• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A numerical analysis of the influence of the cavitator’s deflection angle on flow features for a free moving supercavitated vehicle*

    2014-06-01 12:30:02CHENXin陳鑫LUChuanjing魯傳敬CHENYing陳瑛CAOJiayi曹嘉怡
    關(guān)鍵詞:陳鑫

    CHEN Xin (陳鑫), LU Chuan-jing (魯傳敬), CHEN Ying (陳瑛), CAO Jia-yi (曹嘉怡)

    Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China

    MOE Key Laboratory of Hydrodynamics, Shanghai Jiao Tong University, Shanghai 200240, China, E-mail: xinchen@sjtu.edu.cn

    A numerical analysis of the influence of the cavitator’s deflection angle on flow features for a free moving supercavitated vehicle*

    CHEN Xin (陳鑫), LU Chuan-jing (魯傳敬), CHEN Ying (陳瑛), CAO Jia-yi (曹嘉怡)

    Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China

    MOE Key Laboratory of Hydrodynamics, Shanghai Jiao Tong University, Shanghai 200240, China, E-mail: xinchen@sjtu.edu.cn

    (Received March 15, 2013, Revised January 14, 2014)

    When a high-speed cavitated weapon moves under water, the flow properties are important issues for the sake of the trajectory predication and control. In this paper, a single-fluid multiphase flow method coupled with a natural cavitation model is proposed to numerically simulate the free moving phase of an underwater supercavitated vehicle under the action of the external thrust. The influence of the cavitator’s deflection angle ranging from -3oto 3oon the cavity pattern, the hydrodynamics and the underwater trajectory is investigated. Based on computational results, several conclusions are qualitatively drawn by an analysis. The deflection angle has very little effect on the cavity pattern. When the deflection angle increases, the variation curves of the vertical linear velocity, the lift coefficient and the pitching moment coefficient become flatter. In the phase of the second natural cavitation, at a same time, the greater the deflection angle is, the lower the drag and the lift coefficients will be and the higher the pitching moment coefficient becomes. At the finishing time of the free moving phase, when the deflection angle lies in the small range of -1o-1o, the position of the center of mass and the pitching angle of the vehicle are more close to each other. However, when the deflection angle is less than -1oor greater than 1o, the position of the center of mass and the pitching angle change greatly. If a proper deflection angle of the cavitator is adopted, the underwater vehicle can navigate in a pseudo-fixed depth.

    cavitation, multiphase, underwater trajectory, dynamic mesh

    Introduction

    When a high-speed weapon covered with natural and ventilated cavities moves under water, the flow features are important issues for the research and development. Because of some unavoidable objective factors in the process of trajectory controls, such as that of adjusting the deflection angle of the cavitator, there exist abnormal deviations in the cavity pattern, the hydrodynamics and the underwater trajectory in some phase of motion. These deviations can degrade the weapon’s combat performance. Thus, the prediction of the flow properties of the vehicle is very important.

    For a submarine-launched missile model under the action of a fixed external thrust, Wang et al.[1]experimentally measured the thrust, the pressure overload and the structural strain of the model, and theoretically analyzed the underwater trajectory. Based on the theorems of the momentum and the moment of the momentum, Zhang et al.[2]built a mathematical model of the trajectory for a carrier with six degrees of freedom in the dynamic coordinate system. They proposed a control scheme of a rocket-assisted torpedo’s underwater trajectory using MATLAB/SIMULINK. Gu et al.[3]studied a problem of the underwater trajectory for a mine launched from a submarine in the phase of motion without external forces, and they put forward a theoretical model to analyze the underwater trajectory under the effect of the current in the simulation environment of MATLAB. An improved control and guidance system for supercavitating vehicles was designed. Cao et al.[4]established simplified equationsfor the longitudinal motion of supercavitating vehicles to simulate the trajectory of vehicles travelling at a speed of around 90 m/s. The calculating results show that the motion of a supercavitating vehicle at changeable depth and direction can be handled using typical control schemes of the top steer without a feedback system.

    The previous simulations are mostly carried out in the framework of self-developed programs or other tools like MATLAB based on many hypotheses using several semi-experimental and semi-theoretical formulas. These studies point to a kind of study method, to obtain the laws of vehicles’ motion affected by single-factor or multi-factors in an ideal state. However, with the development of computer hardware and numerical techniques, it is possible to couple the solution of the flow field and the body’s motion. This kind of study method[5]is advantageous in analyzing the flow structures and the mechanisms of a complicated physical phenomenon.

    1. Governing equations of the flow field

    The vapor phase should also satisfy the continuity condition during the phase-transition process[8]

    where ρ is the density, t stands for the time, u denotes the velocity vector, p is the pressure, the subscripts m, l and v, respectively, indicate the mixture, the liquid phase and the vapor phase.

    The volume fractions of the phases satisfy

    Additionally, two individual transport equations are employed to describe the phase-transition process between the vapor and the liquid.

    where RBis the radius of the vapor bubble, and a value of 10-6m is selected, αnucdenotes the volume fraction of the gas nuclei in the liquid, and here a value of 10-5is specified. In addition, Fvap=0.02, Fcond=0.001.

    2. Equations of motion for the free rigid body

    2.1Coordinate system

    The coordinate systems with the right-hand rule are defined as in Fig.1. The superscripts I and B refer to the inertial system and the body system, respectively. The cavitator’s deflection angle αd(<90o) is determined by the anticlockwise angle from the axis of yBto the plane of the cavitator. The different lift force can be obtained by adjusting the deflection angle to change the body’s attitude motion.

    Fig.1 The coordinate systems, cavitator’s deflection angle

    2.2Governing equations

    In the inertial coordinate system, the body’s translational motion is governed by the equation

    After the accelerations are computed from Eq.(8) and Eq.(9), the velocities, the coordinates of the body’s center of mass and the angular velocities, the Euler angles are derived by an explicit difference scheme.

    2.3Dynamic mesh method

    The dynamic mesh method can be used to model the flows where the shape of the domain changes with time due to the motion on the domain boundaries. The motion can be a prescribed motion or/and unprecribed motion where the sequence motion is determined based on the solution at the current time. The updating of the volume mesh is handled automatically at each time step on the basis of the new positions of the boundaries. At present, there are three kinds of dynamic mesh methods used widely: the fixed-grid method[15], the sliding mesh method[16]and the local remeshing method[17].

    In the process of updating the volume mesh, the integral form of the conservation equation for a general scalar ζ on an arbitrary control volume V with a moving boundary can be expressed as

    where ugis the mesh velocity of the moving mesh, λ is the diffusion coefficient, Sζis the source term of ζ, A is used to represent the boundary of the control volume V.

    In the fixed-grid method adopted in this paper, the mesh in the computational domain moves with the motion of the body. In other words, the number of the grid and the relative positions between the grid nodes remain unchanged during the whole calculation.

    3. Results and discussions

    3.1Computational parameters

    The vehicle’s total length and maximal diameter are denoted by L and D, respectively, and the components along the axial direction include a cavitator (head rudder), two bowl-shaped flow guides, an afterbody, a cross trailing rudder and a trailing cylinder. The cavitator is a disk with a diameter of Dn.

    In the course of the simulation, the motion of the vehicle is confined entirely to the plane of the pitch. Thus, the flow is symmetrical with respect to the plane of zI=0, and there are just three degrees of freedom, namely (xI,yI,θz). The flow domain can be reduced by half to save the calculation time. A multi-block structured mesh is generated, containing a total number of about 1.5×106cells.

    The upstream boundary and the external boundary are disposed with a constant velocity. The downstream boundary is specified with a fixed static pressure. A fixed mass flux is set on the ventilating nozzle. The surface of the vehicle is under no-slip wall condition.

    The deflection angle of the cross trailing rudder is selected as 0oand keeps constant. The initialized velocities are set to a value of vIbx0in x direction, and 0 in both y and z directions. A starting coordinates of (0.5L,0,0) are specified at the center of mass of the vehicle. Each component of the initialized angular velocity is given a value of 0 rad/s. The Euler angles of (0,0,θz0) are given in the startup solution.

    Fig.2 CTb, Cqvs. T

    Fig.3 Shapes of cavity at different times, αd=0o

    3.2Cavity pattern

    Figure 3 illustrates the history of the shape of the cavity when αdis equal to 0o. It can be seen from Fig.3(a) and Fig.3(b) that before the gas ventilating, namely T<1.746, the vehicle is in the phase of the early acceleration accompanying the natural cavitation occurred at the head-body, near the shoulder and the end of the big cylinder and downstream from the cross trailing rudder.

    Figure 4 presents the relationships between the cavitation number, the cavity length and the cavitator’s deflection angles at T=0 and T=1.746, where

    Fig.4 Relations of σ,cL withdα at different times

    During the time T in the range of 1.746-12.225, the vehicle is in the phase of the acceleration and the ventilated cavitation. It is found from Fig.3(c) that, within the non-dimensional time of 0.837 after ventilating the gas, a supercavity is formed rapidly, and a natural cavity with a length of 1/3L-2/5L appears downstream from the cross trailing rudder. During the phase of the ventilated cavitation, the difference in the vehicle’s motion attitude between the cavitator’s deflection angles becomes gradually notable because of the variation of the lift.

    When T is equal to 11.352, the gas supply is stopped. After a time measured by the non-dimensional time of about 0.837, namely, T>12.225, the vehicle resumes to a state of natural cavitation again as shown in Fig.3(e). Meanwhile, the vehicle is already released from the external thrust at T=8.732. Therefore, the vehicle is in the phase of the deceleration, and the cavity length is reduced gradually as illustrated in Fig.3(h).

    3.3Hydrodynamics

    Fig.5 Relation ofdC with time

    Fig.6 Relation of Cpwith time, αd=0o

    Fig.7 Relation oflC with time

    It can be seen from Fig.5 that, during the phase of the acceleration, the drag coefficient goes down at first quickly and then slowly. After stopping the gas supply, the drag coefficient increases significantly. It should be noticed that, there are two distinctly sudden changes in the drag coefficient. The first sudden change results from the action of the ventilating gas. The second sudden change is caused by the transition from the cavitation to the non-cavitation on the trailing cylinder.

    Taking αd=0ofor example, Fig.6 shows the variation of the pressure coefficient with time monitored at the point A, which is 0.8 radius away from the center of the trailing cylinder’s bottom face. Figure 3(f) demonstrates that the trailing cylinder is covered with the natural cavity at T<14.845. So, the pressure on the bottom of the trailing cylinder approaches the saturated pressure of the liquid to raise the bottom drag coefficient of the vehicle. As T is equal to 15.019, the bottom face of the trailing cylinder is in the vicinity of the natural cavity’s closure region due to the decreasing velocity of the vehicle and the increasing natural cavitation number, as shown in the Fig.3(g). Under the influence of the high pressure in the cavity’s closure region, the pressure on the bottom face goes up suddenly to have an evidently lower bottom drag coefficient than before. Then, because of the further decrease of the vehicle’s velocity, the size of the natural cavity reduces gradually, which weakens the influence of the high pressure in the closure region on the bottom of the trailing cylinder with the result of the enlarged bottom drag coefficient. In addition, at a same time, after stopping the gas supply, the greater the deflection angle of the cavitator is, the smaller the drag coefficient is.

    Fig.8 Relation of Cmzwith time

    It can be seen from Fig.7 that the lift coefficient curve has an upward tendency as a whole. During the artificial ventilation, one sees propagations of the disturbance caused by the supercavity’s formation and disappearance, and the sharp variation in the wet area of the vehicle. Under these conditions, the lift coefficient assumes a wavy curve, as well as the pitching moment, the linear velocity in y direction, and the angular velocity about z axis. Moreover, the greater thecavitator’s deflection angle, the smaller the lift coefficient is. After the gas supply is stopped, the magnitude of the wavy curve drops step by step. At a same time, the larger the cavitator’s deflection angle is, the less the lift coefficient becomes.

    Figure 8 shows that the lift has a strong influence on the pitching moment. Both of them vary in a manner opposite to each other.

    Fig.9 Relation of Cvxwith time

    Fig.10 Relation of Cvywith time

    Fig.11 Relation ofzCωwith time

    3.4Underwater trajectory

    Fig.12 Distribution of the center of mass, T=20.957

    Fig.13 Distribution of θ2, T=20.957

    Figures 12-13 show the distributions of the center of mass and the pitching angle of the vehicle in the computational range of the cavitator’s deflection angle at T=20.957. It is found from these scattered points that the pitching angle turns from positive to negative with the increase of αd, and the navigation distance becomes greater, whereas the navigation depth becomes smaller. When the deflection angle lies in the small range of -1o-1o, the position of the center of mass and the pitching angle of the vehicle are more close to each other. However, when the deflection angle are less than -1oor greater than 1o, the position of the center of mass and the pitching angle change significantly.

    4. Conclusions

    In the present work, a method of numerical simulation is put forward to calculate the free moving phase of an underwater supercavitated vehicle under the action of an external thrust. The influences of the cavitator’s deflection angle ranging from-3oto 3oon the cavity pattern, the hydrodynamicsand the underwater trajectory are investigated. Based on computational results, several conclusions can be qualitatively drawn by analysis as follows:

    (1) According to the segmental law of the gas supply, the cavity pattern can be divided into three phases in order, namely, the natural cavitation, the ventilated cavitation and the natural cavitation. The deflection angle has very little impact on the cavity pattern.

    (2) The relation of the drag coefficient versus time is very complicated with some sudden changes under the action of a thrust and under ventilation conditions. On the whole, the lift coefficient goes up while the pitching moment coefficientgoes down, along with oscillations in the phase of the ventilated cavitation. When the deflection angle increases, the variation curves of the lift and the pitching moment coefficient become flatter. In the phase of the second natural cavitation, at a same time, the greater the deflection angle is, the lower the drag and the lift coefficients are, whereas the higher the pitching moment coefficient is.

    (3) The effect of the external thrust makes the horizontal linear velocity accelerate at first, and then decelerate. Furthermore, the vertical linear velocity changes in a wave shape. At a given moment, the greater the deflection angle, the larger the vertical linear velocity is. With the growing deflection angle, the variation curves of the vertical linear velocity and the pitching angle velocity become flatter, along with oscillations in the phase of the ventilated cavitation. With a certain deflection angle of the cavitator, the underwater vehicle can navigate in a pseudo-fixed depth.

    (4) At the finishing time of the free moving phase, with an increase in the deflection angle, the navigation distance of the vehicle increases, but the depth decreases. In addition, the pitching angle varies from positive to negative. As the deflection angle lies in the small range of -1o-1o, the position of the center of mass and the pitching angle of the vehicle are close to each other. However, when the deflection angle are less than -1oor greater than 1o, the position of the center of mass and the pitching angle change significantly.

    [1] WANG Cong, WANG Xue-xiao and XU Shi-chang et al. Analysis and testing on dynamic property of submarine-launched missile[J]. Missiles and Space Vehicles, 2002, 2: 12-15(in Chinese).

    [2] ZHANG Xue-feng, PAN Guang and WANG Peng. Underwater trajectory design of rocket assisted torpedo[J]. Torpedo Technology, 2007, 15(4): 11-14(in Chinese).

    [3] GU Chuang, PANG Hong-zhao and ZHANG Yong. Research of sea water that affect the trajectory of mine projected by submarine[J]. Ship Electronic Engineering, 2010, 30(2): 168-171(in Chinese).

    [4] CAO Wei, WEI Ying-jie and HAN Wan-jin et al. Simulating the trajectory of supercavitating vehicles[J]. Journal of Harbin Engineering University, 2010, 31(3): 323-328(in Chinese).

    [5] YANG Xiao-guang, CHEN Huan-long and LIU Huaping et al. Simulation about 3D flow field of missile underwater motion and water-exit process[J]. Journal of Ballistics, 2010, 22(1): 107-110(in Chinese).

    [6] MANNINEN M., TAIVASSALO V. and KALLIO S. On the mixture model for multiphase flow[M]. Espoo, Finland: VTT Publications, 1996.

    [7] HUANG Biao, WANG Guo-yu and ZHAO Yu. Numerical simulation unsteady cloud cavitating flow with a filter-based density correction model[J]. Journal of Hydrodynamics, 2014, 26(1): 26-36.

    [8] ZWART P. J., GERBER A. G. and BELAMRI T. A two-phase flow model for predicting cavitation dynamics[C]. Fifth International Conference on Multiphase Flow. Yokohama, Japan, 2004.

    [9] SPALART P., ALLMARAS A. A one-equation turbulence model for aerodynamic flows[R]. Technical Report AIAA-92-0439, American Institute of Aeronautics and Astronautics, 1992.

    [10] HUA Zu-lin, XING Ling-hang and GU Li. Application of a modified quick scheme to depth-averaged -kε turbulence model based on unstructured grids[J]. Journal of Hydrodynamics, 2008, 20(4): 514-523.

    [11] YANG Guo-gang, DING Xin-wei and BI Ming-shu et al. Improved SIMPLE algorithm used in numerical simulation of flammable gas cloud deflagration[J]. Journal of Dalian University of Technology, 2004, 44(6): 789-792(in Chinese).

    [12] CHENG Guang-hui, HUANG Ting-zhu and CHENG Xiao-yu. Preconditioned Gauss-Seidel type iterative method for solving linear systems[J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(9): 1275-1279.

    [13] CHEN Xin, LU Chuan-jing and LI Jie et al. The wall effect on ventilated cavitating flows in closed cavitation tunnels[J]. Journal of Hydrodynamics, 2008, 20(5): 561-566.

    [14] HU Yong, CHEN Xin and LU Chuan-jing et al. Study on the interaction between ventilated cavitating flow and the exhausted gas of an underwater vehicle[J]. Chinese Journal of Hydrodynamics, 2008, 23(4): 438-445(in Chinese).

    [15] AZCUETA R. Computation of turbulent free-surface flows around ships and floating bodies[J]. Ship Technology Research, 2002, 49: 999-1022.

    [16] BASARA B., ALAJBEGOVIC A. and BEADER D. Simulation of single- and two-phase flows on sliding unstructured meshes using finite volume method[J]. International Journal for numerical methods in fluids, 2004, 45(10): 1137-1159.

    [17] CHIANG C. H., JONG B. S. and LIN T. W. A robust feature-preserving semi-regular remeshing method for triangular meshes[J]. Visual Computer, 2011, 27(9): 811-825.

    10.1016/S1001-6058(14)60078-0

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 11372185, 11102110) and the Shanghai Leading Academic Discipline Project (Grant No. B206).

    Biography: CHEN Xin (1976-), Male, Ph. D.,

    Associate Professor

    猜你喜歡
    陳鑫
    傳銷(xiāo)頭目反傳銷(xiāo):我要贖罪
    新傳奇(2021年28期)2021-08-23 10:20:40
    Experimental investigation on DBD plasma reforming hydrocarbon blends
    大地精靈
    Sediment transport in pure acceleration-skewed oscillatory sheet flow *
    Experimental and numerical investigations of the aerodynamic noise reduction of automotive side view mirrors *
    好書(shū)推薦
    微信群聊惹的禍
    做人與處世(2017年9期)2017-07-27 11:02:16
    Numerical investigation of the time-resolved bubble cluster dynamics by using the interface capturing method of multiphase flow approach*
    陳鑫的午后三點(diǎn)
    環(huán)境保護(hù)主要問(wèn)題及對(duì)策研究
    免费观看的影片在线观看| 国产高清三级在线| www.av在线官网国产| 男的添女的下面高潮视频| www.色视频.com| 一二三四中文在线观看免费高清| 午夜福利成人在线免费观看| 少妇高潮的动态图| 精华霜和精华液先用哪个| 嫩草影院精品99| 精品人妻熟女av久视频| 国产色爽女视频免费观看| 成人亚洲精品一区在线观看 | 18+在线观看网站| 寂寞人妻少妇视频99o| 国产 亚洲一区二区三区 | 国精品久久久久久国模美| 久久精品国产亚洲网站| 伦精品一区二区三区| 神马国产精品三级电影在线观看| 精品一区在线观看国产| 久久久久性生活片| 日韩国内少妇激情av| 男女边摸边吃奶| 床上黄色一级片| 99久国产av精品国产电影| 日韩欧美国产在线观看| 亚洲欧美精品自产自拍| 亚洲内射少妇av| 亚洲最大成人手机在线| 日韩欧美一区视频在线观看 | 亚洲精品456在线播放app| 亚洲人成网站在线观看播放| 久久99精品国语久久久| 国产高清有码在线观看视频| 久久久久久久国产电影| 国产老妇女一区| 婷婷六月久久综合丁香| 最近手机中文字幕大全| 国产日韩欧美在线精品| 久久久久久九九精品二区国产| xxx大片免费视频| 日本一二三区视频观看| 亚洲三级黄色毛片| 神马国产精品三级电影在线观看| 亚洲精品久久午夜乱码| 久久精品国产亚洲av天美| 伦理电影大哥的女人| 黄片wwwwww| 久久97久久精品| 国产精品久久久久久久久免| 亚洲经典国产精华液单| 日韩大片免费观看网站| 国产人妻一区二区三区在| 免费人成在线观看视频色| 一区二区三区高清视频在线| 青春草亚洲视频在线观看| 亚洲精品第二区| 午夜免费男女啪啪视频观看| 亚洲乱码一区二区免费版| 国产精品精品国产色婷婷| 99热这里只有是精品在线观看| 中文字幕av在线有码专区| 亚洲精品亚洲一区二区| 免费看美女性在线毛片视频| 国产精品一二三区在线看| 亚洲国产日韩欧美精品在线观看| 五月伊人婷婷丁香| 一级毛片我不卡| 中文字幕人妻熟人妻熟丝袜美| 三级男女做爰猛烈吃奶摸视频| 亚洲综合色惰| av女优亚洲男人天堂| 日韩欧美一区视频在线观看 | 丝瓜视频免费看黄片| 亚洲经典国产精华液单| 国产 亚洲一区二区三区 | 久久午夜福利片| 成年av动漫网址| 女人久久www免费人成看片| 天堂中文最新版在线下载 | 国产 一区精品| 激情五月婷婷亚洲| 欧美成人精品欧美一级黄| 亚洲最大成人中文| 美女黄网站色视频| 午夜激情福利司机影院| 国产av码专区亚洲av| 亚洲精品乱久久久久久| 国产老妇伦熟女老妇高清| 联通29元200g的流量卡| 久久精品人妻少妇| 久久精品久久精品一区二区三区| 中文字幕免费在线视频6| 亚洲经典国产精华液单| 日韩三级伦理在线观看| 亚洲精品日本国产第一区| 联通29元200g的流量卡| 91av网一区二区| 丝袜美腿在线中文| 久久久久久久久久久丰满| 亚洲成人av在线免费| 国产精品国产三级国产av玫瑰| 免费观看的影片在线观看| 青春草视频在线免费观看| 91久久精品电影网| 国产黄片视频在线免费观看| 老师上课跳d突然被开到最大视频| av福利片在线观看| 欧美另类一区| 亚洲人成网站在线播| .国产精品久久| 在线免费观看的www视频| 国产精品久久久久久精品电影小说 | 亚洲av福利一区| 国产美女午夜福利| 免费大片黄手机在线观看| 自拍偷自拍亚洲精品老妇| 一级毛片 在线播放| 色视频www国产| 别揉我奶头 嗯啊视频| 在线播放无遮挡| 国产永久视频网站| 国产亚洲91精品色在线| 国精品久久久久久国模美| 国产视频内射| 亚洲丝袜综合中文字幕| 永久免费av网站大全| 国产精品一及| 亚洲18禁久久av| 青春草亚洲视频在线观看| 欧美xxxx黑人xx丫x性爽| 女人被狂操c到高潮| 成年女人在线观看亚洲视频 | av在线亚洲专区| 国产一级毛片七仙女欲春2| 草草在线视频免费看| 噜噜噜噜噜久久久久久91| 久久久久网色| 亚洲精品乱码久久久v下载方式| 18+在线观看网站| 寂寞人妻少妇视频99o| 亚洲欧洲日产国产| 亚洲久久久久久中文字幕| 永久网站在线| 69人妻影院| 国产乱人偷精品视频| 国产成人精品久久久久久| 国产一区二区亚洲精品在线观看| 欧美高清性xxxxhd video| 肉色欧美久久久久久久蜜桃 | 国产中年淑女户外野战色| 亚洲在久久综合| 精品一区二区免费观看| 韩国高清视频一区二区三区| 天堂中文最新版在线下载 | 欧美xxxx黑人xx丫x性爽| 成人综合一区亚洲| av免费观看日本| 丰满少妇做爰视频| 国产成人一区二区在线| 99热网站在线观看| 国产美女午夜福利| 美女脱内裤让男人舔精品视频| 少妇的逼好多水| 婷婷色av中文字幕| 国产精品久久久久久久电影| 一夜夜www| 国产大屁股一区二区在线视频| 日韩av不卡免费在线播放| 91在线精品国自产拍蜜月| videos熟女内射| 在线观看av片永久免费下载| 啦啦啦中文免费视频观看日本| 精品久久久久久久久久久久久| 纵有疾风起免费观看全集完整版 | 少妇的逼水好多| 日韩中字成人| 免费黄色在线免费观看| 成年版毛片免费区| 我要看日韩黄色一级片| 国产成人精品一,二区| 2022亚洲国产成人精品| 免费观看的影片在线观看| 中国美白少妇内射xxxbb| 精品久久久久久电影网| 国产乱来视频区| 夫妻性生交免费视频一级片| 国产高清国产精品国产三级 | 91精品国产九色| 日本免费在线观看一区| 国产高清有码在线观看视频| 黄色欧美视频在线观看| 日韩伦理黄色片| 国产精品久久久久久精品电影小说 | 天堂俺去俺来也www色官网 | 成人无遮挡网站| 18+在线观看网站| www.色视频.com| 免费黄色在线免费观看| 精品熟女少妇av免费看| 久久6这里有精品| 免费观看精品视频网站| 国产成人91sexporn| 99热全是精品| av.在线天堂| 观看美女的网站| 国产成人a区在线观看| 国产一区二区三区av在线| 春色校园在线视频观看| 免费大片黄手机在线观看| 久久久国产一区二区| 欧美成人精品欧美一级黄| 国产免费一级a男人的天堂| 91在线精品国自产拍蜜月| 大又大粗又爽又黄少妇毛片口| 国产 一区精品| 在线 av 中文字幕| 国产成人精品福利久久| 激情五月婷婷亚洲| 成人美女网站在线观看视频| 有码 亚洲区| 麻豆乱淫一区二区| 国产成人精品久久久久久| av在线播放精品| 大又大粗又爽又黄少妇毛片口| 3wmmmm亚洲av在线观看| 三级国产精品片| 精品国产露脸久久av麻豆 | 国产激情偷乱视频一区二区| 精品国产三级普通话版| 国产69精品久久久久777片| 欧美三级亚洲精品| 91在线精品国自产拍蜜月| 日韩一区二区视频免费看| 精品国产三级普通话版| 蜜桃亚洲精品一区二区三区| 亚洲精品日韩在线中文字幕| 一本一本综合久久| 国产老妇女一区| 国产综合精华液| 免费观看精品视频网站| 色吧在线观看| 久久久久久久久久久丰满| 蜜臀久久99精品久久宅男| 国语对白做爰xxxⅹ性视频网站| 欧美日本视频| 色综合站精品国产| 天堂网av新在线| 男人舔女人下体高潮全视频| 国产黄色视频一区二区在线观看| 亚洲第一区二区三区不卡| 亚洲欧美日韩卡通动漫| 亚洲性久久影院| 五月玫瑰六月丁香| 丝瓜视频免费看黄片| 亚洲精品,欧美精品| 久久久色成人| 美女脱内裤让男人舔精品视频| 日本免费a在线| av专区在线播放| 亚洲综合色惰| 丝瓜视频免费看黄片| 只有这里有精品99| av女优亚洲男人天堂| 国产男女超爽视频在线观看| 视频中文字幕在线观看| a级一级毛片免费在线观看| 亚洲av男天堂| 内地一区二区视频在线| 97人妻精品一区二区三区麻豆| 日韩 亚洲 欧美在线| 在线天堂最新版资源| 啦啦啦中文免费视频观看日本| 80岁老熟妇乱子伦牲交| 国产国拍精品亚洲av在线观看| 99久久人妻综合| 国产午夜精品久久久久久一区二区三区| 午夜精品在线福利| 在线天堂最新版资源| 亚洲国产精品成人综合色| 久久久久免费精品人妻一区二区| 夫妻午夜视频| 日韩一区二区视频免费看| 色吧在线观看| 国产大屁股一区二区在线视频| 国产一区二区在线观看日韩| 如何舔出高潮| 午夜福利在线在线| 国产中年淑女户外野战色| 身体一侧抽搐| 精品欧美国产一区二区三| 国产精品一区二区在线观看99 | 人人妻人人看人人澡| 亚洲伊人久久精品综合| 国产在线一区二区三区精| 欧美日韩在线观看h| 能在线免费观看的黄片| ponron亚洲| 最近手机中文字幕大全| 免费av不卡在线播放| 国产黄色小视频在线观看| 国产精品人妻久久久久久| 高清av免费在线| 十八禁国产超污无遮挡网站| 一级毛片 在线播放| 成年av动漫网址| 亚洲精品日韩av片在线观看| 久久草成人影院| 2022亚洲国产成人精品| 国产精品美女特级片免费视频播放器| 91久久精品电影网| 久99久视频精品免费| 国产免费福利视频在线观看| 欧美日韩国产mv在线观看视频 | 内射极品少妇av片p| 狂野欧美激情性xxxx在线观看| 成人综合一区亚洲| 国产av不卡久久| 免费黄频网站在线观看国产| 我的女老师完整版在线观看| 国产 一区 欧美 日韩| 搡女人真爽免费视频火全软件| 国产v大片淫在线免费观看| 国产黄频视频在线观看| 99热这里只有是精品在线观看| 男女边摸边吃奶| 亚洲精品日本国产第一区| 亚洲国产高清在线一区二区三| 亚洲婷婷狠狠爱综合网| 国产老妇女一区| 毛片一级片免费看久久久久| 亚洲成色77777| 卡戴珊不雅视频在线播放| 内射极品少妇av片p| 深爱激情五月婷婷| 国产探花极品一区二区| 校园人妻丝袜中文字幕| 免费大片黄手机在线观看| 一夜夜www| 熟妇人妻久久中文字幕3abv| 日日干狠狠操夜夜爽| 国产伦在线观看视频一区| 久久久精品欧美日韩精品| 天堂av国产一区二区熟女人妻| 九色成人免费人妻av| 一级爰片在线观看| 爱豆传媒免费全集在线观看| 亚洲人成网站高清观看| 亚洲熟妇中文字幕五十中出| 亚洲三级黄色毛片| 97在线视频观看| 日韩欧美一区视频在线观看 | 国产毛片a区久久久久| 一个人免费在线观看电影| 久久久久久久久久成人| 一区二区三区四区激情视频| 国产白丝娇喘喷水9色精品| av在线播放精品| 人妻制服诱惑在线中文字幕| 毛片一级片免费看久久久久| 精品不卡国产一区二区三区| 精品久久久精品久久久| 亚洲欧美精品自产自拍| 老司机影院成人| 永久免费av网站大全| 麻豆成人午夜福利视频| 日韩一本色道免费dvd| 日韩 亚洲 欧美在线| 天天躁夜夜躁狠狠久久av| 最近2019中文字幕mv第一页| 国产亚洲5aaaaa淫片| 亚洲精品成人av观看孕妇| 午夜福利在线在线| 免费看日本二区| av国产免费在线观看| 18禁动态无遮挡网站| 最新中文字幕久久久久| 国产在视频线在精品| 亚洲av男天堂| 欧美97在线视频| 国产国拍精品亚洲av在线观看| 国产探花在线观看一区二区| 最近最新中文字幕免费大全7| 最近最新中文字幕大全电影3| 在线免费观看的www视频| 国产 一区 欧美 日韩| 日韩三级伦理在线观看| 国产探花在线观看一区二区| 综合色av麻豆| 麻豆成人av视频| 午夜亚洲福利在线播放| 伦理电影大哥的女人| 国产精品久久久久久av不卡| 日本免费在线观看一区| 人妻少妇偷人精品九色| 自拍偷自拍亚洲精品老妇| 成人鲁丝片一二三区免费| 美女大奶头视频| 晚上一个人看的免费电影| 免费播放大片免费观看视频在线观看| 天堂影院成人在线观看| 欧美精品国产亚洲| 乱码一卡2卡4卡精品| 亚洲熟女精品中文字幕| 禁无遮挡网站| 大陆偷拍与自拍| 99久久精品国产国产毛片| 三级国产精品欧美在线观看| 久久人人爽人人片av| 国产三级在线视频| 熟妇人妻不卡中文字幕| 丰满人妻一区二区三区视频av| 国产一区有黄有色的免费视频 | videos熟女内射| 亚洲国产欧美在线一区| 午夜免费男女啪啪视频观看| 国产黄片视频在线免费观看| 色网站视频免费| 午夜精品在线福利| 2022亚洲国产成人精品| 亚洲av不卡在线观看| 搡女人真爽免费视频火全软件| 极品少妇高潮喷水抽搐| 九色成人免费人妻av| 欧美97在线视频| 国产精品日韩av在线免费观看| 久久亚洲国产成人精品v| 嫩草影院新地址| 国产精品一区二区在线观看99 | 成人亚洲精品一区在线观看 | 高清av免费在线| 看黄色毛片网站| 在线观看美女被高潮喷水网站| 国产成人freesex在线| 六月丁香七月| 人妻夜夜爽99麻豆av| 久久人人爽人人片av| 久久国产乱子免费精品| 99久久人妻综合| 国产一区亚洲一区在线观看| 亚洲精华国产精华液的使用体验| 欧美激情在线99| 美女脱内裤让男人舔精品视频| 成年人午夜在线观看视频 | 亚洲国产色片| 久久99蜜桃精品久久| 99热这里只有精品一区| 亚洲一级一片aⅴ在线观看| 亚洲丝袜综合中文字幕| 日本av手机在线免费观看| .国产精品久久| 老司机影院成人| 蜜臀久久99精品久久宅男| 成人亚洲精品av一区二区| 99久久中文字幕三级久久日本| 大又大粗又爽又黄少妇毛片口| 久久久精品欧美日韩精品| 黄色一级大片看看| 在现免费观看毛片| 日本与韩国留学比较| 亚洲美女搞黄在线观看| 五月玫瑰六月丁香| 中国美白少妇内射xxxbb| 久久韩国三级中文字幕| 三级国产精品欧美在线观看| 啦啦啦啦在线视频资源| 七月丁香在线播放| 国产午夜精品一二区理论片| 日韩av在线大香蕉| 国产免费一级a男人的天堂| 久久99热6这里只有精品| 看非洲黑人一级黄片| 床上黄色一级片| 久久亚洲国产成人精品v| 少妇猛男粗大的猛烈进出视频 | 一边亲一边摸免费视频| 欧美+日韩+精品| av卡一久久| 午夜福利网站1000一区二区三区| 女人被狂操c到高潮| 国产精品av视频在线免费观看| 国产成人精品一,二区| 听说在线观看完整版免费高清| 看十八女毛片水多多多| 在线 av 中文字幕| 久久国产乱子免费精品| 久久久久久久亚洲中文字幕| 国产高清国产精品国产三级 | 久久精品国产亚洲av涩爱| 午夜老司机福利剧场| 在线观看av片永久免费下载| 午夜精品国产一区二区电影 | 综合色丁香网| 欧美区成人在线视频| 水蜜桃什么品种好| 男女下面进入的视频免费午夜| 国产高清三级在线| 免费大片18禁| 亚洲国产高清在线一区二区三| 韩国av在线不卡| 亚洲怡红院男人天堂| 日韩电影二区| 国产av国产精品国产| 欧美三级亚洲精品| 女人被狂操c到高潮| 国产 亚洲一区二区三区 | 秋霞伦理黄片| 日日摸夜夜添夜夜爱| 国产免费一级a男人的天堂| 成人二区视频| 精品午夜福利在线看| 日日摸夜夜添夜夜添av毛片| 午夜老司机福利剧场| 婷婷色麻豆天堂久久| 内地一区二区视频在线| 97在线视频观看| 成年版毛片免费区| 最近2019中文字幕mv第一页| 国产精品av视频在线免费观看| 久久这里有精品视频免费| 日日摸夜夜添夜夜爱| 永久免费av网站大全| 欧美 日韩 精品 国产| 亚洲av免费在线观看| 国产亚洲精品av在线| 能在线免费看毛片的网站| 婷婷色麻豆天堂久久| 久久精品国产鲁丝片午夜精品| 亚洲国产欧美人成| 黄色日韩在线| 亚洲成人久久爱视频| 少妇被粗大猛烈的视频| 国产欧美日韩精品一区二区| 少妇猛男粗大的猛烈进出视频 | 激情 狠狠 欧美| 精品不卡国产一区二区三区| 人妻系列 视频| 日日撸夜夜添| 麻豆成人av视频| 久久国内精品自在自线图片| 亚洲欧美日韩无卡精品| 成人综合一区亚洲| 91久久精品国产一区二区成人| 国内少妇人妻偷人精品xxx网站| 熟妇人妻不卡中文字幕| 91久久精品国产一区二区三区| 久久久久久久久久人人人人人人| 国产乱来视频区| 在线免费观看的www视频| 亚洲,欧美,日韩| 男人和女人高潮做爰伦理| 婷婷色综合大香蕉| 国产欧美日韩精品一区二区| 国产精品久久久久久av不卡| 亚洲精品日韩在线中文字幕| 中文在线观看免费www的网站| 久久综合国产亚洲精品| 国内精品美女久久久久久| 中文字幕制服av| 麻豆国产97在线/欧美| 成人亚洲精品一区在线观看 | 一个人免费在线观看电影| 精品一区二区三区人妻视频| 国产91av在线免费观看| 91久久精品国产一区二区三区| 精品不卡国产一区二区三区| 亚洲一区高清亚洲精品| 高清av免费在线| 亚洲经典国产精华液单| a级毛色黄片| av又黄又爽大尺度在线免费看| 天天一区二区日本电影三级| 水蜜桃什么品种好| 七月丁香在线播放| 国产成人freesex在线| 午夜爱爱视频在线播放| 亚洲国产精品专区欧美| 国产精品99久久久久久久久| 在线免费十八禁| 久久这里只有精品中国| 日日摸夜夜添夜夜添av毛片| 在现免费观看毛片| 日韩不卡一区二区三区视频在线| 97超碰精品成人国产| 国产在视频线精品| 久久国产乱子免费精品| 可以在线观看毛片的网站| videossex国产| 国产午夜精品久久久久久一区二区三区| 国产色婷婷99| 国产精品久久久久久av不卡| 2021天堂中文幕一二区在线观| 国产一区有黄有色的免费视频 | 国产伦一二天堂av在线观看| 精品一区二区三区视频在线| 久久99热这里只有精品18| 97超碰精品成人国产| 午夜精品在线福利| 亚洲av成人精品一二三区| 久久久久免费精品人妻一区二区| 在线 av 中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 91狼人影院| 五月天丁香电影| 亚洲怡红院男人天堂| 欧美+日韩+精品| 亚洲欧美一区二区三区国产| 国产精品国产三级国产av玫瑰| 岛国毛片在线播放| 国产精品国产三级国产专区5o| 久久人人爽人人爽人人片va| 夫妻性生交免费视频一级片| 国产单亲对白刺激| 综合色av麻豆|