程琴 金剛 李慧敏 彭欣怡 黎萍 王麗萍
(廣西亞熱帶作物研究所,南寧 530001)
木薯FEC誘導及農(nóng)桿菌介導轉化的研究進展
程琴 金剛 李慧敏 彭欣怡 黎萍 王麗萍
(廣西亞熱帶作物研究所,南寧 530001)
在木薯生物技術中,轉基因植株的生產(chǎn)很普遍,它主要通過器官發(fā)生和體細胞胚胎發(fā)生途徑,木薯遺傳轉化的關鍵技術是FEC的誘導和形成,農(nóng)桿菌介導的FEC轉化在轉基因木薯領域被廣泛應用。概述木薯再生途徑中體胚和FEC制備、誘導及增值,并對農(nóng)桿菌介導的轉化及其在木薯中的應用等進行綜述。
木薯 FEC 農(nóng)桿菌 遺傳轉化
木薯在熱帶和亞熱帶的非洲和拉丁美洲是一種重要的經(jīng)濟作物,在亞熱帶地區(qū)作為生產(chǎn)淀粉和生物乙醇的原料[1]。它是營養(yǎng)體繁殖的作物,通過傳統(tǒng)雜交培育新品種非常困難,一方面主要體現(xiàn)在遺傳上高度雜合(heterozygositv)、基因冗余(genetic overloading)、有性子代嚴重分離等復雜的遺傳背景;另一方面木薯存在開花數(shù)目少、花粉育性低、自交不親和、坐果率低等問題[2],因此開展基因工程改良現(xiàn)有品種的品質(zhì)和提高產(chǎn)量已成為當前木薯生物技術研究的重要方向。木薯離體植株再生系統(tǒng)的建立是實現(xiàn)遺傳轉化的首要條件,特別是針對非洲和南美洲的一些品種,目前主要通過以脆性胚性愈傷組織進行體細胞胚胎發(fā)生及子葉胚進行芽器官發(fā)生為植株主要再生途徑[3-8]。與其他作物相比,木薯是報道較晚的可進行遺傳轉化的重要作物。經(jīng)過多年發(fā)展,基于體細胞胚胎發(fā)生、胚狀體子葉芽器官發(fā)生及脆性胚性愈傷循環(huán)體系的趨于成熟[1],為木薯遺傳轉化提供了必要的條件(圖1)[9]。轉基因植株的獲得很普遍,常用且有成功先例的木薯基因轉化方法主要是農(nóng)桿菌介導法和基因槍法[10],成熟體細胞胚的綠色子葉和脆性胚性愈傷組織(FES)是農(nóng)桿菌和基因槍轉化的靶組織[11]。農(nóng)桿菌介導的FEC轉化在轉基因木薯領域被廣泛應用,包括把木薯作為主要經(jīng)濟作物的發(fā)展中國家,很多實驗室都在使用這種技術[12]。本文主要綜述木薯再生途徑中FEC的誘導過程和各個階段所需要的培養(yǎng)基,以及FEC形成后用農(nóng)桿菌進行轉化的相應方法。這在國內(nèi)鮮有報道,本文是在前人的研究基礎上,對木薯再生系統(tǒng)中FEC途徑進行更詳盡的概述,為后人研究轉基因木薯提供捷徑。
FEC可以從熱帶木薯系列(TMS)60444葉外植體,莖或側芽的分生組織里通過初級體細胞胚胎發(fā)生而形成[13]。以組培苗莖段側芽或頂芽為外植體,在添加Picloram和2,4-D的體細胞胚胎發(fā)生誘導培養(yǎng)基上暗培養(yǎng)2周后,可誘導胚狀體的形成[6],使用側芽分生組織在CAM培養(yǎng)基上誘導是最好的,因為它產(chǎn)生胚胎簇,減少非胚性脆性愈傷組織的累積,(圖2和表1)。初級胚在CIM培養(yǎng)基累積和純化[14],連續(xù)繼代培養(yǎng)在GD培養(yǎng)基[15]上的胚性愈傷能產(chǎn)生一種主要由細小的球形胚組成的結構,即所謂脆性胚性愈傷(FEC)。以GD培養(yǎng)基代替MS培養(yǎng)基可提高胚性愈傷的產(chǎn)量,獲得純的脆性愈傷,再進行懸浮培養(yǎng),在SH培養(yǎng)基中進行迅速擴增[6]。生長素濃度中,2,4-D在6 mg/L及Picloram在12 mg/L為最佳使用濃度,并且Picloram的效果明顯優(yōu)于2,4-D[16]。
表1 木薯組織培養(yǎng)中常用的培養(yǎng)基[13]
在木薯胚胎發(fā)生基質(zhì)中從未成熟幼葉和頂端或腋分生組織誘導初級體胚(圖1),通過接種在相同介質(zhì)中可循環(huán)誘導次級體胚發(fā)生,繼續(xù)將次級胚接種在含有12 mg/L 毒莠定的GD培養(yǎng)基中可以產(chǎn)生FEC、次級胚和非胚性愈傷組織(圖1),一般來說,F(xiàn)EC需要被選擇,長期在GD固體培養(yǎng)基上作再次培養(yǎng),為了快速增值,用含有10-12 mg/L毒莠定的
SH懸浮液建立胚胎發(fā)生。胚胎懸浮液在含有1 mg/L萘乙酸的MSN固體培養(yǎng)基上培養(yǎng),體胚再次形成,然后發(fā)展成子葉胚,最后萌發(fā)成小苗[6,12,13]。因FEC和胚胎懸浮液易被農(nóng)桿菌感染,也有利于基因槍法,外源基因的導入容易。木薯轉化常用的是基因槍轉化法和農(nóng)桿菌介導轉化法,到目前為止,農(nóng)桿菌介導轉化木薯已經(jīng)被證實比基因槍介導轉化更成功[17]。
將農(nóng)桿菌LBA4404(帶有1305.1載體)放在YEBA+K50/R50/S100上28℃黑暗培養(yǎng)2 d;再放到YEB+K50/R50/S100上,以200 r/min 28℃黑暗震蕩培養(yǎng)2 d;將FEC和含有載體的農(nóng)桿菌24℃,16 h光照培養(yǎng)4 d,見圖2。而在轉化篩選標記選擇方面,目前常用到的有卡那霉素、遺傳霉素、巴龍霉素(nptII gene)、潮霉素(hpt gene)、草銨膦(bar gene)、甘露糖(磷酸甘露糖異構酶基因)等[18]。載體含有GUSPlus 報告基因,便于顯示轉化的成功率。首先FEC在液體培養(yǎng)基SH中培養(yǎng),之后與農(nóng)桿菌懸浮共培養(yǎng),利用載體中的抗生素篩選非胚性愈傷(NEFC)[19,20],得到FEC需要較長的時間,一般需要在高含量生長素的培養(yǎng)基上培養(yǎng)6個月,而長時間暴露在這樣的培養(yǎng)基上會導致體細胞無性系發(fā)生變異,從而導致木薯株型發(fā)生變異[18]。然而常規(guī)方法獲得FEC再生率很低,促使我們修改接種程序并找到一種新方法:用農(nóng)桿菌懸浮液直接侵染GD培養(yǎng)基上的FEC群簇,見圖2。將FEC和農(nóng)桿菌在培養(yǎng)基上共培養(yǎng)4 d,使用塑料網(wǎng)轉移FEC與農(nóng)桿菌的共培養(yǎng)物到新的培養(yǎng)基。這樣減少對FEC的脅迫,控制營養(yǎng)、激素和抗生素平衡。為了使被轉化的FEC成熟,共培養(yǎng)后逐漸增加抗生素濃度進行篩選,每個詳細的步驟使這種技術在其他實驗室的實現(xiàn)成為可能,包括把木薯作為主要經(jīng)濟作物的發(fā)展中國家[12]。
圖2 FEC和體胚的形成及轉化農(nóng)桿菌[12]
與其他的轉化方法比較,高效、重復性好、設備簡單和穩(wěn)定表達是根癌農(nóng)桿菌介導的基因轉化方法的突出優(yōu)點,是目前應用最廣泛的基因轉化方法[10]。González等[21]用農(nóng)桿菌菌株AB1成功轉化西非品種TMS60444的FEC,兩個株系對巴龍霉素抗性的轉基因特性通過GUS分析和Southern分析。Zhang等[8]在正負選擇因子存在下,用農(nóng)桿菌LBA4404轉化TMS60444的胚胎懸浮液,獲得了12種正常轉基因株系形態(tài),5種是用甘露醇篩選的,另外7種具有潮霉素抗性,PCR和Southern分析證實轉基因穩(wěn)定整合到基因組上,RT-PCR和Northern分析證明轉基因在再生植株中表達。Schreuder等[22]為木薯胚胎懸浮液和農(nóng)桿菌侵染建立了一個高效、可再生的轉化程序,在31株GUS活性株系中,14株顯示100% GUS活性,剩下17株顯示72% GUS活性。Southern分析顯示這些植株的轉基因特性。Zhang等[23]經(jīng)過5年研究TMS60444FEC的轉化后,農(nóng)桿菌介導的FEC的轉化成功運用在多個實驗室,運用這套系統(tǒng);Zhang和Beltran等通過木薯胚胎懸浮液,成功引進編碼必需氨基酸的合成人工存儲蛋白1(ASP1)基因,通過Western分析在轉基因植株的葉和根中能檢測到ASP1四聚物,隨后,木薯轉化得到了驗證,如特定組織啟動子[24,25],抵抗非洲木薯花葉病毒(ACMV)[26-29],增加蛋白質(zhì)含量[30],改善木薯褐條病毒抗性[31]。從FEC的誘導到轉基因植株再生的整個過程[12,13]已經(jīng)被優(yōu)化,農(nóng)桿菌轉化系統(tǒng)最突出優(yōu)勢是可以得到大量的轉基因植物,因此,它在木薯基因工程中是最廣泛使用的方法。
木薯TMS60444最佳的轉化程序[12]在ETH Zurich(瑞士蘇黎世聯(lián)邦理工學院)建立了一套高通量轉化平臺,并將這種技術傳給非洲實驗室[32,33]。為了適應和部署轉基因木薯線路改進特征,基因依賴轉化程序的發(fā)展已經(jīng)被木薯研究社群認為是一個重要步驟[1,32,34],因為它的健壯性和高效性,改進的轉化方案能滿足木薯在其他農(nóng)民首選品種和地方品種的轉基因改良,能維持農(nóng)桿菌-FEC介導轉化的每個關鍵步驟的高效性。此方案不僅適用于木薯60444,也能用于農(nóng)民首選地方品種的轉基因,這對以木薯作為糧食和能源作物的地區(qū)非常有利。
總之,經(jīng)過15年的努力,從1996年第一個轉基因木薯被報道以來,木薯遺傳轉化已取得顯著進展。這項技術不僅在幾個先進的實驗室進一步發(fā)展,在發(fā)展中國家的實驗室也運用起來,包括中國和非洲[32]。除了木薯模式品種用于轉基因的改良,農(nóng)民首選品種和地方品種也嘗試用于轉基因改良,最近在南非和肯尼亞的實踐已經(jīng)證明,此方法適合當?shù)毓I(yè)首選木薯的轉基因改良[33]。基因改良已增加木薯對病毒和非生物脅迫的抗性,減少氰化物毒性,提高了營養(yǎng)價值,以及改善淀粉產(chǎn)量和質(zhì)量。因此,木薯轉基因技術在是木薯產(chǎn)業(yè)化和食品安全從發(fā)展到實際應用的過渡。相信在不久的將來,隨著木薯轉基因技術的成熟,其產(chǎn)業(yè)化生產(chǎn)也將呈現(xiàn)一個嶄新的舞臺。
[1] Liu J, Zheng QJ, Ma QX, et al. Cassava Genetic transformation and its application in breeding[J]. Journal of Integrative Plant Biology, 2011, 53(7):552-569.
[2] Ceballos H, Okogbenin E, Pbrez JC, et a1. Cassava in root and tuber crops, handbook of plant breeding[C]. Springer New York, 2010.
[3] Li HQ, Sautter C, Potrykus I, et al. Genic transformation of cassava(Crantz)[J]. Ture Biotechnology, 1996, 14:736-740.
[4] Li HQ, Huang YW, Liang CY, et al. Regeneration of cassava plavia shoot organogenesis[J]. Plant Cell Report, 1998, 17:410-414.
[5] Schpke C, Taylor N, Carcamo R, et al. Regeneration of transgenic cassava plants(Crantz)from microbombarded embryogenic suspension cultures[J]. Nature Biotechnology, 1996, 14:731-735.
[6] Taylor N, Edwards M, Kiernan RJ, et al. Development of friable embryogenic callus and embryogenic suspension culture systems in cassava(Crantz)[J]. Nature Biotechnology, 1996, 14:726-730.
[7] Taylor N, Chavarriaga P, Raemakers K, et al. Development and application of transgenic technologies in cassava[J]. Plant Molecular Biology, 2004, 56:671-688.
[8] Zhang P, Legris G, Coulin P, et al. Production of stably transformed cassava plants via particle bombardment[J]. Plant Cell Reports, 2000, 19:939-945.
[9] Zhang P . Studies on cassava(Manihot esculenta Crantz)transformation:Towards genetic improvement[D]. Switzerland:2000 .
[10] 康冬鴿, 李瑞梅, 胡新文, 等. 木薯的再生體系和基因轉化方法[J]. 基因組學與應用生物學, 2009, 28(3):619-624.
[11] Zhang P, Puonti-Kaerlas J. Regeneration of transgenic cassava from transformed embryogenic tissues[J]. Methods Molecular Biology, 2005, 286:165-176.
[12] Bull SE, Owiti JA, Niklaus M, et al. Agrobacterium-mediated transformation of friable embryogenic calli and regeneration of transgenic cassava[J]. Nature Protocols, 2009, 4:1845-1854.
[13] Zhang P, Gruissem W. Production of transgenic cassava(Manihot esculenta Crantz)in transgenic crops of the world—Essential Protocols[C]. the Netherlands:Kluwer Academic Publishers, 2004:301-319.
[14] Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures[J]. Physiology Plant, 1962, 15:473.
[15] Gresshof PM, Doy CH. Derivation of a haploid cell line from Vitis vinifera and the importance of the stage of meiotic development of anthers for haploid culture of this and other genera[J]. Z Pflanzenphysio, 1974, 73:132-141.
[16] 趙姍姍, 李海霞, 劉佳, 等. 我國主要栽培木薯品種體細胞胚胎發(fā)生與芽器官發(fā)生的研究[J]. 農(nóng)業(yè)生物技術學報, 2010, 18(1):37-44.
[17] Siritunga D, Sayre R. Generation of cyanogen-free transgenic cassava[J]. Planta, 2003, 217:367-373.
[18] 尹彩霞, 喬愛民, 張鵬, 等. 木薯組織培養(yǎng)和轉基因育種研究進展[J] , 仲愷農(nóng)業(yè)工程學院學報, 2009, 22(2):65-71 .
[19] Raemakers K, Schreuder M, Pereira I, et al. Progress made in FEC transformation of cassava[J]. Euphytica, 2001, 120:15-24.
[20] Zhang P, Potrykus I, Puonti-Kaerlas J. Efficient production of transgenic cassava using negative and positive selection[J]. Transgenic Research, 2000, 9:405-415.
[21] González AE, Schopke C, Taylor NJ, et al. Regeneration of transgenic cassava plants(Manihot esculenta Crantz)through Agrobacterium-mediated transformation of embryogenic suspension cultures[J]. Plant Cell Reports, 1998, 17:827-831.
[22] Schreuder MM, Raemakers C, Jacobsen E, et al. Efficient production of transgenic plants by Agrobacterium-mediated transformation of cassava(Manihot esculenta Crantz)[J]. Euphytica, 2001, 120:35-42.
[23] Zhang P, Jaynes J, Potrykus I, et al. Transfer and expression of an artificial storage protein(ASP1)gene in cassava(Manihot esculenta Crantz)[J]. Transgenic Research, 2003, 12:243-250.
[24] Zhang P, Bohl-Zenger S, Pounti-Kaerlas J, et al. Two cassava promoters related to vascular expression and storage root formation[J]. Planta, 2003, 218:192-203.
[25] Beltran J, Pr?as M, Al-Babili S, et al. Expression pattern conferred by a glutamic acid-rich protein gene promoter in field-grown transgenic cassava(Manihot esculenta Crantz)[J]. Planta, 2010, 231:1413-1424.
[26] Chellappan P, Masona MV, Vanitharani R, et al. Broad spectrum resistance to ssDNA viruses associated with transgene-induced gene silencing in cassava[J]. Plant Molecular Biology, 2004, 56:601-611.
[27] Zhang P, Vanderschuren H, Futterer J, et al. Resistance to cassava mosaic disease in transgenic cassava expressing antisense RNAs targeting virus replication genes[J]. Plant Biotechnology, 2005, 3: 385-397.
[28] Vanderschuren H, Akbergenov R, Pooggin MM, et al. Transgenic cassava resistance to African cassava mosaic virus is enhanced by viral DNA-A bidirectional promoter-derived siRNAs[J]. Plant Molecular Biology, 2007, 64:549-557.
[29] Vanderschuren H, Alder A, Zhang P, et al. Dosedependent RNAi-mediated geminivirus resistance in the tropical root crop cassava[J]. Plant Molecular Biology, 2009, 70:265-272.
[30] Abhary M, Siritunga D, Stevens G, et al. Transgenic biofortification of the starchy staple cassava(Manihot esculenta)generates a novel sink for protein[J]. PLoS ONE, 2011, 6(1):e16256.
[31] Yadav JS, Ogwok E, Wagaba H, et al. RNAi-mediated resistance to cassava brown streak Uganda virus in transgenic cassava[J]. Plant Pathology, 2011, (10):1364-3703.
[32] Bull SE, Ndunguru J, Gruissem W, et al. Cassava:constraints to production and the transfer of biotechnology to African laboratories[J]. Plant Cell Reports, 2011, 30:779-787.
[33] Chetty CC, Rossin CB, Gruissem W, et al. Empowering biotechnology in southern Africa:Establishment of a robust transformation platform for the production of transgenic industrypreferred cassava[J]. New Biotechnology, 2012(10):1016.
[34] Sayre R, Beeching JR, Cahoon EB, et al. The BioCassava plus program:biofortification of cassava for Sub-Saharan Africa[J]. Annual Review of Plant Biology, 2011, 62:251-272.
(責任編輯 狄艷紅)
Advances in Induction of Cassava FEC and Agrobacterium-mediated Transformation
Cheng Qin Jin Gang Li Huimin Peng Xinyi Li Ping Wang Liping
(Guangxi Subtropical Crops Research Institute,Nanning 530001)
Production of transgenic plants is gradually becoming routine in cassava biotechnology. It is primarily through organogenesis and somatic embryogenesis, the key technology of cassava genetic transformation is friable embryogenic calli(FEC)induction and formation, Agrobacterium-mediated transformation of FEC is the most widely used method to generate transgenic cassava plants.This article provides an overview of cassava regeneration way including embryo and FEC preparation, induction and appreciation, the Agrobacterium-mediated transformation and its application in cassava were summarized.
Cassava FEC Agrobacterium Transformation
2013-10-09
程琴,女,碩士,研究實習員,研究方向:植物組培及轉基因分子育種;E-mail:chengqin413@163.com