焦鼎 孔運 劉蔚青
摘要:本文針對分析深圳市這三年各主要食品領(lǐng)域微生物、重金屬、添加劑含量等安全情況的變化趨勢的問題,首先確定評價食品安全的檢測指標(biāo),建立評價指標(biāo)體系,本文利用已有數(shù)據(jù)得出三年主要食品領(lǐng)域如蔬菜、肉制品以及水產(chǎn)品領(lǐng)域,微生物、重金屬、添加劑含量以及其他影響食品安全因素檢查的合格率;再利用主成分分析方法建立的數(shù)據(jù)矩陣進行求解,得出影響食品質(zhì)量安全的主成分因子,以及相應(yīng)的方差貢獻率(又稱信息貢獻率)作為主成分指標(biāo)變量的權(quán)重,進而定義食品安全綜合指數(shù)FSCI(Food Safety Comprehensive Index ,F(xiàn)SCI),通過食品安全綜合指數(shù)的比較,對三年來深圳市的食品安全水平進行綜合評價并得出結(jié)論:在蔬菜、肉類以及水產(chǎn)品三個主要食品領(lǐng)域中,食品質(zhì)量安全水平2012最優(yōu),2011在三年來相對較差,2010年居中。
關(guān)鍵詞:主成分分析 信息貢獻率 特征向量 綜合評價指數(shù)
中圖分類號:R155.5 文獻標(biāo)識碼:A 文章編號:1672-5336(2014)06-0064-03
針對評價深圳市這三年各主要食品領(lǐng)域微生物、重金屬、添加劑含量等安全情況的變化趨勢的問題,我們首先確立指標(biāo)體系,并對相關(guān)數(shù)據(jù)進行標(biāo)準(zhǔn)化處理,建立如下基于主成分分析的綜合評價模型,并利用Matlab編程進行求解。
假設(shè)進行主成分分析的指標(biāo)變量有個[1],分別為,共有個評價對象,第個待評對象的第個指標(biāo)值為,得到觀測數(shù)據(jù)矩陣:。
將各指標(biāo)值轉(zhuǎn)換成標(biāo)準(zhǔn)化的指標(biāo)值,有:
其中:
其中即和為第個指標(biāo)的樣本均值和樣本標(biāo)準(zhǔn)差。對應(yīng)地,稱為標(biāo)準(zhǔn)化的指標(biāo)變量。
根據(jù)公式概率統(tǒng)計以及線性代數(shù)的相關(guān)知識[2]可以知道:即為標(biāo)準(zhǔn)化的指標(biāo)變量和的相關(guān)系數(shù)矩陣,相關(guān)系數(shù)矩陣中的元素
其中是第個指標(biāo)與第個指標(biāo)的相關(guān)系數(shù),顯然易見相關(guān)系數(shù)矩陣為是對稱矩陣。
由上述相關(guān)系數(shù)矩陣的性質(zhì)知道:相關(guān)系數(shù)矩陣為是實對稱矩陣,因此相關(guān)系數(shù)矩陣進行特征分解得到[3]:,其中,是由相關(guān)系數(shù)矩陣的特征值組成的對角陣,是由的標(biāo)準(zhǔn)正交化的特征向量按列并排組成的正交矩陣,稱為主成分載荷矩陣,它是用主成分指標(biāo)變量表示中心標(biāo)準(zhǔn)化的原指標(biāo)變量時的系數(shù)矩陣,即用矩陣可表示為:。由于主成分載荷矩陣是正交矩陣,所以滿足,故又有,即可知:,可見的轉(zhuǎn)置矩陣是用原變量表示主成分變量時的系數(shù)矩陣。
另外還可以知道矩陣為主成分得分陣,每行的數(shù)據(jù)就是對應(yīng)各次觀測對應(yīng)的主成分變量的取值。因而主成分的樣本協(xié)方差矩陣為
,由此可見主成分指標(biāo)變量的樣本方差就是特征值,且不同主成分之間的樣本協(xié)方差都等于零。
為計算特征值的信息貢獻率和累計貢獻率,定義為主成分指標(biāo)變量的信息貢獻率;同時,有為主成分指標(biāo)變量的累計貢獻率。當(dāng)接近于1(一般?。r,則選取前個指標(biāo)變量作為主成分指標(biāo)變量,代替原來的個指標(biāo)變量,從而可以對個主成分指標(biāo)變量進行綜合評價[4]。
具體到本問題中時,我們定義了食品安全綜合指數(shù)FSCI;
其中:為第個主成分指標(biāo)變量的信息貢獻率,根據(jù)食品安全綜合指數(shù)FSCI,我們就可以實現(xiàn)對2010、2011以及2012年三年來深圳市主要食品領(lǐng)域食品質(zhì)量安全的變化趨勢。
為綜合評價深圳市這2010、2011以及2012三年各主要食品領(lǐng)域微生物、重金屬、添加劑含量等安全情況的變化趨勢,我們確定了由微生物檢測合格率、重金屬檢測合格率、添加劑含量檢測合格率以及其他因素檢測合格率四項所組成的評價指標(biāo)體系,2010、2011、2012年食品質(zhì)量安全水平組成的評價對象。為綜合考慮三年的食品質(zhì)量安全水平,我們主要以蔬菜、肉制品以及水產(chǎn)品三個食品領(lǐng)域作為指標(biāo)變量數(shù)據(jù)獲取的樣本空間[5],得到如下的表1,表1中各項數(shù)據(jù)為三個主要食品領(lǐng)域中不同年份四項檢測指標(biāo)的合格率情況。
注:此處僅考慮蔬菜、肉制品以及水產(chǎn)品三個主要食品領(lǐng)域的各項指標(biāo)。
因此,指標(biāo)變量主要食品領(lǐng)域微生物檢測指標(biāo)的合格率、主要食品領(lǐng)域重金屬檢測指標(biāo)的合格率、主要食品領(lǐng)域添加劑檢測指標(biāo)的合格率、主要食品領(lǐng)域其他檢測指標(biāo)的合格率,得到相應(yīng)的數(shù)據(jù)矩陣[6]為
對相關(guān)系數(shù)矩陣進行特征值和相應(yīng)的特征向量求解,并計算各個特征值的貢獻率和累計貢獻率,如下表2:
由表2得到的主成分分析結(jié)果,可以利用主成分的貢獻率作為綜合評價指標(biāo)的權(quán)重系數(shù)。由表中數(shù)據(jù)可以得知前兩個主成分指標(biāo)變量的累計貢獻率就達到了100%,主成分分析效果較好。
主成分載荷矩陣,是由的標(biāo)準(zhǔn)正交化的特征向量按列并排組成的正交矩陣,即;進而可以得到表3——標(biāo)準(zhǔn)化的4個主成分指標(biāo)變量對應(yīng)的特征向量[7]。
由此可得2個主成分變量分別為:
據(jù)主成分系數(shù)可以看出第一主成分主要反映了前兩個指標(biāo)微生物、食品添加劑檢測合格率的信息。第二主成分主要反映了重金屬和其他因素兩個檢測指標(biāo)對食品質(zhì)量安全的影響信息,很好地將原始數(shù)據(jù)中相關(guān)性很高的指標(biāo)變量轉(zhuǎn)化成彼此相互獨立或不相關(guān)的變量,很好地實現(xiàn)了降維;另外,由于數(shù)據(jù)獲取主要來源于蔬菜、肉制品以及水產(chǎn)品三個主要食品領(lǐng)域,而這些食品領(lǐng)域食品不合格的主要原因在于微生物、食品添加劑含量檢測不合格,與第一主成分主要包含前兩個指標(biāo)微生物、食品添加劑檢測合格率的信息相符合[8]。
利用主成分載荷陣以及中心標(biāo)準(zhǔn)化的數(shù)據(jù)矩陣可以得到主成分得分陣,,如表4——評價對象的主成分得分陣
針對深圳市這2010、2011以及2012三年各主要食品領(lǐng)域微生物、重金屬、添加劑含量等安全情況的變化趨勢,我們定義了食品安全綜合指數(shù)FSCI這個綜合評價指數(shù):
分別以4個主成分的貢獻率為權(quán)重系數(shù),構(gòu)建主成分綜合評價函數(shù),即:
從而可以根據(jù)食品安全綜合指數(shù)FSCI對2010、2011以及2012三年來各主要食品領(lǐng)域微生物、重金屬、添加劑含量以及其他因素等食品質(zhì)量安全情況的變化趨勢進行綜合評價。
根據(jù)表4——評價對象的主成分得分陣,將評價對象2010、2011、2012三年深圳市食品質(zhì)量安全水平的4個主成分值代入上式,可以分別得到三年的食品安全綜合指數(shù)FSCI,如表5——三年的食品安全綜合指數(shù)FSCI。
由上表數(shù)據(jù)分析可以得知,若以蔬菜、肉制品以及水產(chǎn)品三個食品領(lǐng)域的食品質(zhì)量來評價2010、2011以及2012年三年深圳市食品安全水平,2012年食品安全質(zhì)量水平最高,由于四項檢測指標(biāo)合格率都優(yōu)于2010和2011年,而2011年食品安全質(zhì)量水平低于2010的主要原因在于占據(jù)很大貢獻的第一主成分變量主要包含微生物和添加劑含量的主要信息,在這兩項指標(biāo)上11年的合格率都劣于10年,因此在蔬菜、肉制品以及水產(chǎn)品三個主要食品領(lǐng)域,10年的食品安全質(zhì)量水平較11年高。
參考文獻
[1]司守奎,孫璽菁,數(shù)學(xué)建模算法與應(yīng)用,北京:國防工業(yè)出版社,2013.
[2]陸元鴻,數(shù)理統(tǒng)計方法,上海:華東理工大學(xué)出版社,2005.
[3]張小蒂,李曉鐘.應(yīng)用統(tǒng)計學(xué)導(dǎo)論,浙江:浙江大學(xué)出版社,1998.
[4]周乃元,潘家榮,食品安全綜合評估數(shù)學(xué)模型研究,中國食品衛(wèi)生雜志,第21卷第3期:198-202,2009年.
[5]劉振航.數(shù)學(xué)建模,北京:中國人民大學(xué)出版社,2004.
[6]梅長林,周家良.實用統(tǒng)計方法,北京:科學(xué)出版社,2009.
[7]肖智,鐘波,應(yīng)用統(tǒng)計學(xué)實驗,重慶:重慶大學(xué)出版社,2007.
[8]姜啟源,謝金星.數(shù)學(xué)模型,北京:高等教育出版社,2011.