PPARγ和FASmRNA的表達(dá)情況,成骨分化誘導(dǎo)過(guò)程中試驗(yàn)組與對(duì)照組ALP、BMP2 mRNA的表達(dá)情況.從NCBI中查詢PPARγ、FAS、ALP、BMP2基因序列進(jìn)行片段擴(kuò)增.引物由杰瑞生物技術(shù)服務(wù)有限公司合成.引物序列、產(chǎn)物大小見(jiàn)表1.
1.6.5 統(tǒng)計(jì)學(xué)分析 試驗(yàn)數(shù)據(jù)采用SPSS 18.0軟件進(jìn)行單因素方差分析和Duncan’s 法進(jìn)行各組間組內(nèi)多重比較,以P<0.05作為差異性顯著判斷標(biāo)準(zhǔn).
2.1 形態(tài)學(xué)觀察
倒置顯微鏡下,剛接種的原代細(xì)胞呈橢圓形(圖1A)懸浮于培養(yǎng)基中,24 h后可見(jiàn)少量貼壁細(xì)胞,細(xì)胞多為單個(gè),形態(tài)呈三角形、梭形,此時(shí)第1次換液,換液后2~3 d,可見(jiàn)數(shù)個(gè)大小不等的細(xì)胞克隆,長(zhǎng)梭形外觀,7~9 d細(xì)胞集落相互融合超過(guò)80%(圖1B)、呈漩渦狀或放射狀.第7天可第1次傳代,經(jīng)胰酶消化后的AMSCs呈圓形,傳代6 h內(nèi)完全貼壁伸展,呈成纖維細(xì)胞樣形態(tài).
2.2 雞AMSCs的生長(zhǎng)曲線
雞AMSCs生長(zhǎng)曲線形態(tài)呈“S”形.由生長(zhǎng)曲線可見(jiàn)雞AMSCs增殖過(guò)程經(jīng)歷了潛伏期、對(duì)數(shù)期以及平臺(tái)期,在22~34 h 進(jìn)入快速增殖期,約60 h進(jìn)入對(duì)數(shù)生長(zhǎng)期,第6天之后細(xì)胞生長(zhǎng)速度減緩,進(jìn)入平臺(tái)期.表明體外培養(yǎng)的雞AMSCs能夠進(jìn)行自我更新和增殖,易于進(jìn)行體外擴(kuò)增培養(yǎng)(圖2).
A:剛分離的原代細(xì)胞;B: 培養(yǎng)7 d的原代細(xì)胞
Fig.1 Chicken adipose-derived mesenchymal stem cells cultured for different periods
圖2 雞脂肪源間充質(zhì)干細(xì)胞的生長(zhǎng)曲線
Fig.2 Growth curve of chicken adipose-derived mesenchymal stem cells
2.3 雞AMSCs特異性標(biāo)記物的RT-PCR鑒定
參考目前文獻(xiàn)[8]報(bào)道的間充質(zhì)干細(xì)胞普遍表達(dá)的基因,從NCBI 收錄的信息中查詢到了3種已提交的雞的基因序列CD29、CD44和CD71.利用這3條基因序列設(shè)計(jì)了特異性引物進(jìn)行RT-PCR擴(kuò)增.試驗(yàn)結(jié)果(圖3)表明分離培養(yǎng)的AMSCs均表達(dá)有上述3種基因.
2.4 雞AMSCs的成骨分化誘導(dǎo)
在成骨誘導(dǎo)過(guò)程中對(duì)照組細(xì)胞形態(tài)無(wú)明顯改變,未見(jiàn)鈣沉積.試驗(yàn)組成骨分化時(shí)細(xì)胞形態(tài)明顯改變,7 d后可見(jiàn)部分細(xì)胞由長(zhǎng)梭形逐漸變?yōu)槎嘟切?,?xì)胞聚集,細(xì)胞匯合后呈多層重疊生長(zhǎng),細(xì)胞局部堆積成灶狀,14 d后可以觀察到類似鈣結(jié)節(jié)的物質(zhì)出現(xiàn),隨著誘導(dǎo)時(shí)間的延長(zhǎng),鈣鹽沉積增加,21 d后進(jìn)行茜素紅S染色可見(jiàn)紅色鈣結(jié)節(jié)(圖4).ALP活性檢測(cè)顯示對(duì)照組與試驗(yàn)組差異顯著(P<0.05),試驗(yàn)組的ALP活性隨時(shí)間的變化明顯增高,而對(duì)照組細(xì)胞的ALP活性變化不明顯(表2).RT-PCR結(jié)果顯示,與對(duì)照組相比,成骨誘導(dǎo)14和28 d后,ALPmRNA和BMP2 mRNA表達(dá)量均增高(P<0.05)(圖5 A、5B);相較于誘導(dǎo)14 d時(shí),誘導(dǎo)28 d時(shí)ALPmRNA與BMP2 mRNA水平亦明顯增加(P<0.05).
M: DNA marker DL 500;1:CD29, 154 bp;2:CD44, 178 bp;3:CD71, 116 bp.
圖3 雞脂肪源間充質(zhì)干細(xì)胞特異性標(biāo)記物的RT-PCR檢測(cè)
Fig.3 Specific markers of chicken adipose-derived mesenchymal stem cells by RT-PCR detection
圖4 雞脂肪源間充質(zhì)干細(xì)胞的成骨誘導(dǎo)
Fig.4 Osteogenic inductions of chicken adipose-derived mesenchymal stem cells
表2 雞脂肪源間充質(zhì)干細(xì)胞成骨分化過(guò)程中的ALP活性1)Tab.2 ALP activities during osteogenic differentiation of chicken adipose-derived mesenchymal stem cells U·g-1·L-1
*:與對(duì)照組相比差異顯著(P<0.05, Duncan’s法);▲:與誘導(dǎo)中期相比差異顯著(P<0.05, Duncan’s法).
A:ALPmRNA的相對(duì)表達(dá)量;B:BMP2 mRNA的相對(duì)表達(dá)量.
圖5 雞脂肪源間充質(zhì)干細(xì)胞成骨分化過(guò)程中基因表達(dá)的變化(通過(guò)條帶灰度值比較)
Fig.5 Changes of gene expression during osteogenic differentiation of chicken adipose-derived mesenchymal stem cells
2.5 雞AMSCs的成脂分化誘導(dǎo)
在成脂分化誘導(dǎo)過(guò)程中對(duì)照組細(xì)胞形態(tài)無(wú)明顯變化,油紅O染色未見(jiàn)胞質(zhì)有明顯著色.試驗(yàn)組細(xì)胞在脂肪細(xì)胞誘導(dǎo)液加入5 d后,細(xì)胞體積增大,此后胞質(zhì)中有小的圓形透亮的脂滴出現(xiàn),隨著誘導(dǎo)時(shí)間的延長(zhǎng),脂滴逐漸增多,互相融合,體積增大,折光性增強(qiáng).第7天見(jiàn)較多脂滴且環(huán)狀排列(圖6 A),第20天油紅O染色呈陽(yáng)性(圖6 B);RT-PCR結(jié)果顯示,雞AMSCs成脂誘導(dǎo)7 d和14 d后與對(duì)照組相比,PPARγ和FAS的mRNA表達(dá)量均明顯升高(P<0.05)(圖7),與誘導(dǎo)7 d時(shí)相比,誘導(dǎo)14 d時(shí)PPARγ和FAS的mRNA 水平亦明顯增加(P<0.05).說(shuō)明AMSCs在成脂誘導(dǎo)體系下向脂肪細(xì)胞分化.
A:成脂分化誘導(dǎo)7 d的細(xì)胞形態(tài);B:成脂分化誘導(dǎo)20 d油紅O染色的細(xì)胞形態(tài).
*:與對(duì)照組相比差異顯著(P<0.05, Duncan’s法);▲:與誘導(dǎo)中期相比差異顯著(P<0.05, Duncan’s法). A: FAS mRNA的相對(duì)表達(dá)量;B:PPARγ mRNA的相對(duì)表達(dá)量
雞是一種重要的模式動(dòng)物,是全基因組測(cè)序的家禽之一,可用于胚胎學(xué)、免疫學(xué)、腫瘤學(xué)、細(xì)胞生物學(xué)、病毒學(xué)、基因調(diào)控等研究.隨著干細(xì)胞的廣泛應(yīng)用,繼胚胎干細(xì)胞之后,臍帶血來(lái)源的間充質(zhì)干細(xì)胞、骨髓間充質(zhì)干細(xì)胞等成體干細(xì)胞已成為創(chuàng)傷醫(yī)學(xué)、遺傳醫(yī)學(xué)、再生醫(yī)學(xué)、組織工程學(xué)等多種學(xué)科的研究熱點(diǎn).2001年Zuk等[9]分離獲得了AMSCs.此后,許多試驗(yàn)證明AMSCs體外定向誘導(dǎo)可以向心肌細(xì)胞、成骨細(xì)胞、脂肪細(xì)胞、軟骨細(xì)胞和神經(jīng)細(xì)胞等方向分化[10-12],以及具有低免疫原性和低移植排斥性[3,13].AMSCs所具備的這些優(yōu)點(diǎn)使其成為干細(xì)胞研究的熱點(diǎn)和多種學(xué)科的一個(gè)種子細(xì)胞.雖然目前的研究已經(jīng)比較深入,但對(duì)雞AMSCs的研究甚少.因此,高效分離培養(yǎng)及鑒定雞AMSCs方法的建立顯得十分有價(jià)值.
本試驗(yàn)通過(guò)酶消化法分離、提取AMSCs.經(jīng)過(guò)體外培養(yǎng)、貼壁篩選及純化,建立了一種簡(jiǎn)單高效的分離培養(yǎng)雞AMSCs的方法.結(jié)果顯示,適當(dāng)提高膠原酶濃度及延長(zhǎng)消化時(shí)間有助于纖維結(jié)締組織與脂肪組織的分離,能增加原代細(xì)胞的收獲數(shù)量.此外,原代培養(yǎng)雞AMSCs的脂肪來(lái)源十分重要,與皮下脂肪相比內(nèi)臟脂肪分離獲得雞AMSCs的數(shù)量更多、純度更高.分離純化的雞AMSCs貼壁生長(zhǎng),形態(tài)上表現(xiàn)為成纖維細(xì)胞樣.第1次傳代后4~5 d可進(jìn)行再次傳代,以后每3 d按1∶3 傳代1次,可連續(xù)傳代10次,細(xì)胞增殖速度及表型無(wú)明顯變化.據(jù)報(bào)道,來(lái)源于雞真皮的MSCs可連續(xù)傳代15次[14],而來(lái)源于雞臍帶的MSCs可連續(xù)傳代30次[15],與本試驗(yàn)結(jié)果有差異,可能是由于組織來(lái)源和年齡的不同,而造成傳代能力不一樣.從生長(zhǎng)曲線可以看出,雞AMSCs有著較快的增殖速度,活性比較高.RT-PCR檢測(cè)細(xì)胞特異性標(biāo)記物,其中CD29、CD44及CD71的表達(dá)呈陽(yáng)性,而造血干細(xì)胞表面標(biāo)志CD45、CD34的表達(dá)呈陰性,與文獻(xiàn)報(bào)道的AMSCs表型相符[8,15].從這些結(jié)果可判斷該細(xì)胞為間充質(zhì)干細(xì)胞,排除了造血干細(xì)胞來(lái)源的可能.
大量研究表明AMSCs在體外經(jīng)過(guò)化學(xué)誘導(dǎo)后,能分化為具有大量脂滴的脂肪細(xì)胞.PPARγ基因特異性表達(dá)于脂肪細(xì)胞中,且隨著脂肪細(xì)胞的分化其表達(dá)量上調(diào),是脂肪細(xì)胞分化過(guò)程中的決定性因子[16].在3T3-L1和MEFs細(xì)胞基因敲除試驗(yàn)中,PPARγ基因被敲除可導(dǎo)致其成脂分化能力的喪失[17].Michalik等[18]研究表明,PPARγ是脂肪細(xì)胞分化的相關(guān)基因,可以促進(jìn)脂滴的聚集.FAS在脂肪細(xì)胞分化的后期高表達(dá),參與脂肪細(xì)胞中脂滴的生成,同樣是脂肪細(xì)胞分化過(guò)程中的決定性因子[19].在本試驗(yàn)中,從雞脂肪組織中獲得的MSCs,經(jīng)胰島素、吲哚美辛、地塞米松和3-異丁基-1-甲基黃嘌呤誘導(dǎo)后分化為脂肪細(xì)胞,細(xì)胞內(nèi)有脂滴形成,RT-PCR結(jié)果顯示PPARγ基因和FAS基因的mRNA表達(dá)量升高.以上結(jié)果說(shuō)明,本試驗(yàn)中分離獲得的雞AMSCs具有誘導(dǎo)分化為脂肪細(xì)胞的潛能.ALP的活性與成骨細(xì)胞的分化相關(guān),活性增高表明細(xì)胞處于高分化狀態(tài),因此可將ALP活性的增高作為體外試驗(yàn)中成骨細(xì)胞分化的指標(biāo)[20- 21].BMP2是特異性的骨生長(zhǎng)因子,可以增加細(xì)胞內(nèi)ALP活性及ALPmRNA的量,使其定向分化為成骨細(xì)胞[22].在本試驗(yàn)中,從雞脂肪組織中獲得的MSCs,經(jīng)抗壞血酸、β-甘油磷酸鈉和地塞米松誘導(dǎo)后,ALP活性增加,細(xì)胞基質(zhì)發(fā)生鈣化,同時(shí)BMP2和ALP的mRNA表達(dá)升高,且隨著時(shí)間的延長(zhǎng)其表達(dá)量增加,促使AMSCs向成骨細(xì)胞分化.以上結(jié)果說(shuō)明,本試驗(yàn)中分離獲得的雞AMSCs具有誘導(dǎo)分化為成骨細(xì)胞的潛能.
總之,我們建立了一種體外分離、培養(yǎng)雞AMSCs的方法,并對(duì)該細(xì)胞進(jìn)行了比較全面的鑒定,為雞AMSCs的進(jìn)一步研究奠定了基礎(chǔ).
[1] LE BLANC K, TAMMIK C, ROSENDAHL K, et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells[J]. Exp Hematol, 2003, 31(10): 890- 896.
[2] TSE W, PENDLETON J, BEYER W, et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: Implications in transplantation[J]. Transplantation, 2003, 75(3): 389-397.
[3] GIMBLE J, KATZ A, BUNNELL B. Adipose-derived stem cells for regenerative medicine[J]. Circ Res, 2007, 100(9): 1249-1260.
[4] LIN Chingshwun, XIN Zhongcheng, DENG Chunhua, et al. Defining adipose tissue-derived stem cells in tissue and in culture[J]. Histol Histopathol, 2010, 25(6): 807- 815.
[5] SENGENES C, MIRANVILLE A, MAUMUS M, et al. Chemotaxis and differentiation of human adipose tissue CD34/CD31 progenitor cells: Role of stromal derived factor-1 released by adipose tissue capillary endothelial cells[J]. Stem Cells, 2007, 25(9): 2269- 2276.
[6] SEO M, SUH S, BAE Y, et al. Differentiation of human adipose stromal cells into hepatic lineageinvitroandinvivo[J]. Biochem Biophys Res Commun, 2005, 328 (1): 258- 264.
[7] FRIEDENSTEIN A, CHAILAKHJAN R, LALYKINA K. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells[J]. Cell Tissue Kinet, 1970,3(4):393- 403.
[8] PHILIPPE B, BRUCE A, BUNNELL, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science(IFATS) and The International Society for Cellular Therapy(ISCT)[J]. Cytotherapy, 2013, 15(6): 641- 648.
[9] ZUK P A, ZHU Min, MIZUNO H, et al. Multilineage cells from human adipose tissue: Implications for cell based therapies[J]. Tissue Eng, 2001, 7 (2):211- 228.
[10]MICHAEL P, PATRICK C, LYNNE W, et al. Isolating adipose-derived mesenchymal stem cells from lipoaspirate blood and saline fraction[J]. Organogenesis, 2010, 6(1):11-14.
[11]PRUNET M, COUSIN B, CATON D, et al. From heterogeneity to plasticity in adipose tissues: Site specific differences[J]. Exp Cell Res, 2006, 312(6): 727-736.
[12]GRONTHOS S, FRANKLIN D, LEDDY H, et al. Surface protein characterization of human adipose tissue-derived stromal cells[J]. Cell Physiol, 2001, 189(1):54- 63.
[13]CROP M, BAAN C, KOREVAAR S, et al. Human adipose tissue-derived mesenchymal stem cells induce explosive T-cell proliferation[J]. Stem Cell Dev, 2010,19(12):1843-1853.
[14]GAO Yuhua, BAI Chunyu, XIONG Hui, et al. Isolation and characterization of chicken dermis-derived mesenchymal stem/progenitor cells[J/OL]. Biomed Res Int, 2013,[2013-12- 27].http:∥dx.doi.org/10.1155/2013/626258.
[15]BAI Chunyu, LI Xiangcheng, HOU Lingling, et al. Biological characterization of chicken mesenchymal stem/progenitor cells from umbilical cord Wharton’s jelly[J]. Mol Cell Biochem, 2013, 376(1/2):95-102.
[16]REN Delin, COLLINGWOOD T N, REBAR E J, et al. PPAR gamma knockdown by engineered transcription factors: Exogenous PPAR gamma 2 but not PPAR gamma 1 reactivates adipogenesis[J]. Genes Dev, 2002, 16(1):27-32.
[17]BRUN R P, SPIEGELMAN B M. PPAR gamma and the molecular control of adipogenesis[J]. J Endocrinol, 1997, 155(2):217- 218.
[18]MICHALIK L, AUWERX J, BERGER J P, et al. International union of pharmacology: LXI: peroxisome proliferator-activated receptors[J]. Pharmacol Rev, 2006, 58(4):726-741.
[19]盧環(huán)宇,韋夢(mèng)影,張更,等. 脂肪酸合酶與脂肪酸代謝及細(xì)胞因子的關(guān)系[J]. 細(xì)胞與分子免疫學(xué)雜志,2012,28(11):1126-1128.
[20]MALAVAL L, MODROWSKI D, GUPTA A K. Cellular expression of bone-related proteins duringinvitroosteogenesis in rat bone marrow stromal cell cultures[J]. Cell Physiol, 1994, 158(3):555-572.
[21]GORI F, THOMAS T, HICOK K C, et al. Differentiation of human marrow stromal precursor cells: Bone morphogenetic protein- 2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation[J].J Bone Miner Bes, 1999,14(9):1522-1535.
[22]LIU P, OYAJOBI B O, RUSSELL R G G. Regulation of osteogenic differentatiation of human bone marrow stromal cells: Interaction between transforming growth factor-βand 1,25 (OH)2vitamin D3invitro[J]. Calcif Tissue Int, 1999, 65(2):173-180.
【責(zé)任編輯柴 焰】
Isolationandidentificationofchickenadipose-derivedmesenchymalstemcells
TANG Xiaohong, YE Yaqiong, LI Daotong, MA Haoran, OUYANG Dan, CHEN Jian, MA Yongjiang, ZHANG Yuan, LI Yugu
(College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China)
【Objective】 A method for isolation and identification of chicken adipose-derived mesenchymal stem cells(AMSCs) was established. 【Method】 AMSCs from Tianlu yellow chickens were obtained by type I collagenase digestion. CCK- 8 was used to detect cell activities. RT-PCR was used to examine their specific marker. Whereas their adipogenic and osteogenic differentiations were chemically induced.【Result and conclusion】 The primary cultured and subcultured cells showed fibroblast-like morphology, and primary AMSCs were subcultured to passage 10 without any change in activities. The growth curves were typically sigmoidal. RT-PCR assays showed that the specific markers of AMSCs,CD29,CD44 andCD71, were positive, butCD34 andCD45 characterized by hematopoietic stem cells were negative. In addition, AMSCs can successfully differentiated into osteoblasts and adipocytes in different media. Lipid droplets formation was recorded during adipogenic induction, with the cells being positive for oil red O staining, and mRNA expression of peroxisome proliferator-activated receptor-γ(PPARγ) and fatty acid(FAS)was increased. During osteogenic induction, alizarin red staining showed that the calcium nodus was positive, and there was significant difference in alkaline phosphatase (ALP) activities between the test and control group (P<0.05), mRNA expression ofALPand bone morphogenetic protein- 2 (BMP2) also increased. This research suggests that the mesenchymal stem cells isolated from chicken adipose tissues are multi-potential and may provide the possibility for future clinical application.
chicken; mesenchymal stem cell; isolation; identification; differentiation induction
2014- 01- 02優(yōu)先出版時(shí)間2014- 07- 17
優(yōu)先出版網(wǎng)址:http:∥www.cnki.net/kcms/doi/10.7671/j.issn.1001411X.2014.05.001.html
唐小洪(1990—),女,碩士研究生,E-mail:776813175@qq.com;通信作者:李玉谷(1963—),男,教授,博士,E-mail:liyugu@scau.edu.cn
國(guó)家自然科學(xué)基金(31272519)
唐小洪,葉亞瓊,李道通,等.雞脂肪源間充質(zhì)干細(xì)胞的分離與鑒定[J].華南農(nóng)業(yè)大學(xué)學(xué)報(bào),2014,35(5):1- 7.
S831.2
A
1001- 411X(2014)05- 0001- 07