程 瑾,胡順安
激素在機(jī)體眾多生理生化過(guò)程中發(fā)揮重要的調(diào)節(jié)作用[1]。中樞神經(jīng)系統(tǒng)(CNS)存在大量的激素及其受體,這是激素信號(hào)調(diào)節(jié)大腦生理功能的物質(zhì)基礎(chǔ)[2]。目前研究集中于對(duì)海馬功能有調(diào)節(jié)作用[3-4]的瘦素(Lep)和胰島素上。Lep的下游靶點(diǎn)BDNF也參與下丘腦攝食調(diào)節(jié),已成為抗肥胖藥物研發(fā)的新靶點(diǎn)[5]。
脂質(zhì)代謝異常與神經(jīng)退行性疾病尤其是阿爾茨海默病(AD)相關(guān)[6-7]。臨床研究表明,糖尿病患者罹患AD的風(fēng)險(xiǎn)增加,提示內(nèi)分泌疾病和神經(jīng)退行性過(guò)程相關(guān)[8]。此外,肥胖和胰島素信號(hào)異常都提示神經(jīng)退行性疾病易感性增加。
阿爾茨海默病的主要特征是記憶力減退,海馬在學(xué)習(xí)記憶過(guò)程中發(fā)揮重要的基礎(chǔ)性作用,因此,Lep調(diào)節(jié)海馬神經(jīng)元功能有重大的現(xiàn)實(shí)意義。本綜述的目的是討論Lep在神經(jīng)系統(tǒng)疾病中的作用,主要從神經(jīng)保護(hù)作用和促進(jìn)記憶兩個(gè)方面進(jìn)行闡述。
Lep基因(OB)編碼16 kDa的多肽Lep。Lep與其受體(Ob-R)結(jié)合介導(dǎo)細(xì)胞內(nèi)信號(hào)途徑并發(fā)揮生理功能。以往研究表明,Lep受體缺乏小鼠(ob/ob小鼠)易發(fā)展至病態(tài)肥胖和糖尿病,血漿Lep水平與體脂含量高度相關(guān)[9]。
Lep受體主要位于下丘腦,參與調(diào)控能量平衡。除了調(diào)節(jié)能量平衡和下丘腦神經(jīng)內(nèi)分泌功能,Lep在大腦還有更廣泛的作用。Lep可激活海馬神經(jīng)元K+通道,調(diào)節(jié)其興奮性。另外,ob/ob小鼠空間學(xué)習(xí)能力受損。Lep信號(hào)可能影響神經(jīng)元興奮性及突觸可塑性[10]。
Ob-R還存在于腦干血清素能神經(jīng)元,Lep通過(guò)抑制腦干神經(jīng)元5-羥色胺(5-HT)的合成和釋放調(diào)節(jié)食欲和能量消耗。黑質(zhì)也存在Ob-R mRNA表達(dá)。此外,Lep還能調(diào)節(jié)中腦邊緣多巴胺系統(tǒng)[2,11],Lep對(duì)多巴胺能神經(jīng)元的神經(jīng)遞質(zhì)產(chǎn)生影響,如增加酪氨酸羥化酶含量和調(diào)節(jié)多巴胺轉(zhuǎn)運(yùn)蛋白活性等[2]。
另外,Ob-R在培養(yǎng)的海馬神經(jīng)元和膠質(zhì)細(xì)胞共表達(dá)[12]。Lep是海馬功能的關(guān)鍵調(diào)節(jié)劑,Lep對(duì)海馬谷氨酸受體尤其NMDA和AMPA受體功能有影響,兩者是學(xué)習(xí)記憶和癲疒間等神經(jīng)系統(tǒng)疾病的重要調(diào)節(jié)因素[13-15]。此外,Lep還能對(duì)抗紅藻氨酸(Kainate acid,KA)導(dǎo)致的興奮性神經(jīng)毒性,調(diào)節(jié)突觸可塑性和樹(shù)突形態(tài)[13]。
體外模型研究表明,除多巴胺能細(xì)胞外,Lep對(duì)其他類型細(xì)胞和腦區(qū)都有神經(jīng)保護(hù)作用[7,16-17]。因此,Lep對(duì)AD和帕金森病(PD)等神經(jīng)系統(tǒng)疾病治療有潛在的應(yīng)用價(jià)值。
2.1 Lep在AD中的作用 AD是一種多因素導(dǎo)致的神經(jīng)退化性疾病,其特點(diǎn)是漸進(jìn)性神經(jīng)元丟失、膠質(zhì)細(xì)胞增生和兩種疾病標(biāo)志物的積聚:老年斑(β-淀粉樣蛋白聚集)和神經(jīng)元纖維纏結(jié)(tau蛋白磷酸化)[18-19]。游離脂肪酸、膽固醇、脂蛋白和apo E等均能促進(jìn)Aβ形成,以上因素干預(yù)可能減緩或限制Aβ形成,Lep有利于Aβ消除。Lep可通過(guò)以下方式干擾AD的發(fā)病過(guò)程:①抑制淀粉樣過(guò)程[18];②降低糖原合酶激酶-3β(GSK3β)活性,降低tau蛋白磷酸化水平[20];③改善認(rèn)知功能[7]。
首先,Lep可降低Aβ形成,Aβ是β-和γ-分泌酶連續(xù)裂解淀粉樣前體蛋白(APP)的結(jié)果,Lep可降低神經(jīng)元β位APP分解酶(BACE)的活性,減少Aβ生成[21]。類似地,Lep信號(hào)可能與apoE基因表達(dá)相關(guān),Lep也可通過(guò)apo E依賴性攝取,增強(qiáng)Aβ聚集體的消除。Lep的以上作用在體外和體內(nèi)轉(zhuǎn)基因AD小鼠模型中均已得到證實(shí)[21-22]。Lep顯著改善AD小鼠模型(TgCRND8)AD相關(guān)特征,包括減少Aβ、tau蛋白磷酸化水平和改善認(rèn)知[7]。
其次,Lep參與神經(jīng)保護(hù)作用的機(jī)制可能是激活A(yù)MPK和SIRT1,兩者均為AD有關(guān)的潛在靶標(biāo)[23]。但低水平Lep導(dǎo)致AMPK活性不足,反而增加Aβ和tau磷酸化。SIRT1的活化可能通過(guò)上調(diào)α-分泌酶生成,在AD中發(fā)揮有益作用[24]。研究表明,Lep導(dǎo)致GSK3β的9-絲氨酸磷酸化引起GSK3β失活??傊琇ep通過(guò)AMPK和GSK3β途徑調(diào)節(jié)tau蛋白磷酸化[18-20]。因此,Lep可同時(shí)改善Aβ和tau相關(guān)病理途徑,有望用于AD治療。
2.2 Lep在PD中的作用 研究顯示,體重減輕是PD患者的一個(gè)共同特征[25]。PD患者血清Lep水平與體重之間有關(guān)聯(lián)[26-27]。然而,體脂下降可能是PD患者血漿Lep水平降低更好的指標(biāo)[28]。
據(jù)報(bào)道,Lep對(duì)抗線粒體神經(jīng)毒素MPP實(shí)驗(yàn)性PD模型,發(fā)揮細(xì)胞保護(hù)作用[29]。Lep激活PI3K/AKT,促進(jìn)SH-SY5Y細(xì)胞生存[29-30]。另外,Lep通過(guò)增加線粒體解偶聯(lián)蛋白2(UCP2)的表達(dá),在體內(nèi)外恢復(fù)ATP水平,保證能量供應(yīng),說(shuō)明Lep能提高線粒體效率[30],從而介導(dǎo)Lep的神經(jīng)保護(hù)作用。
6-羥基多巴胺(6-OHDA)是另一種公認(rèn)的神經(jīng)毒素。在MN9D多巴胺能細(xì)胞系,Lep能逆轉(zhuǎn)6-OHDA毒性作用導(dǎo)致的細(xì)胞損失[31]。Lep通過(guò)MAPK和ERK途徑調(diào)節(jié)pCREB,提高BDNF水平,對(duì)抗體內(nèi)多巴胺能神經(jīng)元的6-OHDA毒性。Lep增加BDNF水平可能是介導(dǎo)神經(jīng)保護(hù)作用的主要潛在機(jī)制,這一論點(diǎn)支持Lep作為一種神經(jīng)保護(hù)藥物用于PD實(shí)驗(yàn)?zāi)P脱芯俊?/p>
2.3 Lep與癲疒間 生酮飲食是難治性癲疒間的一種有效治療方法,顯著提高嚙齒類動(dòng)物的血清Lep水平[32]。研究表明,Lep是一種內(nèi)源性抗驚厥劑[33]。ob/ob小鼠比野生型小鼠更易被致疒間劑戊四氮(PTZ)點(diǎn)燃,并誘導(dǎo)癲疒間發(fā)作,此外,更易發(fā)生全身性發(fā)作和細(xì)胞死亡[34]。表明血漿Lep水平升高可能會(huì)降低神經(jīng)元興奮性,發(fā)揮抗驚厥作用。Lep還明顯減少其他化學(xué)模型如腦室注射4-氨基吡啶、腹腔注射PTZ等引起的小鼠癲疒間發(fā)作[35]。此外,Lep能夠保護(hù)ob/ob小鼠海馬神經(jīng)元對(duì)抗KA興奮性毒性,KA癲疒間模型通過(guò)激活谷氨酸受體易化癲疒間活動(dòng)[36]。
Lep可能通過(guò)調(diào)節(jié)NMDA受體或激活大電導(dǎo)鈣激活鉀通道(BK)[37]發(fā)揮抗驚厥作用。BK是決定海馬神經(jīng)元興奮性的重要因素,可導(dǎo)致癲疒間活動(dòng)中的異常放電[33]。Lep還通過(guò)與Lep受體結(jié)合并激活JAK2/PI3K途徑,抑制AMPAR介導(dǎo)的突觸傳遞,起抗癲疒間作用。此外,Lep在體外對(duì)NMDA受體(KA誘導(dǎo)的海馬細(xì)胞死亡相關(guān)受體)引起的興奮性毒性和氧化應(yīng)激導(dǎo)致的神經(jīng)細(xì)胞損傷都有保護(hù)作用[13]。
2.4 Lep在腦缺血模型中的神經(jīng)保護(hù)作用 Lep在嚙齒類動(dòng)物模型局部大腦缺血中也有神經(jīng)保護(hù)作用。研究證明,Lep神經(jīng)保護(hù)機(jī)制與ERK1/2、AKT、NF-κB轉(zhuǎn)錄和STAT3信號(hào)通路有關(guān)[36-39],它們均為L(zhǎng)ep受體激活的下游信號(hào)事件。轉(zhuǎn)錄因子NF-κB激活誘導(dǎo)BCL-2家族成員抗凋亡蛋白Bcl-xL基因表達(dá),是典型的神經(jīng)保護(hù)作用分子[39]。因此,Lep改變Bcl-xL/Bax比值至抗凋亡狀態(tài),進(jìn)而在局部缺血中發(fā)揮抗細(xì)胞凋亡作用。同樣,Lep也可活化ERK1/2,進(jìn)而磷酸化Bad Ser-112,抑制其凋亡活性,從而起神經(jīng)保護(hù)作用。另外,p65和p50核轉(zhuǎn)位后,可與c-Rel形成復(fù)合物,與細(xì)胞存活有關(guān),這是Lep的另一作用機(jī)制。
有證據(jù)表明,Lep在調(diào)節(jié)海馬突觸可塑性和影響谷氨酸受體,主要是NMDA和AMPA受體轉(zhuǎn)運(yùn)中,起著重要的作用[40]。
海馬CA1區(qū)NMDA受體依賴性長(zhǎng)時(shí)程增強(qiáng)(LTP)是空間學(xué)習(xí)記憶的基礎(chǔ),突觸NMDA受體激活使突觸后[Ca2+]i升高,這對(duì)海馬CA1區(qū)突觸LTP誘導(dǎo)是至關(guān)重要的。Lep促進(jìn)海馬神經(jīng)元CaMKII磷酸化,易化LTP的形成[41]。在新生嚙齒動(dòng)物,Lep能夠增加海馬NMDA受體NR1亞單位的表達(dá)[37]。隨后,Lep激活突觸含NR2A的NMDA受體,增加海馬突觸密度。Lep調(diào)節(jié)樹(shù)突形態(tài)的作用在海馬突觸可塑性和神經(jīng)發(fā)育中也具有重要的意義[40-42]。Lep受體在小腦神經(jīng)元也有表達(dá),促進(jìn)其NMDA受體NR2B介導(dǎo)的鈣內(nèi)流。
Lep促進(jìn)成年大鼠海馬切片GluR2缺乏的AMPA受體突觸表達(dá)增加,導(dǎo)致興奮性突觸傳遞效能持久性增加[43]。GluR2缺乏的AMPA受體可滲透Ca2+,導(dǎo)致突觸效能所需的細(xì)胞內(nèi)特定信號(hào)通路激活。以上作用可以部分解釋Lep對(duì)記憶的有利影響。
綜上所述,Lep對(duì)如AD、PD、癲疒間和局部缺血等神經(jīng)系統(tǒng)疾病有神經(jīng)保護(hù)作用,并能改善認(rèn)知功能。Lep通過(guò)與其受體結(jié)合,調(diào)節(jié)CDK5、AMPK、GSK3β、STAT3等信號(hào)途徑參與神經(jīng)保護(hù)[7]。此外,Lep調(diào)節(jié)谷氨酸受體,提高認(rèn)知[7]。
Lep神經(jīng)保護(hù)的另一個(gè)機(jī)制是調(diào)節(jié)線粒體功能。Lep通過(guò)激活A(yù)MPK、PPARγ共激活因子(PGC)/PPAR途徑,支持線粒體功能。Lep通過(guò)激活和調(diào)節(jié)線粒體代謝,有助于恢復(fù)疾病神經(jīng)元至精力充沛的狀態(tài),發(fā)揮神經(jīng)營(yíng)養(yǎng)和保護(hù)作用。Lep誘導(dǎo)以上線粒體變化的分子機(jī)制還有待進(jìn)一步調(diào)查,而B(niǎo)CL-2蛋白家族是參與神經(jīng)細(xì)胞凋亡的主要調(diào)控因子。
總之,Lep激動(dòng)劑相關(guān)肽的研發(fā)對(duì)Lep受體相關(guān)神經(jīng)系統(tǒng)疾病的治療有現(xiàn)實(shí)意義。另外,藥理學(xué)領(lǐng)域感興趣的是Lep對(duì)類風(fēng)濕關(guān)節(jié)炎的治療,其中Lep受體拮抗劑可能對(duì)類風(fēng)濕關(guān)節(jié)炎有潛在治療作用[44]。
參考文獻(xiàn):
[1] Fernandez AM,Torres-Alemán I.The many faces of insulin-like peptide signalling in the brain[J].Nat Rev Neurosci,2012,13(4):225-239.
[2] Scott MM,Lachey JL,Sternson SM,et al.Leptin targets in the mouse brain[J].J Comp Neurol,2009,514(5):518-532.
[3] Plum L,Schubert M,Brüning JC.The role of insulin receptor signaling in the brain[J].Trends Endocrinol Metab,2005,16(2):59-65.
[4] Signore AP,Zhang F,Weng Z,et al.Leptin neuroprotection in the CNS:mechanisms and therapeutic potentials[J].J Neurochem,2008,106(5):1977-1990.
[5] Rosas-Vargas H,Martínez-Ezquerro JD,Bienvenu T.Brain derived neurotrophic factor,food intake regulation,and obesity[J].Arch Med Res,2011,42(6):482-494.
[6] Lieb W,Beiser AS,Vasan RS,et al.Association of plasma leptin levels with incident Alzheimer disease and MRI measures of brain aging[J].J Am Med Assoc,2009,302(23):2565-2572.
[7] Tezapsidis N,Johnston JM,Smith MA,et al.Leptin:a novel therapeutic strategy for Alzheimer′s disease[J].J Alzheimers Dis,2009,16(4):731-740.
[8] Arab L,Sadeghi R,Walker DG,et al.Consequences of aberrant insulin regulation in the brain:can treating diabetes be effective for Alzheimer′s disease[J].Curr Neuropharmacol,2011,9(4):693-705.
[9] Doruk H,Naharci MI,Bozoglu E,et al.The relationship between body mass index and incidental mild cognitive impairment,Alzheimer′s disease and vascular dementia in elderly[J].J Nutr Health Aging,2010,14 (10):834-838.
[10]Moult PR,Harvey J.Hormonal regulation of hippocampal dendritic morphology and synaptic plasticity[J].Cell Adh Migr,2008,2(4):269-275.
[11]Elmquist JK,Bj?rbaek C,Ahima RS,et al.Distributions of leptin receptor mRNA isoforms in the rat brain[J].J Comp Neurol,1998,395(4):535-547.
[12]Marwarha G,Dasari B,Ghribi O.Endoplasmic reticulum stress induced CHOP activation mediates the down-regulation of leptin in human neuroblastoma SH-SY5Y cells treated with the oxysterol 27-hydroxycholesterol[J].Cell Signal,2012,24(2):484-492.
[13]Obeid M,Frank J,Medina M,et al.Neuroprotective effects of leptin following kainic acid-induced status epilepticus[J].Epilepsy Behav,2010,19(3):278-283.
[14]Moult PR,Harvey J.NMDA receptor subunit composition determines the polarity of leptin-induced synaptic plasticity[J].Neuropharmacology,2011,61(5-6):924-936.
[15]Morley JE,Banks WA.Lipids and cognition[J].J Alzheimers Dis,2010,20(3):737-747.
[16]Dicou E,Attoub S,Gressens P.Neuroprotective effects of leptin in vivo and in vitro[J].Neuroreport,2001,12(18):3947-3951.
[17]Oury F,Karsenty G.Towards a serotonin-dependent leptin roadmap in the brain[J].Trends Endocrinol Metab,2011,22(9):382-387.
[18]Greco SJ,Sarkar S,Johnston JM,et al.Leptin reduces Alzheimer′s diseaserelated tau phosphorylation in neuronal cells[J].Biochem Biophys Res Commun,2008,376(3):536-541.
[19]Greco SJ,Sarkar S,Johnston JM,et al.Leptin regulates tau phosphorylation and amyloid through AMPK in neuronal cells[J].Biochem Biophys Res Commun,2009,380(1):98-104.
[20]Greco SJ,Sarkar S,Casadesus G,et al.Leptin inhibits glycogen synthase kinase-3b to prevent tau phosphorylation in neuronal cells[J].Neurosci Lett,2009,455(3):191-194.
[21]Marwarha G,Dasari B,Prabhakara JP,et al.β-Amyloid regulates leptin expression and tau phosphorylation through the mTORC1 signaling pathway[J].J Neurochem,2010,115(2):373-384.
[22]Greco SJ,Bryan KJ,Sarkar S,et al.Leptin reduces pathology and improves memory in a transgenic mouse model of Alzheimer′s disease[J].J Alzheimers Dis,2010,19(4):1155-1167.
[23]Greco SJ,Hamzelou A,Johnston JM,et al.Leptin boosts cellular metabolism by activating AMPK and the sirtuins to reduce tau phosphorylation and β-amyloid in neurons[J].Biochem Biophys Res Commun,2011,414 (1):170-174.
[24]Bonda DJ,Lee HG,Camins A,et al.The sirtuin pathway in ageing and Alzheimer disease:mechanistic and therapeutic considerations[J].Lancet Neurol,2011,10(3):275-279.
[25]Fiszer U,Michalowska M,Baranowska B,et al.Leptin and ghrelin concentrations and weight loss in Parkinson′s disease[J].Acta Neurol Scand,2010,121(4):230-236.
[26]Loref?lt B,Toss G,Granérus AK.Weight loss,body fat mass,and leptin in Parkinson′s disease[J].Mov Disord,2009,24(6):885-890.
[27]Aziz NA,Pijl H,Fr?lich M,et al.Leptin,adiponectin,and resistin secretion and diurnal rhythmicity are unaltered in Parkinson′s disease[J].Mov Disord,2011,26(4):760-761.
[28]Novakova L,Haluzik M,Jech R,et al.Hormonal regulators of food intake and weight gain in Parkinson′s disease after subthalamic nucleus stimulation[J].Neuro Endocrinol Lett,2011,32(4):437-441.
[29]Lu J,Park CS,Lee SK,et al.Leptin inhibits 1-methyl-4-phenylpyridinium-induced cell death in SH-SY5Y cells[J].Neurosci Lett,2006,407(3):240-243.
[30]Ho PW,Liu HF,Ho JW,et al.Mitochondrial uncoupling protein-2 (UCP2) mediates leptin protection against MPPC toxicity in neuronal cells[J].Neurotox Res,2010,17(4):332-343.
[31]Weng Z,Signore AP,Gao Y,et al.Leptin protects against 6-hydroxydopamine-induced dopaminergic cell death via mitogen activated protein kinase signaling[J].J Biol Chem,2007,282(47):34479-34491.
[32]Thio LL,Erbayat-Altay E,Rensing N,et al.Leptin contributes to slower weight gain in juvenile rodents on a ketogenic diet[J].Pediatr Res,2006,60(4):413-417.
[33]Shanley LJ,O′Malley D,Irving AJ,et al.Leptin inhibits epileptiform-like activity in rat hippocampal neurones via PI 3-kinase-driven activation of BK channels[J].J Physiol,2002,545(3):933-944.
[34]Erbayat-Altay E,Yamada KA,Wong M,et al.Increased severity of pentylenetetrazol induced seizures in leptin deficient ob/ob mice[J].Neurosci Lett,2008,433(2):82-86.
[35]Xu L,Rensing N,Yang XF,et al.Leptin inhibits 4-aminopyridine- and pentylenetetrazole-induced seizures and AMPAR-mediated synaptic transmission in rodents[J].J Clin Invest,2008,118(1):272-280.
[36]Guo Z,Jiang H,Xu X,et al.Leptin-mediated cell survival signaling in hippocampal neurons mediated by JAK STAT3 and mitochondrial stabilization[J].J Biol Chem,2008,283(3):1754-1763.
[37]Walker CD,Long H,Williams S,et al.Long-lasting effects of elevated neonatal leptin on rat hippocampal function,synaptic proteins and NMDA receptor subunits[J].J Neurosci Res,2007,85(4):816-828.
[38]Zhang F,Chen J.Leptin protects hippocampal CA1 neurons against ischemic injury[J].J Neurochem,2008,107(2):578-587.
[39]Valerio A,Dossena M,Bertolotti P,et al.Leptin is induced in the ischemic cerebral cortex and exerts neuroprotection through NF-kB/c-Rel-dependent transcription[J].Stroke,2009,40(2):610-617.
[40]Moult PR,Cross A,Santos SD,et al.Leptin regulates AMPA receptor trafficking via PTEN inhibition[J].J Neurosci,2010,30(11):4088-4101.
[41]Oomura Y,Hori N,Shiraishi T,et al.Leptin facilitates learning and memory performance and enhances hippocampal CA1 long-term potentiation and CaMK II phosphorylation in rats[J].Peptides,2006,27(11):2738-2749.
[42]O′Malley D,MacDonald N,Mizielinska S,et al.Leptin promotes rapid dynamic changes in hippocampal dendritic morphology[J].Mol Cell Neurosci,2007,35(4):559-572.
[43]Harvey J.Leptin regulation of neuronal excitability and cognitive function[J].Curr Opin Pharmacol,2007,7(6):643-647.
[44]Otvos L Jr,Shao WH,Vanniasinghe AS,et al.Toward understanding the role of leptin and leptin receptor antagonism in preclinical models of rheumatoid arthritis[J].Peptides,2011,32(8):1567-1574.