張明翠,宋曉秋,黃翠
(中國(guó)礦業(yè)大學(xué)理學(xué)院,江蘇 徐州 221116)
n階α次積分C半群
張明翠,宋曉秋,黃翠
(中國(guó)礦業(yè)大學(xué)理學(xué)院,江蘇 徐州 221116)
在Banach空間上將α次積分C半群與α次積分C余弦算子函數(shù)進(jìn)行了推廣,引入了n階α次積分C半群及其次生成元的定義,得到它與次生成元的關(guān)系,研究了它的基本性質(zhì).討論了n階α次積分C半群與高階抽象Cauchy問題解的關(guān)系.
n階α次積分C半群;次生成元;抽象Cauchy問題
Banach空間上的線性算子理論是處理抽象Cauchy問題的重要工具,它在抽象分析及應(yīng)用數(shù)學(xué)的各個(gè)方面都有重要作用.DeLaubenfels[1]對(duì)C半群與積分半群作了一個(gè)總結(jié).Kellermann與Hieber[2]指出非稠定的Hille-Yosida算子生成局部Lipschitz連續(xù)的一次積分半群,并證明了?er算子iΔ生成Lp(?)(1≤p≤∞)上的積分半群.Hieber[3]將α次積分半群用于研究空間Lp(?n),B?C(?n)與Cb(?n)中的微分算子的Cauchy問題.Li與Shaw[4]從函數(shù)方程和一個(gè)相關(guān)適定性抽象柯西問題方面討論了α次積分C半群的性質(zhì).劉敬懷和宋曉秋[5-6]證明了在Banach空間中一些合適的假設(shè)條件下半線性演化方程的加權(quán)偽概周期溫和解的存在唯一性.那么,對(duì)于n階α次積分C半群,是否也有類似于α次積分C半群與α次積分C余弦算子函數(shù)的性質(zhì)呢?本文給出了其定義及與高階抽象Cauchy問題解的關(guān)系,并給出了證明.
在全文中,?,?,?分別表示自然數(shù)集、實(shí)數(shù)集和復(fù)數(shù)集;X為無限維的復(fù)Banach空間,B(X)是X上有界線性算子全體所成的Banach代數(shù).
Jβu(t)表示u∈C([0,+∞),X)的β次積分,即
易知u=0當(dāng)且僅當(dāng)存在β>0使Jβu(t)=0,t≥0.
定義2.1設(shè)n∈?,α≥0,C∈B(X)是單射,{T(t)}t≥0?B(X)強(qiáng)連續(xù).若存在閉線性算子A使得
當(dāng)t=0時(shí),ρ(0)=0.所以ρ(t)是(3)式的解.
最后同(i)的方法證方程(3)解的唯一性.
[1]deLaubenfels R.Integrated sem igroups,C-semigroupsand the abstractCauchy problem[J],Semigroup Forum,1990,41∶83-95.
[2]Kellermann H,HieberM.Integrated sem igroups[J].Funct Anal,1989,84∶160-180.
[3]HieberM.Laplace transform andα-times integrated C-sem igroups[J].Forum Math,1991(3)∶5961-612.
[4]LiY C,Shaw SY.N-times integrated C-sem igroupsand the abstractCauchy problem[J].Taiwan-ese JMath,1997(1)∶75-102.
[5]Liu JH,Song X Q.Almost Automorphic and Weighted Pseudo almost Automorphic Solutions of Sem ilinear Evolution Equations[J]. Journal of Functional Analysis,(2010),258,196-207.
[6]Liu JH,Song XQ.Weighted Pseudo almost Periodic Mild Solutionsof Semilinear Evolution Equationswith Nonlocal Conditions[J]. App lied Mathematicsand Computation,2009,215,1647-1652.
[7]宋曉秋.應(yīng)用泛函分析[M].徐州:中國(guó)礦業(yè)大學(xué)出版社,2013:80-81.
n-th Orderα-Times Integrated C-Semigroups
ZHANGMing-cui,SONG Xiao-qiu,HUANG Cui
(School of Science,China University of Mining and Technology,Xuzhou 221116,China)
This paper extendsα-times integrated C-sem igroups andα-times integrated C-cosine operator functions in Banach space,and presents the notion of n-th orderα-times integrated C-semi-groups and its sub-generators,and then the authors of the paper get the connections with its sub-generator and study its basic properties.At last,the paper investigates the connections between n-th orderα-times integrated C-semigroups and the solution of high order abstract Cauchy problems.
n-th orderα-times integrated C-sem igroup;sub-generator;abstract Cauchy problems
O177.2
A
1008-2794(2014)04-0033-05
2013-12-27
中國(guó)礦業(yè)大學(xué)理學(xué)院高水平論文專項(xiàng)基金(2012LWB53)
張明翠,2011級(jí)碩士研究生,研究方向:應(yīng)用泛函分析,E-mail∶m ingcuizhang@cumt.edu.cn.