• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Entropy generation in bypass transitional boundary layer flows*

    2014-06-01 12:30:01GEORGEJosephOWENLandonXINGTao
    關(guān)鍵詞:課本上表達(dá)能力語感

    GEORGE Joseph, OWEN Landon D., XING Tao

    Department of Mechanical Engineering, College of Engineering, University of Idaho, Moscow, Idaho 83843, USA, E-mail: geor6350@vandals.uidaho.edu

    MCELIGOT Donald M.

    University of Idaho, Idaho Falls, Idaho 83402, USA

    CREPEAU John C.

    Department of Mechanical Engineering, College of Engineering, University of Idaho, Moscow, Idaho 83843, USA

    BUDWIG Ralph S.

    University of Idaho, Boise, Idaho 83702, USA

    NOLAN Kevin P.

    Imperial College London, London SW7-28Z, UK

    Entropy generation in bypass transitional boundary layer flows*

    GEORGE Joseph, OWEN Landon D., XING Tao

    Department of Mechanical Engineering, College of Engineering, University of Idaho, Moscow, Idaho 83843, USA, E-mail: geor6350@vandals.uidaho.edu

    MCELIGOT Donald M.

    University of Idaho, Idaho Falls, Idaho 83402, USA

    CREPEAU John C.

    Department of Mechanical Engineering, College of Engineering, University of Idaho, Moscow, Idaho 83843, USA

    BUDWIG Ralph S.

    University of Idaho, Boise, Idaho 83702, USA

    NOLAN Kevin P.

    Imperial College London, London SW7-28Z, UK

    (Received June 22, 2014, Revised September 25, 2014)

    The primary objective of this study is to evaluate the accuracy of using computational fluid dynamics (CFD) turbulence models to predict entropy generation rates in bypass transitional boundary layers flows under zero and adverse pressure gradients. Entropy generation rates in such flows are evaluated employing the commercial CFD software, ANSYS FLUENT. Various turbulence and transitional models are assessed by comparing their results with the direct numerical simulation (DNS) data and two recent CFD studies. A solution verification study is conducted on three systematically refined meshes. The factor of safety method is used to estimate the numerical error and grid uncertainties. Monotonic convergence is achieved for all simulations. The Reynolds number based on momentum thickness, Reθ, skin-friction coefficient,fC, approximate entropy generation rates, S''', dissipation coefficient,dC, and the intermittency, γ, are calculated for bypass transition simulations. All Reynolds averaged Navier-Stokes (RANS) turbulence and transitional models show improvement over previous CFD results in predicting onset of transition. The transition SST -kω 4 equation model shows closest agreement with DNS data for all flow conditions in this study due to a much finer grid and more accurate inlet boundary conditions. The other RANS models predict an early onset of transition and higher boundary layer entropy generation rates than the DNS shows.

    entropy generation, bypass transition, Reynolds averaged Navier-Stokes (RANS), transitional boundary layer, turbulence models

    Introduction

    Entropy is the property that serves as a measure of disorder within a system. Entropy generation therefore causes irreversible loss of energy in fluid flows. Determining and minimizing these losses improves the efficiency of a system[1]. Systems that benefit from the minimization of entropy generation include: cooling systems for electronic devices and nuclear reactors, thermal heat exchangers, and more. Four different mechanisms contribute to entropy generation: Mean and fluctuating heat flux and Mean and fluctuating viscous effects. Steady, unheated, laminar flow has zero fluctuations so the entropy generation occurs only from the viscous losses associated with mean velocity gradients. Bypass transition occurs when freestream vortical disturbances induce transition to turbulence in a boundary layer without the intervention of viscous Tollmien-Schlichting waves[2]. Viscous losses associated with the mean and fluctuating velocity gradients cause entropy generation in bypass transitionalboundary layer flows. Many different methods exist to predict entropy generation in fluid systems.

    Direct numerical simulation (DNS) is a proven tool in elucidating flow physics. DNS completely resolves all of the laminar and turbulent length scales and thus can be used as a numerical benchmark to evaluate the accuracy of simulations using various turbulence models. McEligot et al.[3]analyzed DNS results from two different studies conducted by Spalart[4,5]of turbulent boundary layer flows with zero and favorable pressure gradients with Reθranging from 300 to 1 410. The study found that approximately two-thirds of the entropy generation occurs in the viscous layer of a turbulent boundary layer (defined as+y≈30). The study demonstrated that entropy dissipation is nearly universal within the viscous layer of turbulent boundary layer flows with zero and favorable pressure gradients. The study showed that the methodology developed by Rotta[6]for approximating S''' is inaccurate for the given flow characteristics. McEligot et al.[7]similarly analyzed results from a DNS[8]of turbulent channel flow with zero and favorable pressure gradients. McEligot compared two methods for determining entropy generation. The first method evaluated the fluctuating gradients forming the dissipation term in the turbulent enthalpy equation and the second method evaluated an approximate analogy to laminar flow employing assumed boundary layer (and other) approximations[9]. Both methods predict similar S''values. The second method under-predicted entropy generation in the “l(fā)inear” layer and over-predicted entropy generation in the rest of the viscous layer.

    Another study by McEligot et al.[10]compared the entropy generation predicted from a DNS of turbulent boundary layer flow to the entropy generation predicted from a DNS of channel flow[8,11]. The study demonstrated that the pointwise entropy generation at the boundary of the viscous layer is relatively insensitive for both boundary layer and channel flows with large favorable pressure gradients. The integral over the area of the viscous layer decreased moderately only for boundary layer flows. Walsh and McEligot[12]improved an existing correlation for the dissipation coefficient,dC, using data from multiple DNS studies of low Reθturbulent boundary layer and channel flows with zero and favorable pressure gradients[4,8,13,14]. Walsh et al.[1]analyzed a DNS of bypass transitional boundary layer flows for Reθranging from 115 to 520[15,16]. The study demonstrated that the term for turbulent convection in the turbulent kinetic energy (TKE) balance is significant within the transition region. This is as a consequence of more turbulent energy being produced than dissipated. The study showed that a popular approximation method over-estimates the dissipation coefficient by as much as 17%.

    The study demonstrated that the approach developed by Rotta[6]is more accurate for transitional boundary layers.

    The objective of the current study is to evaluate the accuracy of various turbulence models to predict entropy generation and location of transition within a bypass transitional boundary layer. The commercial CFD software ANSYS FLUENT is employed for simulations. The flow modeled with RANS turbulence model is steady, incompressible, two-dimensional bypass transitional boundary layer flow. The RANS models employed in the study are the -kε model, -kω SST model, RSM model and transitional 4 equation SST -kω model. Quantitative solution verification is conducted using three systematically refined structu-red grids, with the finest grid containing about 10-6grid points. The flow characteristics are compared to the DNS results from Nolan and Zaki[17]and two recent CFD studies by Ghasemi et al.[18,19].

    1. Computational methods

    1.1Turbulence models and numerical methods

    The non-linear Reynolds stress term is closed in the RANS models with the Boussinesq eddy viscosity hypothesis. The displacement thicknessδ*, momentum thicknessθ, corresponding Reynolds numberReθand the Reynolds stresses are calculated as,

    where the variableuiis the velocity along thex,yorzaxis andujis the velocity along an axis different from the direction ofui. This similarly applies toxias the location along a given axisx,yorz. The variableδijin the equation is the Kronecker delta and not the boundary layer thickness. The turbulent kinetic energy,k, is defined as,

    In these equations, not all the variables are constants as is the case for the -kεmodel. The transition SST model couples two additional transport equations with the SST -kωtransport equations. The first additional transport equation is for the intermittency,γ, defined as,

    The onset of transition is controlled by,

    whereReθpis a proprietary empirical correlation for the transition onset andFθtis a function based on the boundary layer correlations. The transport equation for the RSM is,

    1.2High performance computing

    A third-order MUSCL scheme is applied for the momentum and turbulence solvers with the pressurevelocity coupled scheme. A convergence tolerance of 10-10is set for all simulations to ensure the iterative errors are much smaller than the grid errors such that the former can be neglected. Simulations are conducted using several local workstations and on University of Idaho?s HPC computing resource, Big-STEM, using 8-12 core CPU?s. Results are post-processed using Scilab-5.4.1 and Tecplot 360 2013.

    1.3Iterative and statistical convergence

    Statistical convergence of the running mean on the time history of the resistance establishes statistically stationary unsteady solutions[21]. Statistical convergence for the unsteady simulation is determined using the drag coefficient,DC, defined as,

    The drag coefficient is monitored during the simulation. Data are collected once the drag coefficient oscillations around the mean value vary by only 1% of the mean value.

    1.4Solution verification method

    Solution verification is important to estimate the numerical errors and grid uncertainties of a CFD simulation. Numerical errors are due to the numerical solution of the mathematical equations. Aspects of the simulation that cause numerical errors include: discretization, artificial dissipation, incomplete iterative and grid convergence, and computer round-off. To determine numerical errors generally involves performing a sensitivity study by varying the mesh spacing and/or time step size to a smaller value and evaluating the solution differences. HereS1,S2,S3represent the fine, medium, and coarse grid solutions of any variable in the simulations, respectively. The relative percentage difference (δ%) between CFD results and correlation values, represented below asA, is calculated as,

    The solution verification method in place is the factor of safety method[22,23]which requires the use of the following equations with the use of L2 norm for profiles[24],

    where the grid uncertainty,UG, is presented as a percentage of the correlation value or value from the fine grid solution at the same streamwise location. A lower magnitude ofUGusually indicates a better quality of CFD results.

    1.5Analysis method

    However, the flow considered herein is unheated. Hence, the entropy generation occurs only due to the square of the gradients of the mean streamwise velocity. The integral over the boundary layer of the pointwise entropy generation rate provides the entropy generation rate per unit area,

    The dissipation coefficient,Cd, is a dimensionless variable that represents the entropy generation rate per unit area. The correlation by McEligot and Walsh estimate the dissipation coefficient multiplied byReθas,

    Both the displacement thickness and momentum thickness are integrated toδin place of the upper indefinite bound. Fluctuations in bypass transitional flows necessitate additional terms to the entropy generation equations used for laminar flow. These equations are outlined further by Walsh et al.[1].The dimensionless entropy generation rate per unit area for a transitional flow is calculated as,

    whereu',v',w' are the velocity fluctuations in thex,yandzdirections, respectively. The dimensionless form of Eq.(27) is the dissipation coefficient,

    Intermittency is a measure for determining the laminar, transition, and turbulent regions of the flow and is calculated as,

    Fig.1 Mean velocity profile at inlet

    Fig.2 Reynolds normal stress profiles at inlet

    2. Simulation design and verification

    2.1Geometry and flow conditions

    Fig.3 Reynolds shear stress profile at inlet

    Fig.4 Geometry and mesh representation

    Theεandωvalues at the inlet and for all models, are estimated using the equations from the ANSYS FLUENT User?s Guide[25]as,

    While the Reynolds shear stresses are specified directly at the inlet for the RSM. The use of the inlet meanprofiles from DNS in the current study is more accurate boundary conditions compared to those applied by Ghasemi et al.[18]wherein the inlet boundary condition is specified with a constant turbulent intensity of 3% and a turbulent length scale equal to the boundary layer thickness.

    2.2Mesh and simulation table

    The mesh is created in Pointwise v17.0R1. The grid points in the streamwise direction are uniform and the grid points in the plate-normal direction are clustered near the plate surface, as shown in Fig.4. To assign more grid points toward the wall ensures that enough grid points exist within the boundary layer to capture the high velocity gradients in the boundary layer. A medium mesh and a coarse mesh were created for the solution verification study using a constant grid refinement ratio1/22. Figure 4 shows a schematic representation of the domain with an exaggerated curvature of top wall. The figure is a representation of an adverse pressure gradient geometry and mesh. The coordinate axis and boundaries are labeled.

    A general overview of the different simulations performed in this study is contained in Table 1.2.3Solution verification

    Table 1 Simulation design table

    Table 2 Solution verification for bypass transitional boundary layer flow

    The results from the solution verification study for thek-ωmodel are shown in Table 2. The distance to the asymptotic range (PG=1) is shorter forReθthanCf. Monotonic convergence is achieved. The grid uncertainty is below 1.6%S1for both variables. The solution verification study shows that the bypass transition results are independent of the grid resolution and thus all results are presented on the fine grid.

    3. Results and discussion

    The bypass transition simulation results are compared with the DNS results from Nolan and Zaki[17]. Additionaly, the ZPG results are compared to the CFD results by Ghasemi et al.[18]and APG results with Ghasemi et al.[19]. The current simulations employ a more accurate inlet conditions and much finer mesh than the simulations by Ghasemi et al. Thek,ω,z, profiles and Reynolds stress values are prescribed at the inlet, depending on the model in use, to match the conditions of the DNS simulation. Ghasemi et al. applied a velocity inlet boundary with a specified turbulent intensity of 3% and a turbulent length scale, whereas the mean velocity and turbulent structure profiles obtained from DNS[17]data are specified at the inlet in the current study. Additionally, this study also examines both CFD predictions for entropy generation rates compared to that post-processed from DNS results.

    Fig.5 Reθversus Re1x/2

    3.1Zero pressure gradient (ZPG)

    Fig.6 Reθversus1/2xRe (detailed view near inlet)

    Figure 7 and Fig.8 show how Cfand Cdvary with Re1x/2, respectively. The dissipation coefficient, Cd, provides a measure of the pointwise entropy generation rate, S''' (in non-dimensional form), within the boundary layer for ZPG case as described earlier. The DNS data has a linear slope in the turbulent regime. The laminar region is the initial downward slope, the rise indicates the transition region, and the small oscillations downstream are within the fully turbulent region. Figure 7 also shows the analytical laminar and turbulent lines. Similar to the trends seen in Fig.5, the k-ε model and RSM transition to turbulent profile very close to the inlet and remain turbulent throughout the flow field.

    Fig.7 Cfversus Re1x/2

    Fig.8 Cdversus Re1x/2

    In Fig.7, the k-ε model shows an initial laminar profile near the inlet, similar to DNS, before transition occurs downstream. The k-ω model shows a laminar region until Re1x/2=215, where the onset of transition is predicted by the model. The k-ω model shows close agreement of predicted Cfto the DNS data from the inlet until the onset of transition and also in the turbulent region but transition occurs upstream compared to the k-ω 4 equation model and the DNS data. The k-ω 4 equation model shows better agreement with the DNS data for both Cdand Cf. The Cdand Cfpredicted by the k-ω 4 equation model is very accurate compared to the DNS data until the transitional point in DNS at Re1x/2=450. The model, however, over predicts the location of the onset of transition which occurs much later than DNS at Re1x/2=575.

    Fig.9 γ versus η

    Fig.10 Cfversus Re1x/2for various RANS models for APGweak

    Figure 9 shows that all turbulence models examined in this study predict transition onset (γ≤0.05) earlier than the DNS data. The k-ω, k-ε, and RSM?s demonstrate very similar trends with steeper slopes than the k-ω 4 equation models. The k-ω 4 equation model is the closest to the DNS data in predicting the transition onset location but over-predicts γ by as much as 10% in the fully turbulent region. All models tend to predict a much steeper slope in the transition region compared to the much smoother slope in the DNS data.

    3.2Adverse pressure gradient (APG)

    The bypass transition simulation results for APG cases are also compared to the DNS results from Nolan and Zaki[17]and the CFD results by Ghasemi et al.[19]. The APG results are evaluated using the skinfriction coefficient,fC, and the approximate pointwise entropy generation rate, S'''.

    3.2.1 APGweak: β=-0.08

    The under prediction of Cfin the fully turbulent regime compared to Ghasemi et al.[19]is due to the differences in the inlet boundary conditions specified. Specifying a constant turbulent intensity of 3% and a specific length scale rather a mean profile for turbulent structures as in the simulations by Ghasemi et al. could result in over prediction of fully turbulent regime compared to the actual capabilities of each RANS model.

    Fig.11 S''' versus y+for various RANS models for APGweaknear location of transition shown by values of Re1x/2

    Figure 11 shows the comparison of approximate point-wise entropy generation rates, S''', as predicted by each model within the boundary layer plotted normal to the wall in terms of y+. Since different models predict varying locations of transition, the entropy generation rate (S''') comparison is made at different locations along the flat plate for each model. These locations (indicated by Re1x/2values) are selected at a point near the onset of transition as predicted by each model.

    Figure 11(a) shows the -kε and RSM model and Figure 11(b) shows the -kω SST and transitional -kω 4 equation models compared with results from DNS and Ghasemi. As seen from the figures the predictions from the current study are more accurate in terms of trends, magnitude and location than from Ghasemi for all corresponding models compared to DNS values. This is a direct result of better resolution within the boundary layer using more grid points near the wall and keeping y+<1 at the first grid point away from the plate. The predictions from the k-ε, RSM and k-ω SST are considerably closer to DNS values than Ghasemi et al.. The transitional k-ω 4 equation model is the most accurate among all models although it slightly over-predicts the magnitude of S'''.

    Fig.12 Cfversus Re1/2xfor various RANS models APGStrong

    3.2.2 APGstrong: β=-0.14

    小學(xué)語文教學(xué)不應(yīng)該只局限于課本上幾篇簡單的文章和詩歌,老師應(yīng)該多鼓勵學(xué)生們進(jìn)行課外的閱讀來輔助語文學(xué)習(xí),只要是文字優(yōu)美的符合小學(xué)生認(rèn)知規(guī)律和能力都可以鼓勵學(xué)生進(jìn)行廣泛閱讀,通過課外閱讀他們也可以體會到文字的魅力也可以有效地提升學(xué)生們的語感,間接性的提高學(xué)生們的口語表達(dá)能力,同時也能為以后學(xué)生的寫作打下堅實(shí)的閱讀和寫作基礎(chǔ)。

    Figure 12 shows the comparison of Cfpredicted from various models along the length of the flat plate versus Re1/2xon a log-log scale. The DNS[17]results show that Cfdeviates from the Blasius laminar approximation at approximately Re1x/2=180 and predicts a lower Cfvalue in the laminar region as seen in the previous APGweakcase.

    The stronger adverse pressure gradient causes an earlier shift on predicted Cffrom the analytical app-roximation. The DNS predicts the onset of transition at about Re1x/2=330 and fully developed turbulent flow beyond Re1x/2=450. The Stronger APG also shows an increase the maximum magnitude of S'''from 1.1 in the APGweakcase to a value of 1.5.

    Figure 12(a) show the k-ε and RSM model and Fig.12(b) shows the k-ω SST and transitional k-ω 4 eqation models. The k-ε, RSM, k-ω SST and k-ω 4 equation models predict onset of transition at=170, 195, 210 and 290, respectively. The k-ε model transitions to fully turbulent flow near the inlet for the current study as in the study by Ghasemi et al.. This may be a result of the stronger pressure gradient being imposed on the flow and thereby indicating the models incapability in handling strong adverse pressure gradients effectively. The RSM, k-ω SST and k-ω 4 equation models follow similar trends as seen in the APGweakcase with better comparison to DNS values than that by Ghasemi et al.[19].

    Fig.13 S''' versus y+for various RANS models APGStrong

    Following the trend seen in previous results the models in current study under predict magnitude of Cfin the fully turbulent regime. Possible causes for such under prediction maybe as noted earlier in APGWeakresults.

    Figure 13 shows the comparisons of predicted approximate point-wise entropy generation rate S'''within the boundary layer normal to the wall near the location of transition point in terms of y+. It is noteworthy that, since the k-ε model transitions near the inlet under the strong adverse pressure gradient, Fig.13(a) shows a turbulent profile of predicted entropy generation rate at Re1x/2=175 for this model. The RSM, k-ω SST and k-ω 4 equation models predict more accurate comparable profiles for S''' near their transition location than the models by Ghasemi et al..

    4. Conclusions and future work

    In the future, the capability of using differentLES models to predict entropy generation rates for bypass transitional flows with and without streamwise pressure gradients will be evaluated. Sensitivity of LES models to grid resolution and time step size will be examined following the recent general framework for LES verification and validation[26,27]. The use of unsteady hydrodynamic instabilities in velocity and turbulent structure profiles at the inlet may lead to more accurate CFD predictions for bypass transitional boundary layer flows for both RANS and LES models.

    Acknowledgements

    This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0004751. The authors would also like to thank Dr. Tamer Zaki, Dr. Kevin Nolan, and Dr. Edmond Walsh for meaningful contributions.

    [1] WALSH E. J., MCELIGOT D. M. and BRANDT L. et al. Entropy generation in a boundary layer transitioning under the influence of freestream turbulence[J]. Jour- nal of Fluids Engineering, 2011, 133(6): 061203.

    [2] ZAKI T. A., DURBIN P. A. Mode interaction and the bypass route to transition[J]. Journal of Fluid Mecha- nics, 2005, 531(1): 85-111.

    [3] MCELIGOT D. M., WALSH E. J. and LAURIEN E. et al. Entropy generation in the viscous parts of turbulent boundary layers[J]. Journal of Fluids Engineering, 2008, 130(6): 061205.

    [4] SPALART P. R. Direct simulation of a turbulent boundary layer up to Reθ=1410[J]. Journal of Fluid Mechanics, 1988, 187(1): 61-98.

    [5] SPALART P. R. Numerical study of sink-flow boundary layers[J]. Journal of Fluid Mechanics, 1986, 172(1): 307-328.

    [6] ROTTA J. Turbulent boundary layers in incompressible flow[J]. Progress in Aerospace Sciences, 1962, 2(1): 1-95.

    [7] MCELIGOT D. M., WALSH E. J. and LAURIEN E. et al. Entropy generation in the viscous layer of a turbulent channel flow[R]. Idaho National Laboratory (INL), 2006.

    [8] ABE H., KAWAMURA H. and MATSUO Y. Direct numerical simulation of a fully developed turbulent channel flow with respect to the reynolds number dependence[J]. Journal of Fluids Engineering, 2001, 123(2): 382-393.

    [9] KRAUSE E., OERTEL H. J. and SCHLICHTING H. Boundary-layer theory[M]. New York, USA: Springer, 2004.

    [10] MCELIGOT D. M., NOLAN K. P. and WALSH E. J. Effects of pressure gradients on entropy generation in the viscous layers of turbulent wall flows[J]. International Journal of Heat and Mass Transfer, 2008, 51(5-6): 1104-1114.

    [11] TSUKAHARA T., SEKI Y. and KAWAMURA H. et al. DNS of turbulent channel flow at very low Reynolds numbers[C]. Proceedings of the 4th International Symposium on Turbulence and Shear Flow Pheno- mena. Williamsburg, USA, 2005, 935-940.

    [12] WALSH E. J., MCELIGOT D. M. A New correlation for entropy generation in low Reynolds number turbulent shear layers[J]. International Journal of Fluid Me- chanics Research, 2009, 36(6): 566-572.

    [13] ABE H., KAWAMURA H. and MATSUO Y. Surface heat-flux fluctuations in a turbulent channel flow up to Reτ=1020 with Pr=0.025 and 0.71[J]. International Journal of Heat and Fluid Flow, 2004, 25(3): 404- 419.

    [14] HOYAS S., JIMéNEZ J. Scaling of the velocity fluctuations in turbulent channels up to Re=2003[J]. Physics of fluids, 2006, 18(1): 011702.

    [15] SCHLATTER P., BRANDT L. and De LANGE H. et al. On streak breakdown in bypass transition[J]. Physics of fluids, 2008, 20(1): 101505.

    [16] BRANDT L., SCHLATTER P. and HENNINGSON D. S. Transition in boundary layers subject to free-stream turbulence[J]. Journal of Fluid Mechanics, 2004, 517: 167-198.

    [17] NOLAN K., ZAKI T. A. Conditional sampling of transitional boundary layers in pressure gradients[J]. Jour- nal of Fluid Mechanics, 2013, 728: 306-339.

    [18] GHASEMI E., MCELIGOT D. and NOLAN K. et al. Entropy generation in a transitional boundary layer region under the influence of freestream turbulence using transitional RANS models and DNS[J]. International Communications in Heat and Mass Transfer, 2012, 41(1): 10-16.

    [19] GHASEMI E., MCELIGOT D. M. and NOLAN K P. et al. Effects of adverse and favorable pressure gradients on entropy generation in a transitional boundary layer region under the influence of freestream turbulence[J]. International Journal of Heat and Mass Transfer, 2014, 77(1): 475-488.

    [20] ANSYS. “FLUENT theory guide v14.0.0.”[R]. 2011.

    [21] XING T., BHUSHAN S. and STERN F. Vortical and turbulent structures for KVLCC2 at drift angle 0, 12, and 30 degrees[J]. Ocean Engineering, 2012, 55(3): 23-43.

    [22] XING T., STERN F. Closure to “Discussion of “Factors of safety for Richardson extrapolation”? (2011, Journal of Fluids Engineering, 133, 115501)[J]. Journal of Fluids Engineering, 2011, 133(11): 115502.

    [23] XING T., STERN F. Factors of safety for richardson extrapolation[J]. Journal of Fluids Engineering, 2010, 132(6): 061403.

    [24] WILSON R. V., STERN F. and COLEMAN H. W. et al. Comprehensive approach to verification and validation of CFD simulations-Part 2: Application for rans simulation of a cargo/container ship[J]. Journal of Fluids Engineering, 2001, 123(4): 803-810.

    [25] ANSYS. “FLUENT user guide v14.0.0.”[R]. 2011.

    [26] XING T., GEORGE J. Quantitative verification and validation of large eddy simulations[C]. ASME 2014 Verification and Validation Symposium. Las Vegas, Nevada, USA, 2014.

    [27] XING Tao. A general framework for verification and validation of large eddy simulations (keynote speaker)[C]. Proceedings of the 13th National Congress on Hydrodynamics and 26th Conference on Hydrodynamics. Qingdao, China, 2014, 40-58.

    10.1016/S1001-6058(14)60075-5

    * Biography: GEORGE Joseph (1986-), Male,

    Master Candidate

    XING Tao, E-mail: xing@uidaho.edu

    猜你喜歡
    課本上表達(dá)能力語感
    閱讀教學(xué)中學(xué)生語感的培養(yǎng)
    甘肅教育(2020年6期)2020-09-11 07:46:08
    如何有效培養(yǎng)學(xué)生的語感
    甘肅教育(2020年6期)2020-09-11 07:45:54
    創(chuàng)新寫作教學(xué),培養(yǎng)表達(dá)能力
    “讀”辟蹊徑 助培語感——指向語感培養(yǎng)的朗讀教學(xué)策略
    談學(xué)生口語表達(dá)能力的培養(yǎng)
    甘肅教育(2020年20期)2020-04-13 08:05:22
    借課本
    加強(qiáng)聯(lián)想力和口語表達(dá)能力
    論中學(xué)語文閱讀教學(xué)中語感的培養(yǎng)
    學(xué)生口語表達(dá)能力的培養(yǎng)
    重視典型例題 關(guān)注中考類似題
    51午夜福利影视在线观看| 51午夜福利影视在线观看| АⅤ资源中文在线天堂| 国产99久久九九免费精品| 日本vs欧美在线观看视频| 女性生殖器流出的白浆| 一级a爱片免费观看的视频| 国产高清视频在线播放一区| av电影中文网址| 99精品在免费线老司机午夜| 中文字幕最新亚洲高清| 精品熟女少妇八av免费久了| 1024视频免费在线观看| 久久精品人人爽人人爽视色| 久久亚洲精品不卡| 97人妻精品一区二区三区麻豆 | 亚洲狠狠婷婷综合久久图片| 午夜a级毛片| 亚洲欧美日韩无卡精品| 精品人妻1区二区| 亚洲成人久久性| 亚洲精品中文字幕在线视频| 国产亚洲av高清不卡| 欧美绝顶高潮抽搐喷水| 亚洲色图综合在线观看| √禁漫天堂资源中文www| x7x7x7水蜜桃| 在线观看免费午夜福利视频| www.www免费av| 欧美激情高清一区二区三区| 天堂√8在线中文| 久久狼人影院| 国产亚洲精品第一综合不卡| 久久婷婷成人综合色麻豆| 中文字幕精品免费在线观看视频| 精品午夜福利视频在线观看一区| 成年女人毛片免费观看观看9| av天堂久久9| 可以免费在线观看a视频的电影网站| 午夜老司机福利片| 这个男人来自地球电影免费观看| 欧美成人性av电影在线观看| 搡老妇女老女人老熟妇| 精品国产乱码久久久久久男人| 久久久久久国产a免费观看| 久久精品国产清高在天天线| 搡老岳熟女国产| 精品国产一区二区三区四区第35| ponron亚洲| 妹子高潮喷水视频| 黄网站色视频无遮挡免费观看| 黄色成人免费大全| 激情在线观看视频在线高清| 激情在线观看视频在线高清| 亚洲av五月六月丁香网| 亚洲国产精品合色在线| 99久久99久久久精品蜜桃| 在线国产一区二区在线| 99国产精品99久久久久| 日日夜夜操网爽| 国产1区2区3区精品| 欧美乱码精品一区二区三区| 亚洲 欧美一区二区三区| 一级毛片女人18水好多| 免费在线观看日本一区| 日韩大尺度精品在线看网址 | 久久久国产欧美日韩av| 国产野战对白在线观看| 一进一出抽搐gif免费好疼| 国产高清视频在线播放一区| 一进一出抽搐gif免费好疼| 神马国产精品三级电影在线观看 | 成人手机av| 男人的好看免费观看在线视频 | 国产精品亚洲一级av第二区| 亚洲av五月六月丁香网| 国产在线精品亚洲第一网站| av天堂久久9| 精品国产乱子伦一区二区三区| 久久国产精品人妻蜜桃| 国产精品免费视频内射| 久久久久久亚洲精品国产蜜桃av| 69精品国产乱码久久久| 一区在线观看完整版| 国产97色在线日韩免费| 久久久久国产一级毛片高清牌| 日韩欧美在线二视频| 99久久综合精品五月天人人| 好男人在线观看高清免费视频 | 一级毛片精品| 国产精品综合久久久久久久免费 | 一区二区三区高清视频在线| 成年女人毛片免费观看观看9| 亚洲在线自拍视频| 国产精品 欧美亚洲| x7x7x7水蜜桃| 亚洲精品av麻豆狂野| 一级a爱视频在线免费观看| 色在线成人网| 99国产综合亚洲精品| 精品无人区乱码1区二区| 国产99久久九九免费精品| av免费在线观看网站| 国产xxxxx性猛交| 国产伦人伦偷精品视频| 法律面前人人平等表现在哪些方面| 国产成+人综合+亚洲专区| 日本五十路高清| 亚洲av电影在线进入| 三级毛片av免费| 一区二区三区国产精品乱码| 人人妻人人澡欧美一区二区 | 搡老熟女国产l中国老女人| 嫩草影视91久久| 成人免费观看视频高清| 精品一区二区三区四区五区乱码| 男男h啪啪无遮挡| 妹子高潮喷水视频| 久久久国产精品麻豆| 欧美日韩福利视频一区二区| 女人爽到高潮嗷嗷叫在线视频| 亚洲少妇的诱惑av| 一个人观看的视频www高清免费观看 | 操出白浆在线播放| 亚洲国产日韩欧美精品在线观看 | 黄色视频,在线免费观看| 日本vs欧美在线观看视频| 在线观看舔阴道视频| 国产精品久久久久久亚洲av鲁大| 中文字幕另类日韩欧美亚洲嫩草| 亚洲avbb在线观看| 成人特级黄色片久久久久久久| 人人妻人人爽人人添夜夜欢视频| 非洲黑人性xxxx精品又粗又长| 色播在线永久视频| av欧美777| 午夜福利在线观看吧| 亚洲欧洲精品一区二区精品久久久| 国产精品亚洲一级av第二区| 亚洲午夜理论影院| 欧美av亚洲av综合av国产av| 母亲3免费完整高清在线观看| 丰满人妻熟妇乱又伦精品不卡| 侵犯人妻中文字幕一二三四区| 精品乱码久久久久久99久播| 黄色片一级片一级黄色片| 亚洲av成人一区二区三| 一区二区日韩欧美中文字幕| 好男人在线观看高清免费视频 | 天天躁夜夜躁狠狠躁躁| 男人舔女人下体高潮全视频| 午夜免费鲁丝| 亚洲av成人av| 午夜两性在线视频| 亚洲欧洲精品一区二区精品久久久| 欧美在线一区亚洲| 19禁男女啪啪无遮挡网站| 少妇被粗大的猛进出69影院| 亚洲成人精品中文字幕电影| 欧美+亚洲+日韩+国产| 精品不卡国产一区二区三区| 精品国产国语对白av| 一级毛片女人18水好多| 午夜福利成人在线免费观看| 一本久久中文字幕| 窝窝影院91人妻| 久久久久亚洲av毛片大全| 免费看美女性在线毛片视频| 久久午夜综合久久蜜桃| 日韩欧美国产一区二区入口| av网站免费在线观看视频| 久久久久精品国产欧美久久久| 999久久久精品免费观看国产| 国产午夜精品久久久久久| 极品人妻少妇av视频| 欧美性长视频在线观看| 88av欧美| 中文字幕色久视频| 国产精品亚洲一级av第二区| 国内毛片毛片毛片毛片毛片| 91大片在线观看| 国产高清视频在线播放一区| 大型av网站在线播放| 制服人妻中文乱码| 欧美日本亚洲视频在线播放| 此物有八面人人有两片| 国产av一区在线观看免费| 亚洲欧美精品综合一区二区三区| 精品熟女少妇八av免费久了| 午夜福利欧美成人| 在线观看免费视频日本深夜| 国产1区2区3区精品| www日本在线高清视频| 亚洲一区二区三区色噜噜| 亚洲国产精品999在线| 免费高清在线观看日韩| 国产av又大| 欧美乱色亚洲激情| 欧美日本中文国产一区发布| 欧洲精品卡2卡3卡4卡5卡区| 人人妻,人人澡人人爽秒播| 国产精品久久久久久人妻精品电影| 久久久久久久久免费视频了| 国产又爽黄色视频| 亚洲成av人片免费观看| 又黄又爽又免费观看的视频| 亚洲狠狠婷婷综合久久图片| 欧美久久黑人一区二区| 国产xxxxx性猛交| 精品欧美国产一区二区三| 亚洲自偷自拍图片 自拍| 亚洲视频免费观看视频| 最新在线观看一区二区三区| 国产一区二区三区视频了| 亚洲九九香蕉| 啦啦啦韩国在线观看视频| 在线视频色国产色| 午夜精品久久久久久毛片777| 欧美绝顶高潮抽搐喷水| 亚洲中文av在线| 亚洲av电影不卡..在线观看| ponron亚洲| 久久久久久久久久久久大奶| 女人爽到高潮嗷嗷叫在线视频| 国产91精品成人一区二区三区| 国产区一区二久久| 身体一侧抽搐| 1024视频免费在线观看| 亚洲最大成人中文| 黄色视频,在线免费观看| 久久国产精品人妻蜜桃| 亚洲片人在线观看| 狂野欧美激情性xxxx| 国产午夜福利久久久久久| 免费看美女性在线毛片视频| 黄色毛片三级朝国网站| 亚洲视频免费观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产欧美日韩在线播放| 国产精品久久视频播放| 不卡av一区二区三区| 亚洲熟妇中文字幕五十中出| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久久久亚洲av鲁大| 亚洲一卡2卡3卡4卡5卡精品中文| 777久久人妻少妇嫩草av网站| 19禁男女啪啪无遮挡网站| 欧洲精品卡2卡3卡4卡5卡区| 一级a爱片免费观看的视频| 好男人在线观看高清免费视频 | 身体一侧抽搐| 18美女黄网站色大片免费观看| 亚洲国产日韩欧美精品在线观看 | 日韩有码中文字幕| 亚洲三区欧美一区| av视频在线观看入口| 亚洲 欧美一区二区三区| 一区福利在线观看| www国产在线视频色| 欧美亚洲日本最大视频资源| 1024视频免费在线观看| 岛国在线观看网站| 中文字幕另类日韩欧美亚洲嫩草| 色播在线永久视频| 国产一区二区在线av高清观看| 多毛熟女@视频| 国产精品久久久久久亚洲av鲁大| 精品熟女少妇八av免费久了| 999精品在线视频| 久久亚洲真实| 又黄又爽又免费观看的视频| 精品免费久久久久久久清纯| 亚洲午夜理论影院| 97超级碰碰碰精品色视频在线观看| 欧美成人午夜精品| 亚洲五月天丁香| 国产亚洲精品一区二区www| 亚洲精品美女久久久久99蜜臀| 亚洲精品国产一区二区精华液| 97碰自拍视频| 女警被强在线播放| 悠悠久久av| 国产精品 国内视频| 咕卡用的链子| 成人免费观看视频高清| 中文字幕av电影在线播放| 少妇被粗大的猛进出69影院| 欧美中文综合在线视频| 美女午夜性视频免费| 国产成人av教育| 亚洲欧美激情在线| a级毛片在线看网站| 丝袜美足系列| 亚洲精品国产精品久久久不卡| 伦理电影免费视频| 久热这里只有精品99| 国产97色在线日韩免费| 亚洲av成人不卡在线观看播放网| 好男人在线观看高清免费视频 | 在线免费观看的www视频| 精品久久蜜臀av无| 亚洲欧美日韩无卡精品| 最新在线观看一区二区三区| 人人妻人人澡欧美一区二区 | 国产一区在线观看成人免费| 在线av久久热| 国产男靠女视频免费网站| 久99久视频精品免费| 黑人巨大精品欧美一区二区mp4| 大陆偷拍与自拍| 亚洲第一电影网av| 国产一级毛片七仙女欲春2 | 久久久久久免费高清国产稀缺| 18禁国产床啪视频网站| 一级片免费观看大全| 久久久久国产一级毛片高清牌| 国产亚洲精品av在线| www.自偷自拍.com| 视频区欧美日本亚洲| 欧美成人免费av一区二区三区| 亚洲熟女毛片儿| 高清黄色对白视频在线免费看| 国产亚洲精品一区二区www| videosex国产| 亚洲av片天天在线观看| 国产成人精品在线电影| 亚洲国产日韩欧美精品在线观看 | 午夜老司机福利片| 在线观看舔阴道视频| 免费少妇av软件| or卡值多少钱| 欧美一级毛片孕妇| 老司机深夜福利视频在线观看| www.自偷自拍.com| 日本a在线网址| 国内久久婷婷六月综合欲色啪| 午夜福利高清视频| 久久人妻福利社区极品人妻图片| www.精华液| 久久婷婷成人综合色麻豆| 亚洲性夜色夜夜综合| 美女扒开内裤让男人捅视频| 国产欧美日韩一区二区三区在线| 欧美在线一区亚洲| 免费在线观看日本一区| 搡老岳熟女国产| 成年人黄色毛片网站| 欧美精品啪啪一区二区三区| 黄色视频不卡| 国产1区2区3区精品| 日韩三级视频一区二区三区| 精品久久久久久久人妻蜜臀av | 成人18禁在线播放| 丰满的人妻完整版| 色尼玛亚洲综合影院| 国产主播在线观看一区二区| 国产成人啪精品午夜网站| 亚洲一区二区三区色噜噜| 免费人成视频x8x8入口观看| 欧美最黄视频在线播放免费| 免费看a级黄色片| 18美女黄网站色大片免费观看| 午夜日韩欧美国产| 少妇被粗大的猛进出69影院| 性少妇av在线| 亚洲三区欧美一区| 黄频高清免费视频| 国内精品久久久久精免费| 精品国产一区二区三区四区第35| 99在线视频只有这里精品首页| 美女国产高潮福利片在线看| 变态另类丝袜制服| 日韩欧美在线二视频| 国产精品影院久久| 欧美成人一区二区免费高清观看 | 精品乱码久久久久久99久播| 精品国产乱子伦一区二区三区| 美女高潮喷水抽搐中文字幕| 久久青草综合色| www.999成人在线观看| 淫妇啪啪啪对白视频| 国产成年人精品一区二区| 亚洲精品国产色婷婷电影| 男女做爰动态图高潮gif福利片 | 97人妻精品一区二区三区麻豆 | 人人澡人人妻人| 88av欧美| 麻豆一二三区av精品| 久久久久久大精品| 好看av亚洲va欧美ⅴa在| 极品教师在线免费播放| 欧美日韩瑟瑟在线播放| av超薄肉色丝袜交足视频| 国产精品1区2区在线观看.| 亚洲五月天丁香| 国产亚洲av高清不卡| 桃红色精品国产亚洲av| 99久久久亚洲精品蜜臀av| 日韩高清综合在线| 手机成人av网站| 俄罗斯特黄特色一大片| 国产1区2区3区精品| 国产高清激情床上av| 国产亚洲欧美98| 女人被躁到高潮嗷嗷叫费观| 两个人视频免费观看高清| 久久久久久久久中文| 亚洲av成人av| 婷婷丁香在线五月| 欧美日韩黄片免| 国产亚洲精品久久久久5区| 国产激情欧美一区二区| 免费看十八禁软件| 国产成人免费无遮挡视频| 在线永久观看黄色视频| 精品久久蜜臀av无| 丝袜在线中文字幕| 久久精品成人免费网站| 欧美国产精品va在线观看不卡| 亚洲中文av在线| 国产精品一区二区免费欧美| 国产又色又爽无遮挡免费看| e午夜精品久久久久久久| 看黄色毛片网站| 精品人妻在线不人妻| 91麻豆av在线| 法律面前人人平等表现在哪些方面| 男男h啪啪无遮挡| 18禁观看日本| 国产欧美日韩综合在线一区二区| 免费在线观看影片大全网站| 波多野结衣一区麻豆| 妹子高潮喷水视频| 在线观看免费日韩欧美大片| 欧美精品亚洲一区二区| 亚洲av熟女| 天天一区二区日本电影三级 | 欧美大码av| 日本在线视频免费播放| 亚洲精品久久国产高清桃花| 精品卡一卡二卡四卡免费| 亚洲久久久国产精品| 欧洲精品卡2卡3卡4卡5卡区| 此物有八面人人有两片| 后天国语完整版免费观看| 麻豆成人av在线观看| 51午夜福利影视在线观看| 亚洲午夜理论影院| 国产黄a三级三级三级人| 国产在线精品亚洲第一网站| 国产高清激情床上av| www国产在线视频色| 人人妻人人澡欧美一区二区 | 成人国产综合亚洲| 国内毛片毛片毛片毛片毛片| 国产亚洲精品av在线| 成人亚洲精品一区在线观看| 脱女人内裤的视频| 国产一卡二卡三卡精品| 亚洲avbb在线观看| 亚洲国产看品久久| 很黄的视频免费| 亚洲精品在线观看二区| 国产成人啪精品午夜网站| 欧美黑人欧美精品刺激| 亚洲av成人一区二区三| 母亲3免费完整高清在线观看| 国产午夜福利久久久久久| 国产麻豆69| 精品久久久久久,| 一卡2卡三卡四卡精品乱码亚洲| 国产91精品成人一区二区三区| 中文字幕av电影在线播放| 国产亚洲精品久久久久5区| 变态另类成人亚洲欧美熟女 | 久久欧美精品欧美久久欧美| 欧美另类亚洲清纯唯美| 91精品三级在线观看| 韩国av一区二区三区四区| 老鸭窝网址在线观看| 亚洲精品中文字幕在线视频| 女人精品久久久久毛片| 一区二区日韩欧美中文字幕| 淫妇啪啪啪对白视频| 大陆偷拍与自拍| 亚洲欧美精品综合一区二区三区| 久久久国产成人免费| 亚洲美女黄片视频| 久久久久精品国产欧美久久久| 国产一区二区在线av高清观看| 超碰成人久久| 亚洲五月婷婷丁香| 亚洲av成人不卡在线观看播放网| 法律面前人人平等表现在哪些方面| 宅男免费午夜| 久久精品国产综合久久久| 亚洲国产欧美一区二区综合| 老司机靠b影院| 久久久久久亚洲精品国产蜜桃av| 国产精品,欧美在线| 真人做人爱边吃奶动态| 欧美成人性av电影在线观看| 国产99白浆流出| 国产亚洲欧美98| 久久天堂一区二区三区四区| 9191精品国产免费久久| av超薄肉色丝袜交足视频| 国产欧美日韩一区二区三区在线| 成人亚洲精品av一区二区| 午夜福利,免费看| 99久久99久久久精品蜜桃| 电影成人av| 老熟妇仑乱视频hdxx| 中文字幕色久视频| 十八禁网站免费在线| 免费在线观看视频国产中文字幕亚洲| 亚洲精品久久国产高清桃花| 国产av在哪里看| 中文字幕最新亚洲高清| 淫秽高清视频在线观看| 久热爱精品视频在线9| 99精品久久久久人妻精品| 国产一区在线观看成人免费| 日韩大尺度精品在线看网址 | 国产精品1区2区在线观看.| 国产极品粉嫩免费观看在线| 日韩精品免费视频一区二区三区| 国产精品电影一区二区三区| 男女之事视频高清在线观看| 动漫黄色视频在线观看| 中文字幕色久视频| 老汉色av国产亚洲站长工具| 日韩精品中文字幕看吧| 国产极品粉嫩免费观看在线| 久久精品国产亚洲av香蕉五月| 成人精品一区二区免费| 夜夜爽天天搞| 午夜福利高清视频| 日本在线视频免费播放| 天天添夜夜摸| 激情视频va一区二区三区| 国产单亲对白刺激| 免费高清视频大片| 曰老女人黄片| 久久久精品国产亚洲av高清涩受| 一进一出好大好爽视频| 国产亚洲精品一区二区www| 青草久久国产| 成人三级黄色视频| 怎么达到女性高潮| 性色av乱码一区二区三区2| 国产午夜福利久久久久久| 国产单亲对白刺激| 变态另类丝袜制服| 国产精品一区二区精品视频观看| 精品一区二区三区四区五区乱码| 久久精品国产清高在天天线| 好看av亚洲va欧美ⅴa在| 给我免费播放毛片高清在线观看| 亚洲国产精品sss在线观看| 一级毛片女人18水好多| 亚洲黑人精品在线| 欧美+亚洲+日韩+国产| 级片在线观看| 免费看美女性在线毛片视频| 亚洲精品中文字幕在线视频| 熟女少妇亚洲综合色aaa.| 久久精品人人爽人人爽视色| 一二三四在线观看免费中文在| x7x7x7水蜜桃| 人人妻人人爽人人添夜夜欢视频| 女性被躁到高潮视频| 可以在线观看的亚洲视频| 国产精品久久久久久精品电影 | 国产野战对白在线观看| 日本三级黄在线观看| 国产精品二区激情视频| 精品久久久久久久人妻蜜臀av | 国产精品永久免费网站| 免费av毛片视频| 国产精品电影一区二区三区| 亚洲无线在线观看| 久久精品国产综合久久久| 搡老妇女老女人老熟妇| 一二三四在线观看免费中文在| 久久九九热精品免费| 黑人巨大精品欧美一区二区蜜桃| 老司机午夜福利在线观看视频| 国产蜜桃级精品一区二区三区| 精品一区二区三区av网在线观看| 午夜福利免费观看在线| 精品久久久久久久毛片微露脸| 一本大道久久a久久精品| 大型av网站在线播放| 一区二区三区激情视频| 真人一进一出gif抽搐免费| av天堂在线播放| 欧美日韩亚洲国产一区二区在线观看| 国产欧美日韩一区二区三| 久久青草综合色| 男女下面插进去视频免费观看| 久久欧美精品欧美久久欧美| 精品久久久久久久久久免费视频| 国产成人精品久久二区二区91| 成人国产一区最新在线观看| 成人18禁高潮啪啪吃奶动态图| 亚洲av熟女| 精品人妻1区二区| 欧美久久黑人一区二区| 亚洲国产精品成人综合色| 99国产极品粉嫩在线观看| 日韩大尺度精品在线看网址 | 女人被躁到高潮嗷嗷叫费观| 亚洲精品国产色婷婷电影| 亚洲七黄色美女视频|