• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved preparation and chemical kinetics on fully automated synthesis of[18F]-THK523,a PET imaging probe for Tau pathologies?

    2014-03-07 12:24:23KONGYanYan孔艷艷SIZhan司展CAOGuoXian曹?chē)?guó)憲ZHANGZhengWei張政偉WUPing吳平XUEFangPing薛方平DUFuQiang杜富強(qiáng)ZHUJianHua朱建華LICong李聰CHENJian陳鍵andGUANYiHui管一暉
    Nuclear Science and Techniques 2014年4期
    關(guān)鍵詞:吳平方平

    KONG Yan-Yan(孔艷艷),SI Zhan(司展),CAO Guo-Xian(曹?chē)?guó)憲), ZHANG Zheng-Wei(張政偉),WU Ping(吳平),XUE Fang-Ping(薛方平),DU Fu-Qiang(杜富強(qiáng)), ZHU Jian-Hua(朱建華),LI Cong(李聰),CHEN Jian(陳鍵),and GUAN Yi-Hui(管一暉),

    1PET Center,Huashan Hospital,Fudan University,Shanghai 200235,China

    2Key Laboratory of Nuclear Medicine,Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine,Wuxi 214063,China

    3Key Laboratory of Smart Drug Delivery,Ministry of Educationamp;PLA, School of Pharmacy,Fudan University,Shanghai 200032,China

    Improved preparation and chemical kinetics on fully automated synthesis of[18F]-THK523,a PET imaging probe for Tau pathologies?

    KONG Yan-Yan(孔艷艷),1SI Zhan(司展),1CAO Guo-Xian(曹?chē)?guó)憲),2ZHANG Zheng-Wei(張政偉),1WU Ping(吳平),1XUE Fang-Ping(薛方平),1DU Fu-Qiang(杜富強(qiáng)),1ZHU Jian-Hua(朱建華),3LI Cong(李聰),3CHEN Jian(陳鍵),3and GUAN Yi-Hui(管一暉)1,?

    1PET Center,Huashan Hospital,Fudan University,Shanghai 200235,China

    2Key Laboratory of Nuclear Medicine,Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine,Wuxi 214063,China

    3Key Laboratory of Smart Drug Delivery,Ministry of Educationamp;PLA, School of Pharmacy,Fudan University,Shanghai 200032,China

    Extensive accumulation of neurofibrillary tangles(NFTs)consistently correlate with the degree of cognitive impairment and neuronal circuitry deterioration associated with Alzheimer’s disease.However,no PET probe is currently available for selective detection of NFTs in the living human brain.[18F]-THK523 was developed as a potential in vivo imaging probe for tau pathology.In this paper,we report a new protected precursor,2-((2-(4-((tert-butoxycarbonyl)amino)phenyl)quinolin-6-yl)oxy)ethyl 4-methylbenzenesulfonate(THK-7),instead of 2-((2-(4-aminophenyl)quinolin-6-yl)oxy)ethyl 4-methylbenzenesulfonate(BF241),and an improved automated radiosynthesis of[18F]-THK523 and the study on chemical kinetics of the labeling reaction of[18F]-THK523, with high-yield(70±5%,n=6,decay-corrected to end of bombardment),and high radiochemical purity (>90%)and specific activity(2.5±0.5Ci/μmol)from protected precursor on fully automated module at the end of radiosynthesis(45–55min).The chemical kinetics for[18F]-THK523 demonstrates that nucleophilic substitution can be carried out easily with protected precursor.

    Fluorine-18 radiolabeling,Neurofibrillary tangles,Alzheimer’s disease,Automated radiosynthesis,Chemical kinetics

    I.INTRODUCTION

    Alzheimer’s disease(AD)is characterized by progressive impairment of cognitive abilities,such as memory,learning, and social skills.The effects of AD are devastating for both the patients and their family,affecting their everyday life.AD mostly afflicts the elderly,resulting in an economic challenge for our healthcare system,as the elderly population grows[1].

    A clinical diagnosis of AD is assessed by several tools, such as medical history and neuropsychological criteria(e.g. National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer’s disease and Related Disorders Association)[2].However,a definitive diagnosis of AD can only be made by confirming the presence of cerebral extracellular senile plaques(SPs)and intracellular neurofibrillary tangles(NFTs)from a postmortem assessment.SPs and NFTs that consist of amyloid-β peptides (Aβ)and paired helical filaments(PHFs)of hyperphosphorylated tau protein are neuropathological hallmarks in AD. Tau protein is a microtubule-associated protein present in ax-ons,the roles of which include stabilization of the microtubules,modulation of the plasticity of the cytoskeleton,and the promotion of neurite outgrowths.When hyperphosphorylated,tau proteins aggregate into PHFs and NFTs,resulting in the destabilization of microtubules and disruption of axonal transport[3–5].Eventually,these stresses will cause neuronal deterioration and ultimately neuronal death.The severity of NFTs accumulation correlates with the degree of cognitive impairment and neuronal deterioration associated with AD[6–9].This correlation makes NFTs potential biomarkers that can be targeted to study how the AD pathology progresses and its association with cognitive deterioration[3,10,11].

    The detection of NFTs in the early stages of AD might be of great value for diagnostic and treatment purposes. Positron emission tomography(PET)is a noninvasive diagnostic imaging modality,which utilizes radioisotopelabeled target molecular probes and is considered as a diagnostic tool that enables early detection of pathologies. Synthesizing molecular probes with a high specificity and affinity to NFTs for PET imaging can allow an earlier diagnosis and monitoring the progression of AD in vivo[12]. Reports on PET imaging agents selectively targeting NFTs include:radioiodinated styrylbenzimidazole(SBIM)derivative[13];radioiodinated phenyldiazenylbenzothiazole(PDB) derivative[14];quinoline and benzimidazole derivatives, [11C]BF158[15]and[18F]-THK523[16];rhodanine and thiohydantoin derivative[17];phenyldiazenyl benzothiazole deriveatives,[18F]T807/808[3,18]and[18F]-(E)-4-((6-(2-(2-(2-fluoroethoxy)ethoxy)ethoxy)benzo[d]thiazol-2-yl)-diazenyl)-N,N-dimethylaniline([18F]FPPDB)[19],and 2-(1- 6-[(2-[F]fluoroethyl)(methyl)amino]-2-naphthylg ethylidene)malononitrile [18F]FDDNPg[20].One of the imaging agents,[18F]-THK523,displayed high affinity and selectivity for tau pathology both in vitro and in vivo[16,21].In this paper,we elevate the automated radiosynthesis and reaction kinetics of[18F]-THK523 from a new precursor,2-((2-(4-((tert-butoxycarbonyl)amino)phenyl)quinolin-6-yl)oxy)ethyl 4-methylbenzenesulfonate(THK-7).This differs from the previous synthesis of[18F]-THK523 by Fodero-Tavoletti MT(Fig.1),which utilized 2-((2-(4-aminophenyl)quinolin-6-yl)oxy)ethyl4-methylbenzenesulfonate (BF241)asa precursor[17].

    Fig.1.Structure of precursor.

    II.EXPERIMENTAL

    A.Reagents and instrumentation

    KryptofixTM2.2.2,sodium bicarbonate,sodium hydroxide and hydrochloric acid of analytical grade were purchased from Sigma-Aldrich Corporation(St.Louis,MO,USA). Acetonitrile and ethanol of HPLC grade were obtained from Shanghai Lingfeng Chemical Reagent Co.,Ltd.(Shanghai, China).Sep-Pak tC18 solid phase extraction(SPE)cartridge (78.4μm of particle size)and sterile filters(0.22μm)were purchased from Waters Corporation(Milford,Massachusetts, USA).

    Semi-preparative high-performance liquid chromatography was conducted using a Waters pump(Waters Corporation,Milford,Massachusetts,USA)with a Bioscan radioactivity detector.Analytical radio-HPLC(Waters Corporation) was equipped with a dual λ absorbance detector(Waters 2487),binary HPLC pump(Waters 2487)and a Bioscan radioactivity detector.TLC plate radioactivity was measured on a Wizard 1470 automatic gamma counter(U.S.Perkin Elmer Company)equipped with a multi-channel analyzer. The [18F]-THK523 synthesis module(PET-IT-I Reactor Module) was purchased from PET Scienceamp;Technology Co.Ltd. (Beijing,China).NMR and LC-MS were purchased from Bruker Corporation(Germany).

    B.Precursor synthesis

    1. Preparation of 6-methoxy-2-(4-nitrophenyl)quinolone:THK-1

    A mixture of 4-nitro-cinnamic aldehyde (20g, 112.9mmol)and methoxyphenethylamine(25g,203mmol) were mixed into 37%HCl(70mL)under nitrogen,and the mixture was heated to 140?C reflux for 3h.The solution was poured into ice water and adjusted to pH 8 with ammonia. The aqueous layer was extracted with three portions of ethyl acetate.The combined organic layer was washed with saturated sodium chloride,dried,filtered and concentrated. The residue was purified by flash column chromatography (N-hexane:Dichloromethane=1∶1)to afford THK-1 (8.8g,31.4mmol)in 28%yield.1H NMR(300MHz, CDCl3)δ 8.30–8.40(m,4H),8.18(d,1H,J=9.3Hz),8.08 (d,1H,J=9.3Hz),7.89(d,1H,J=8.6Hz),7.43(dd, 1H,J=8.3,2.8Hz),7.12(d,1H,J=2.8Hz);LC-MS: calculated for C16H12N2O3,280.08;found[M+H]281.0.

    2. Preparation of 2-(4-nitrophenyl)quinolin-6-ol:THK-2

    THK-1(3g,10.7mmol)was added to 30%HBr(260mL) and heated to 125–130?C reflux for 3h. The solution was alkalized by NaHCO3and extracted with ethyl acetate.The combined organic layer was washed with saturated sodium chloride,dried,filtered and concentrated. The residue was purified by flash column chromatography (Dichloromethane∶Ethyl acetate=10∶1)to afford THK-2 (2.35g,8.8mmol)in 82.5%yield.1H NMR(300MHz,d-DMSO)δ 10.2(s,1H),8.51(d,2H,J=9.2Hz),8.37(d, 2H,J=9.0Hz),8.33(d,1H,J=8.5Hz),8.16(d,1H, J=8.6Hz),7.98(d,1H,J=9.1Hz),7.39(dd,1H,J=9.1, 2.7Hz),7.21(d,1H,J=2.7Hz);LC-MS:calculated for C16H12N2O3,266.07;found[M+H]267.0.

    C.Preparation of 6-(2-((tert-butyldiphenylsilyl)oxy)ethoxy)-2-(4-nitrophenyl)quinoline: THK-3

    THK-2(2.35g,8.8mmol)was dissolved in 80mL acetonitrile.To the solution were added K2CO3(14.6g,105.6mmol) and TBDPSOCH2CH2Br(4.8g,13.2mmol).The mixture was heated to 90?C reflux for 16h under nitrogen.The solution was filtered,washed with dichloromethane,and evaporated. The residue was purified by flash column chromatography(Dichloromethane∶N-hexane=1∶1)to afford compound THK-3(4.1g,7.5mmol)in 84.7%yield.1H NMR(300MHz,CDCl3)δ 8.31–8.59(m,4H),8.14(d, 1H,J=8.4Hz),8.07(d,2H,J=8.3Hz),7.88(d,1H, J=8.5Hz),7.71–7.74(m,4H),7.35–7.45(m,7H),7.09 (d,1H,J=2.7Hz),4.25(t,2H,J=5.1Hz),4.09(t,2H, J=5.0Hz),1.08(s,9H).

    D. Preparation of 4-(6-(2-((tertbutyldiphenylsilyl)oxy)ethoxy)quinolin-2-yl)aniline: THK-4

    THK-3(3g,5.5mmol)was dissolved in 300mL ethanol and cooled to 0?C with ice-bath. Anhydrous Cu(OAc)2(1.31g,7.2mmol)was added to the solution. NaBH4(10.41g,275.2mmol)was added portion wise within 25min. The mixture was cooled for 10min in ice-bath.Then the solution was warmed to room temperature and stirred for 3.5h. All the above reactions were carried out under nitrogen.The mixture was poured into 50mL water and ethanol was evaporated.The aqueous layer was extracted with ethyl acetate. The organic layer was washed,dried,filtered and concentrated to afford THK-4(2.4g,4.6mmol)in 83%yield.1H NMR(300MHz,CDCl3)δ 7.97–8.01(m,4H),7.71–7.76 (m,5H),7.30–7.43(m,7H),7.02(d,1H,J=2.8Hz),6.80 (d,2H,J=8.6Hz),4.21(t,2H,J=5.1Hz),4.07(t,2H, J=5.1Hz),3.80(brs,2H),1.07(s,9H);LC-MS:calculated for C33H34N2O2Si,518.24;found[M+H]519.2.

    E.Preparation of tert-butyl(4-(6-(2-((tertbutyldiphenylsilyl)oxy)ethoxy)quinolin-2-yl)phenyl) carbamate:THK-5

    THK-4(2.4g,4.6mmol),Boc2O(3g,13.7mmol)and triethylamine(1.8g,17.8mmol)were dissolved into tetrahydrofuran(THF)(30mL)and heated to 90?C reflux for 16h under the protection of nitrogen.The solvent was removed under reduced pressure.The residue was purified by column chromatography(Dichloromethane∶Ethyl acetate=8∶14∶1)to afford THK-5(2.4g,3.9mmol)in 84%yield.1H NMR(300MHz,CDCl3)δ 8.09(d,2H,J=8.8Hz),8.03 (d,1H,J=8.6Hz),8.02(d,1H,J=9.1Hz),7.79(d,1H, J=8.6Hz),7.70–7.75(m,4H),7.51(d,2H,J=8.7Hz), 7.32–7.45(m,7H),7.04(d,1H,J=2.8Hz),6.59(s,1H), 4.22(t,2H,J=5.1Hz),4.07(t,2H,J=5.1Hz),1.55(s, 9H),1.07(s,9H).

    F.Preparation of tert-butyl (4-(6-(2-hydroxyethoxy)quinolin-2-yl)phenyl)carbamate: THK-6

    THK-5(1.01g,1.6mmol)was dissolved in 60mL THF. Bu4NF·3H2O(2g,6.3mmol)in 10mL THF was added to the solution.The reaction was allowed to stir at room temperature for 15–20min under nitrogen.The solvent was removed under reduced pressure.The residue was purified by column chromatography(Dichloromethane∶Ethyl acetate=4∶1) to afford THK-6(0.5g,1.3mmol)in 65%yield.1H NMR (300MHz,CDCl3)δ 9.55(s,1H),8.27(d,1H,J=8.5Hz), 8.13(d,2H,J=8.8Hz),8.02(d,1H,J=8.7Hz),7.93(d, 1H,J=8.9Hz),7.61(d,2H,J=8.8Hz),7.35–7.42(m, 2H),4.93(t,1H,J=5.5Hz),4.13(t,2H,J=4.8Hz),3.80 (dd,2H,J=4.8,5.4Hz),1.50(s,9H).

    G. Preparation of 2-((2-(4-((tertbutoxycarbonyl)amino)phenyl)quinolin-6-yl)oxy)ethyl 4-methylbenzenesulfonate:THK-7

    THK-6(0.48g,1.2mmol)was dissolved in 27mL dichloromethane.After the mixture was cooled to?5?C in an ice/sodium chloride bath,triethylamine(0.842g, 8.3mmol)and DMAP(0.154g,1.3mmol)were added.TsCl (1.07g,5.6mmol)was added at?10?C.Then the ice bath was removed and the mixture was allowed to stir overnight at room temperature.The above reaction was carried out under N2atmosphere.The solvent was removed under reduced pressure.The residue was purified by column chromatography(Dichloromethane∶Ethyl acetate=30∶1!8∶1) to afford 600mg of a yellow solid.Finally,pure product THK-7(0.59g,1.1mmol)in 87.5%yield was crystallized from Ethyl acetate(20mL)and N-hexane(35mL).1H NMR (300MHz,CDCl3)δ 9.56(s,1H),8.23(d,1H,J=8.7Hz), 8.14(d,2H,J=8.8Hz),8.03(d,1H,J=8.8Hz),7.91 (d,1H,J=9.0Hz),7.82(d,2H,J=8.3Hz),7.62(d,2H, J=8.8Hz),7.46(d,2H,J=8.0Hz),7.24–7.30(m,2H), 4.42–4.45(m,2H),4.30–4.33(m,2H),2.39(s,3H),1.50 (s,9H);LC-MS:calculated for C29H30N2O6S,534.18;found [M+H]535.0.

    H.Standard synthesis for[18F]-THK523,tert-butyl (4-(6-(2-fluoroethoxy)quinolin-2-yl)phenyl)carbamate (THKF-2)

    1. Preparation of 6-fluoro-2-(4-nitrophenyl)quinoline:THKF-1

    THK-2(0.5g,1.9mmol),K2CO3(2.6g,18.8mmol)and BrCH2CH2F(0.5g,3.9mmol)were added to 24mL acetonitrile.The mixture was refluxed for 16h at room temperature under nitrogen.The solution was filtered and evaporated.The residue was purified by column chromatography (N-hexane∶Ethyl acetate=4∶1!3∶1)to afford THKF-1(0.55g,1.8mmol)in 93.4%yield.1H NMR(300MHz, CDCl3)δ 8.31–8.39(m,4H),8.18(d,1H,J=8.5Hz),8.12 (d,1H,J=9.3Hz),7.90(d,1H,J=8.6Hz),7.48(dd,2H, J=9.2,2.8Hz),7.14(d,2H,J=2.8Hz),4.86(dm,2H, J=47.4Hz),4.36(dm,2H,J=27.6Hz).

    Fig.2.Schematic diagram for synthesis of[18F]-THK523.

    2. Preparation of tert-butyl (4-(6-(2-fluoroethoxy)quinolin-2-yl)phenyl)carbamate:THKF-2

    THKF-1(0.55g,1.8mmol)was dissolved in ethanol (120mL)under nitrogen.The solution was cooled to 0?C and then anhydrous Cu(OAc)2(0.42g,2.3mol)was added. NaBH4(2g,52.9mol)was added portionwise at?5?C.The solution was allowed to stir at?5?C for 30min.Then the mixture was allowed to warm up to room temperature while stirring for 1h.The solvent was evaporated and the mixture was poured into 50mL water.The aqueous layer was extracted with ethyl acetate.The organic layer was washed, dried,filtered and concentrated.The residue was purified by flash column chromatography(N-hexane∶Ethyl acetate= 6∶1!3∶1)to afford THKF-2(0.21g,0.7mmol)in 42% yield.1H NMR(300MHz,CDCl3)δ 7.97–8.04(m,4H),7.76 (d,1H,J=8.7Hz),7.39(dd,1H,J=9.3,2.7Hz),7.07(d, 1H,J=2.7Hz),6.80(d,1H,J=8.6Hz),4.88(dm,2H, J=47.4Hz),4.34(dm,2H,J=27.6Hz);LC-MS:calculated for C17H15FN2O,283.13;found[M+H]283.0.

    I.Radiosynthesis of[18F]-THK523

    [18F]-THK523 was synthesized using an automated module(PET Scienceamp;Technology Co.Ltd.,Beijing China) (Fig.2).The no carrier added aqueous[18F]fluoride–was produced by the18O(p,n)18F nuclear reaction on an Eclipse HP Cyclotron(Siemens).

    The synthesis of[18F]-THK523 includes five steps:1) azeotropic evaporation,2)nucleophilic substitution,3)hydrolysis for deprotection,4)purification,and 5)sterile filtration(Fig.3).Briefly,[18F]fluoride was trapped on a QMA cartridge and eluted into the reaction vial with 1.5mL mixture of K2CO3in water and KryptofixTM2.2.2 in Acetonitrile(19/31mmol/L)which was pre-added in bottle 1#.The mixture in the vial was evaporated at 116?C for 206s under a N2flow and was co-evaporated to dryness with anhydrous acetonitrile(2mL)in bottle 2#at 116?C for another 203s.The tosylated precursor(2mg in 1mL acetonitrile)in bottle 3#was added to the dried K[18F]and the nucleophilic substitution reaction was carried out at 120?C for 15min to afford[18F]-THK.After excess of acetonitrile was removed at 120?C under a flow of nitrogen,HCl(1mol/L,250μL)in bottle 4#was added to hydrolyze the Boc protecting group. The mixture was allowed to react at 105?C for 5min,and NaOH(2mol/L,125μL)stored in bottle 5#was added followed by saturated NaHCO3(1mol/L,125μL)in bottle 6#to neutralize the solution.

    The neutralized solution was loaded on a C-18 Sep-Pak,which was further washed with water to remove free18F–,KryptofixR?TM2.2.2,and other polar byproducts.The cartridge was then eluted with ethanol(2mL). The obtained crude product was collected and injected onto a semipreparative column(Waters XBridgeTMprep Shield RP18 10μm,250mm×10mm,part No.186003990,serial No. 101/123041GG01)at a flow rate of 4mL/min(70%EtOH: 30%H2O).The fraction containing[18F]-THK523 was collected from 6.0–6.5min on semi-preparative HPLC and was evaporated to dryness.To the residual,10%ethanol in saline (5mL)was added and the resulting solution was stabilized with ascorbic acid(2mg,0.011mmol)before sterile filtration through a 0.22μm membrane filter into a sterile vial.

    Fig.3.Radiosynthesis of[18F]-THK523.

    J.Quality control of[18F]-THK523

    The labeling yield was determined by thin layer chromatography(TLC).Apply 2–4μL of the crude reaction solution to an activated silica gel G60 with?uorescence (F254)plates.Develop the chromatogram in a solvent system consisting of a mixture of ethyl acetate∶n-hexane∶triethylamine=4∶1∶0.005(v/v)until the solvent has moved about 3/4 of the length of the hromotogram.Remove the chromatogram,and allow the chromatogram to dry at room temperature.Determine the radioactivity distribution by cutting the chromatogram into 10 pieces of strips with equal length from sampling spot to where the solvent developed and counting each strip in a Wizard 1470 automatic gamma counter(U.S.Perkin Elmer Company)equipped with a multi-channel analyzer.The Rf value of[18F]-THK523 was 0.7–0.8,and Rf value of free F-18 was 0.0.Two TLCs were run for each tested reaction condition and radiolabelling yields were obtained by averaging the yields of the two runs.

    Radiochemical purity(RCP)was determined by analytical radio-HPLC(high-performance liquid chromatography).The final product(20μL)was injected into the HPLC column(PurospherR?STAR LPRP-18e endcapped(5μm), 250mm×4.6mm,sorbent Lot No.TA1752311,column No. 210072,acetonitrile/0.05%triethylamine in water= 8/2 (v/v),flow rate at 0.6mL/min)at room temperature.The absorbance measured at 350nm retention time(tR)of the standard and[18F]-THK523 were 6.12 and 5.93min,respectively. The chemical identity was verified by co-injection with cold standard THKF-2.

    K.Studies of reaction kinetics

    The reaction conditions for the nucleophilic substitution were optimized by studying the reaction kinetics.Six vials, each containing a 30–50mCi activity of18F–,were used. After azeotropic evaporation,THK-7(1mL,3.7mmol/L)in DMSO/CAN(1/5)was added to the vials and reacted at 25?C,120?C and 160?C according to the procedure described above. Three reaction times,2min,15min and 30min,were investigated at each temperature.After the same deprotecting reaction workup,solutions were sampled with a capillary and labeling yields were determined TLC.Films were dried and cut into 10 sections,then counted with γcounter.Order of reaction(n),rate constant(k)and activation energy(Ea)of the labeling reaction were calculated with the CHEMKIN code,developed by Cao et al.[22],to quantitatively study the labeling reaction for optimal conditions of nucleophilic substitution.

    The rate constant,k,for the formation of[18F]-THK523, was calculated as follows.The reaction can be expressed as (let a=[K18F]0,b=[THK]0,x=[18F?THK523]t):

    Integrating of each side of Eq.(3)between t=0!t and x=0!x gives:

    Since a≈ x=10-9~ 10-8mol/L,b=10-5~10-4mol/L,b?a≈x,Eq.(4)can be simplified as

    Fig.4.Synthesis of 2-((2-(4-((tert-butoxycarbonyl)amino)phenyl)quinolin-6-yl)oxy)ethyl 4-methylbenzenesulfonate(THK-7).

    Fig.5.Synthesis of tert-butyl(4-(6-(2-fluoroethoxy)quinolin-2-yl)phenyl)carbamate(THKF-2).

    Since Rf value of[18F]-THK523 and18F are 0.7 and 0.0, respectively,the above x/a was the count percentage of[18F]-THK523 to18F.In fact x/a is the labeling yield of[18F]-THK523,and it can be determined by TLC.Let P=x/a, Eq.(6)can be written as:

    The plot of ln[1/(1?P)]vs.t shows a linear relationship and the rate constant k for the[18F]-THK523 formation can be calculated from the slope.

    III.RESULTS AND DISCUSSION

    There are several types of fluorinated precursor including the following substitute groups:(a)-OTs(tosylate),(b)-OTf (triflate),(c)-OMs(mesylate),and(d)-ONs(nosylate).In general,thereactivityisb>a>c>d,whilethestability for the groups is d>a>c>b.The tosylate was chosen for design of the[18F]-THK523 precursor because it compromises stability and reactivity.Figs.4 and 5 describe the synthesis of protected precursor THK-7 and cold standard of THKF-2. The synthesis of THK-7 involves the tosylation of a primary alcohol(THK-6).The Boc protection of the primary amino group in the intermediate THK-6 is important for a number of reasons.First,primary amino groups are generally morereactive towards tosyl chloride than primary alcohols.So,in the reaction conditions used to form precursor THK-7,it is expected that the amino group would be tosylated preferentially to the alcohol.Further,it is difficult to remove the aminotosyl protecting group by acid hydrolysis in a short reaction time and this would be detrimental for the radiolabelling reaction.

    The choice of Boc as the protective group has the following advantages:Boc can be easily hydrolyzed by acid in a short reaction time and the by-products are CO2and iso-butanol(or isobutene),which can be easily evaporated.In addition,the presence of a free amino group in precursor BF241,used in Ref.[16],could lead to low radiosynthesis yield,as THK-6 may interact with K18F to form hydrogen bonds reducing the nucleophilicity of18F–.Fluorine is the most electronegative element.It can form hydrogen bonds with hydrogens on theamino group,while the Boc protected amino is a carbamate and it is less prone to the formation of hydrogen bonding. Comparing to the work of Fodero-Tavoletti et al.[16],the mostprominentadvantageofusingTHK-7,insteadofBF241, for radiolabeling of[18F]-THK523 was the improvement of radiochemical yields,as 40±5%and 24%(non-decay corrected)and at end of synthesis for THK-7 and BF241,respectively.There were no significant difference in radiochemical purity and specific activity.

    TABLE 1.Mean labeling yields and specific radioactivity of[18F]-THK523 at different reaction time and temperature

    Therefore,Boc protection of the primary amino group in the precursor,THK-7,is important to prevent side reactions, tosimplifyproductpurification,andtoimproveprecursorstability.

    Radiolabelling yield of[18F]-THK523 was assayed by TLC.As shown in Table 1,the radiolabelling yield is relatively high,ranging from 11.91%to 75.11%(decay corrected to end of bombardment,EOB)and the synthesis time is 45–55min from EOB.

    Radio-HPLC analysis showed the radiochemical purity (RCP)of[18F]-THK523 was≥90%.As shown in Fig.6, the retention time(tR)of[18F]-THK523 and precursor THK-7 were 6.12min and 12.94min,respectively.The chemical identity of[18F]-THK523 was verified by co-injection with the non-labelled standard THKF-2(tR=5.93min). The specific activity of[18F]-THK523 was determined as 2.5±0.5Ci/μmol(end of synthesis,EOS).

    Labeling of radiopharmaceuticals is influenced by reaction time and temperature.Their relationship can be evaluated by chemical kinetics.Although TsO,as a leaving group during nucleophilic substitution,has been applied in many18F labeled radiopharmaceuticals,different molecular structures lead to different labeling yields.Evaluation of chemical kinetics is authentically necessary because of the importance of reaction temperature for labeling reaction.Labeling yields of[18F]-THK523 at different temperatures and minutes are listed in Table 1.The mean labeling yields and mean specific radioactivity increase with the temperature and time. At 120?C,the rate constants were 4.95,4.97,5.00 and 5.04 for THK-7 contents of 5.24,26.2,52.4 and 131,respectively (Table 2).

    For reaction chemical kinetics parameters,rate constant (k)increases with the increase of temperature,indicating that high temperature is conducive to increased reaction rate.In order to improve radiosynthesis yield,it is necessary to increase reaction temperature.However,[18F]-THK523 may be unstable or the binding of C-O or C-N may be broken down under such high temperature.

    Fig.6.(Color online)HPLC identification of[18F]-THK523:analytical C18 column;80%ACN:20%H2O(0.05%triethylamine); flow 0.6mL/min.

    TABLE 2.Rate constants under different concentration of THK-7 (120?C)

    As shown in Table 1,labeling yields were high at 120?C for reactions 15min and 30min(decay-corrected to EOB).Due to favorable thermal stability of[18F]-THK523 and for convenience in experiment operation,the optimal reaction temperature was chosen as 120?C when labeling yields were larger than 70%at 15min. Calculations show the order of reaction is 1. The chemical kinetics study demonstrated the labeling reaction of 2-(2-(4-(tert-butoxycarbonyl)phenyl)quinolin-6-yloxy)ethyl 4-methylbenzenesulfonate(THK-7)was quite easily. This method can be applied to study labeling reactions of other radiopharmaceuticals.

    The plot of ln[1/(1-P)]vs.t at four different concentration of THK-7 didn’t show significant linear relationship. The changesofrate constantsunderdifferentconcentration of precursor were shown in Table 2.The rate constant k didn’t change greatly with the concentration of THK-7.

    The plot of ln[1/(1-P)]vs.t at different temperatures also showed a better linear relationship.The rate constant k increased with temperature,being 0.04,4.85 and 5.18 at 25?C,120?C and 160?C,respectively.It demonstrated that k of the reaction was temperature dependent.From the variation of the order of magnitude,k had a significant increase from temperature 25?C(0.04)to temperature 120?C(4.95). These were the further evidence to validate the fact that temperature must be higher than 120?C.

    IV.CONCLUSION

    [18F]-THK523 can be synthesized at CPCU with high synthesis yield(70±5%,n=6,decay-corrected to EOB).The total synthesis time was 45–55min and the average specific activity were 2.5±0.5Ci/μmol for[18F]-THK523(EOS)under optimum conditions.The chemical kinetics for[18F]-THK523 showed that the reaction order was 1 because concentration of precursor was much larger than that of18F.Low Eawas indicative of a low activation barrier.The fact that k increased with reaction temperature indicated that a rise of temperature favors an accelerated reaction rate.t1/2(the time for half of the reactant reacted)shortened with increased reaction temperature,which means that increasing temperature accelerates the labeling reaction.The protected precursor used in this method should be applicable for high yield automated production in a commercial synthesis module for clinical application in the future.The use of THK-7 might be suitable for routine production of high yield[18F]-THK523 and the radiosynthesis can be easily performed on an automated synthesis module.

    [1]Wimo A and Winblad B.Handbook of Clinical Neurology.Elsevier,2008,89:137–146.

    [2]McKhann G,Drachman D,Folstein M,et al.Neurology,1984, 34:939–939.

    [3]Zhang W,Arteaga J,Cashion D K,et al.J Alzheimers Dis, 2012,31:601–612.

    [4]Bulic B,Pickhardt M,Mandelkow E M,et al.Neuropharmacology,2010,59:276–289.

    [5]Pritchard S M,Dolan P J,Vitkus A,et al.J Cell Mol Med, 2011,15:1621–1635.

    [6]Aizenstein H J,Nebes R D,Saxton J A,et al.Arch Neurol-Chicago,2008,65:1509–1617.

    [7]Lai M K,Chen C P,Hope T,et al.Neuroreport,2010,21: 1111–1115.

    [8]Arriagada P V,Growdon J H,Hedley-Whyte E T,et al.Neurology,1992,42:631–639.

    [9]VillemagneV,PikeK,DarbyD,etal.Neuropsychologia,2008, 46:1688–1797.

    [10]Braskie M N,Klunder A D,Hayashi K M,et al.Neurobiol Aging,2010,31:1669–1778.

    [11]Karran E,Mercken M,De Strooper B.Nat Rev Drug Discov, 2011,10:698–712.

    [12]L?angstr¨om B,Andr′en P E,Lindhe¨O,et al.Mol Imaging Biol, 2007,9:161–175.

    [13]Matsumura K,Ono M,Yoshimura M,et al.Bioorg Med Chem, 2013,21:3356–3362.

    [14]Matsumura K,Ono M,Hayashi S,et al.Med Chem Comm, 2011,2:596–600.

    [15]Okamura N,Suemoto T,Furumoto S,et al.J Neurosci,2005, 25:10857–10962.

    [16]Fodero-Tavoletti M T,Okamura N,Furumoto S,et al.Brain, 2011,134:1089–1100.

    [17]Ono M,Hayashi S,Matsumura K,et al.ACS Chem Neurosci, 2011,2:269–275.

    [18]Xia C F,Arteaga J,Chen G,et al.Alzheimers Dement,2013, 9:666–676.

    [19]Matsumura K,Ono M,Kimura H,et al.ACS Med Chem Lett, 2011,3:58–62.

    [20]Liu J,Kepe V,ˇZabjek A,et al.Mol Imaging Biol,2007,9: 6–16.

    [21]Harada R,Okamura N,Furumoto S,et al.Eur J Nucl Med Mol I,2013,40:125–132.

    [22]Cao G X,Zhou X Q,Liu Y T,et al.Nucl Sci Tech,2012,23: 52–56.

    (

    Received October 22,2013;accepted in revised form February 13,2014;published online August 6,2014)

    10.13538/j.1001-8042/nst.25.040302

    ?Supported by National Natural Science Foundation of China(Nos. 81271516 and 81371625),Program of Shanghai Science and Technology Commission(Nos.13JC1401503 and 14DZ1930402),the exchange program fund of doctoral student under the office for Graduate Medical Education,Fudan University and Shanghai Municipal Health and Family Planning Commission(No.2013313)

    ?Corresponding author,guanyihui@hotmail.com

    猜你喜歡
    吳平方平
    Effects of anode material on the evolution of anode plasma and characteristics of intense electron beam diode
    Water adsorption performance of UiO-66 modified by MgCl2 for heat transformation applications
    Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
    春雪
    吳平:戶(hù)外語(yǔ)文課,用觀察擺脫寫(xiě)作空洞
    醫(yī)院感染管理在醫(yī)院內(nèi)傳染病防控工作中的作用探討
    改姓
    春雪
    血染“不出軌保證書(shū)”,“武隆好人”婚姻無(wú)性
    女友有求于我
    久久亚洲真实| 久久久久国产精品人妻aⅴ院| 99在线视频只有这里精品首页| 精品久久久久久久久av| 12—13女人毛片做爰片一| 亚洲黑人精品在线| 久久国产乱子伦精品免费另类| 国产探花极品一区二区| 亚洲美女搞黄在线观看 | 一二三四社区在线视频社区8| 亚洲美女黄片视频| 日本黄大片高清| 日本在线视频免费播放| 天堂动漫精品| 欧美激情久久久久久爽电影| 成熟少妇高潮喷水视频| 免费大片18禁| www日本黄色视频网| 老熟妇乱子伦视频在线观看| 精品一区二区三区av网在线观看| 99久国产av精品| 成人特级av手机在线观看| 久久精品人妻少妇| 激情在线观看视频在线高清| 精品人妻熟女av久视频| 久久久久久久午夜电影| 欧美bdsm另类| 一本综合久久免费| 一级黄片播放器| 欧美日韩中文字幕国产精品一区二区三区| 亚洲午夜理论影院| or卡值多少钱| 日韩精品青青久久久久久| 在线a可以看的网站| 国产av麻豆久久久久久久| 直男gayav资源| 亚洲精华国产精华精| 亚洲av.av天堂| 人人妻人人澡欧美一区二区| 99视频精品全部免费 在线| 精品久久久久久久久久免费视频| 国产成人av教育| 性色av乱码一区二区三区2| 男女下面进入的视频免费午夜| 99久久精品一区二区三区| 日韩有码中文字幕| 色精品久久人妻99蜜桃| 国产三级黄色录像| 男女下面进入的视频免费午夜| 欧美一区二区精品小视频在线| 亚洲无线观看免费| 午夜福利成人在线免费观看| 一区二区三区免费毛片| 亚洲精品成人久久久久久| 精品国产亚洲在线| 波野结衣二区三区在线| 99久久精品一区二区三区| 日本三级黄在线观看| 国产视频内射| 久久久久久久久久成人| 亚洲国产精品久久男人天堂| 午夜精品久久久久久毛片777| av在线天堂中文字幕| av在线蜜桃| 午夜视频国产福利| 国产大屁股一区二区在线视频| 嫁个100分男人电影在线观看| 国产精品,欧美在线| 永久网站在线| 搡老熟女国产l中国老女人| 在线播放国产精品三级| av在线天堂中文字幕| 午夜影院日韩av| 婷婷亚洲欧美| 麻豆一二三区av精品| 久久久国产成人精品二区| 男插女下体视频免费在线播放| 嫩草影院新地址| 亚洲综合色惰| 国产真实伦视频高清在线观看 | 男女之事视频高清在线观看| 久久精品影院6| 亚洲内射少妇av| 中文字幕熟女人妻在线| 日韩欧美一区二区三区在线观看| 成人av一区二区三区在线看| 亚洲va日本ⅴa欧美va伊人久久| 看免费av毛片| 欧美另类亚洲清纯唯美| 亚洲五月婷婷丁香| 91在线精品国自产拍蜜月| 亚洲自偷自拍三级| 国内精品美女久久久久久| 色综合婷婷激情| 国产色爽女视频免费观看| 精品无人区乱码1区二区| 亚洲欧美日韩卡通动漫| 有码 亚洲区| 久久这里只有精品中国| 一a级毛片在线观看| 日韩成人在线观看一区二区三区| 国产精品久久久久久久电影| 又紧又爽又黄一区二区| 不卡一级毛片| 大型黄色视频在线免费观看| 99国产极品粉嫩在线观看| 丁香欧美五月| 精品一区二区免费观看| 亚洲av成人av| 十八禁网站免费在线| 国产精品一及| 日韩成人在线观看一区二区三区| 变态另类成人亚洲欧美熟女| 99国产精品一区二区三区| 中文字幕av在线有码专区| 99热精品在线国产| 亚洲人成伊人成综合网2020| 淫秽高清视频在线观看| 亚洲国产精品sss在线观看| 好看av亚洲va欧美ⅴa在| 免费观看精品视频网站| 热99re8久久精品国产| 午夜老司机福利剧场| 国产高清有码在线观看视频| 搡老妇女老女人老熟妇| 99国产综合亚洲精品| 99在线人妻在线中文字幕| 黄片小视频在线播放| 精品一区二区免费观看| 日韩欧美一区二区三区在线观看| 欧美+亚洲+日韩+国产| 永久网站在线| 午夜福利在线观看免费完整高清在 | 亚洲熟妇熟女久久| 久久久成人免费电影| 久久精品久久久久久噜噜老黄 | 亚洲精品成人久久久久久| 欧美日韩综合久久久久久 | 精品国内亚洲2022精品成人| 亚洲无线观看免费| 九九在线视频观看精品| 成人av一区二区三区在线看| 精品久久久久久,| 麻豆久久精品国产亚洲av| 久久香蕉精品热| 久久香蕉精品热| 全区人妻精品视频| 亚洲国产高清在线一区二区三| 欧美日本视频| 午夜日韩欧美国产| 极品教师在线视频| 欧美黑人巨大hd| 免费搜索国产男女视频| 国产精品日韩av在线免费观看| 亚洲,欧美精品.| 永久网站在线| 免费av不卡在线播放| 精品福利观看| 国产探花在线观看一区二区| 人妻久久中文字幕网| 特大巨黑吊av在线直播| 亚洲人与动物交配视频| 18禁黄网站禁片午夜丰满| 桃红色精品国产亚洲av| 搡老妇女老女人老熟妇| av在线天堂中文字幕| 天美传媒精品一区二区| 俄罗斯特黄特色一大片| 欧美性感艳星| 亚洲av电影在线进入| 欧美一区二区国产精品久久精品| 亚洲国产欧洲综合997久久,| 久久久久久久久大av| 免费av毛片视频| 亚洲精品日韩av片在线观看| 色哟哟哟哟哟哟| h日本视频在线播放| 亚洲成av人片在线播放无| 亚洲三级黄色毛片| 国产精品不卡视频一区二区 | 国产精品亚洲一级av第二区| 亚洲第一区二区三区不卡| 大型黄色视频在线免费观看| 精品人妻视频免费看| 亚洲美女视频黄频| 有码 亚洲区| 亚洲欧美日韩卡通动漫| 亚洲国产精品成人综合色| 欧美xxxx黑人xx丫x性爽| 日韩有码中文字幕| 久久久久性生活片| 黄色丝袜av网址大全| 国产色爽女视频免费观看| 精品久久久久久久人妻蜜臀av| 欧美乱色亚洲激情| 亚洲精品一卡2卡三卡4卡5卡| 三级国产精品欧美在线观看| 欧美日本亚洲视频在线播放| 午夜a级毛片| 亚洲av免费在线观看| 成人特级av手机在线观看| 18禁裸乳无遮挡免费网站照片| 欧美成人一区二区免费高清观看| 日韩 亚洲 欧美在线| 亚洲一区高清亚洲精品| 午夜激情福利司机影院| 亚洲美女搞黄在线观看 | 国产午夜精品论理片| 亚洲av二区三区四区| 国产亚洲精品久久久久久毛片| 国产精品久久久久久久电影| 亚洲精品在线观看二区| 一进一出好大好爽视频| 深爱激情五月婷婷| av视频在线观看入口| 1024手机看黄色片| 婷婷丁香在线五月| 成人欧美大片| 成人高潮视频无遮挡免费网站| 亚洲人成网站在线播放欧美日韩| 男人舔奶头视频| 他把我摸到了高潮在线观看| 69人妻影院| 99热6这里只有精品| 中文字幕久久专区| 国产毛片a区久久久久| 亚洲第一区二区三区不卡| 婷婷色综合大香蕉| 嫩草影院精品99| 在线看三级毛片| 伊人久久精品亚洲午夜| 99久久久亚洲精品蜜臀av| 久久久成人免费电影| 少妇裸体淫交视频免费看高清| 能在线免费观看的黄片| 国产在视频线在精品| 欧美不卡视频在线免费观看| 神马国产精品三级电影在线观看| 亚洲自偷自拍三级| 午夜老司机福利剧场| 国产成人欧美在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产三级中文精品| 国产精品免费一区二区三区在线| 91在线精品国自产拍蜜月| 成人鲁丝片一二三区免费| 国产av麻豆久久久久久久| 日本黄色视频三级网站网址| av欧美777| 精品免费久久久久久久清纯| 国产中年淑女户外野战色| 看免费av毛片| 熟女电影av网| 一区福利在线观看| 一区二区三区四区激情视频 | 国产亚洲av嫩草精品影院| 蜜桃久久精品国产亚洲av| 天天一区二区日本电影三级| 97碰自拍视频| 国产成人福利小说| 青草久久国产| 国产高清三级在线| h日本视频在线播放| 少妇人妻一区二区三区视频| 国产精品三级大全| 在现免费观看毛片| 男女那种视频在线观看| 女同久久另类99精品国产91| 精品久久久久久久久亚洲 | 国产精品自产拍在线观看55亚洲| 国产成人av教育| 国产精品人妻久久久久久| 老熟妇乱子伦视频在线观看| 国产欧美日韩精品一区二区| 五月伊人婷婷丁香| 内地一区二区视频在线| av欧美777| 久久精品国产99精品国产亚洲性色| 欧美性猛交╳xxx乱大交人| 在线观看午夜福利视频| 老司机福利观看| 韩国av一区二区三区四区| 91午夜精品亚洲一区二区三区 | 日韩欧美三级三区| 毛片女人毛片| 最近最新中文字幕大全电影3| 亚洲 欧美 日韩 在线 免费| 国产精品免费一区二区三区在线| 最近最新免费中文字幕在线| 在线播放国产精品三级| 日本成人三级电影网站| 国产欧美日韩一区二区三| 亚洲五月天丁香| 国产精品久久久久久精品电影| 欧美黄色片欧美黄色片| 午夜精品在线福利| 啦啦啦观看免费观看视频高清| 麻豆久久精品国产亚洲av| 久久精品影院6| 国产淫片久久久久久久久 | 国产精品国产高清国产av| 亚洲成人中文字幕在线播放| 淫秽高清视频在线观看| 亚洲成a人片在线一区二区| 中文资源天堂在线| 少妇人妻一区二区三区视频| 99国产精品一区二区蜜桃av| 日本撒尿小便嘘嘘汇集6| 人妻制服诱惑在线中文字幕| 国产欧美日韩一区二区三| 亚洲最大成人手机在线| 看片在线看免费视频| 亚洲第一区二区三区不卡| 亚洲国产精品999在线| 最近中文字幕高清免费大全6 | 男女床上黄色一级片免费看| 在现免费观看毛片| 日日摸夜夜添夜夜添小说| 亚洲精品在线美女| 色哟哟·www| 日韩 亚洲 欧美在线| 9191精品国产免费久久| 神马国产精品三级电影在线观看| 久久人人爽人人爽人人片va | 中国美女看黄片| 国产精华一区二区三区| 国产成人av教育| 色尼玛亚洲综合影院| 99热精品在线国产| 国产伦在线观看视频一区| 看十八女毛片水多多多| 亚洲精品亚洲一区二区| 精华霜和精华液先用哪个| 亚洲av免费在线观看| 日本 欧美在线| 日韩 亚洲 欧美在线| 精品国内亚洲2022精品成人| 成人国产综合亚洲| 久久久久亚洲av毛片大全| 亚洲18禁久久av| 一个人免费在线观看电影| www.www免费av| aaaaa片日本免费| 国产又黄又爽又无遮挡在线| 亚洲无线观看免费| 亚洲中文字幕日韩| 亚洲真实伦在线观看| 美女黄网站色视频| 床上黄色一级片| 久久性视频一级片| 国产色婷婷99| 日韩免费av在线播放| 免费看美女性在线毛片视频| 中文字幕人妻熟人妻熟丝袜美| 久久久久亚洲av毛片大全| 男女视频在线观看网站免费| 特大巨黑吊av在线直播| 麻豆成人av在线观看| 天堂√8在线中文| 18禁黄网站禁片午夜丰满| 亚洲欧美日韩东京热| 久久这里只有精品中国| 桃红色精品国产亚洲av| 脱女人内裤的视频| 国产精品一区二区性色av| 淫秽高清视频在线观看| 蜜桃亚洲精品一区二区三区| 网址你懂的国产日韩在线| 久久久久久久久久黄片| 日韩高清综合在线| 成人欧美大片| 亚洲国产精品999在线| 亚洲精品久久国产高清桃花| 脱女人内裤的视频| 日韩精品青青久久久久久| 搡老妇女老女人老熟妇| 中文字幕人妻熟人妻熟丝袜美| 日韩免费av在线播放| 国产高清有码在线观看视频| 九色国产91popny在线| 中文字幕av成人在线电影| 两个人视频免费观看高清| 九色国产91popny在线| 欧美一区二区精品小视频在线| 在线观看美女被高潮喷水网站 | 久久久久国产精品人妻aⅴ院| 香蕉av资源在线| 欧美xxxx性猛交bbbb| 日韩国内少妇激情av| 久久久久久久久久黄片| 免费在线观看成人毛片| 伦理电影大哥的女人| 美女高潮喷水抽搐中文字幕| 在线免费观看不下载黄p国产 | 国产精品乱码一区二三区的特点| 国产免费av片在线观看野外av| 麻豆成人午夜福利视频| 91在线观看av| 搡老岳熟女国产| 日韩欧美精品免费久久 | 美女黄网站色视频| 成人鲁丝片一二三区免费| 国产视频一区二区在线看| 女生性感内裤真人,穿戴方法视频| 桃色一区二区三区在线观看| 又紧又爽又黄一区二区| 亚洲av电影在线进入| 日本三级黄在线观看| 国产一区二区三区视频了| 国产精品自产拍在线观看55亚洲| 亚洲男人的天堂狠狠| 国产免费一级a男人的天堂| av在线天堂中文字幕| av黄色大香蕉| 国产精品影院久久| 国产高清有码在线观看视频| av在线老鸭窝| 亚洲乱码一区二区免费版| 性插视频无遮挡在线免费观看| av专区在线播放| 久久精品国产亚洲av香蕉五月| 精品熟女少妇八av免费久了| 黄色配什么色好看| 国产精品一区二区三区四区久久| 美女高潮的动态| 变态另类成人亚洲欧美熟女| a级毛片a级免费在线| 人妻久久中文字幕网| 国产免费一级a男人的天堂| 欧美日韩乱码在线| 国产成人a区在线观看| 婷婷精品国产亚洲av在线| 国产成人影院久久av| 亚洲成av人片在线播放无| 久久婷婷人人爽人人干人人爱| 很黄的视频免费| 婷婷精品国产亚洲av| 国产黄a三级三级三级人| 国产单亲对白刺激| 国产精品综合久久久久久久免费| 99久久无色码亚洲精品果冻| 9191精品国产免费久久| 欧美精品国产亚洲| 国产成人啪精品午夜网站| 国产老妇女一区| 国产高清视频在线观看网站| 久久久国产成人精品二区| 亚洲国产高清在线一区二区三| 一级毛片久久久久久久久女| 国产大屁股一区二区在线视频| 久久国产乱子免费精品| 久久久国产成人免费| 少妇高潮的动态图| 我要搜黄色片| 窝窝影院91人妻| 久久亚洲精品不卡| xxxwww97欧美| 国产极品精品免费视频能看的| 日韩欧美免费精品| 啦啦啦韩国在线观看视频| 国产精品久久电影中文字幕| 小蜜桃在线观看免费完整版高清| 国产主播在线观看一区二区| 少妇人妻精品综合一区二区 | 久久草成人影院| 在线观看免费视频日本深夜| 51午夜福利影视在线观看| 久久久精品大字幕| 国产主播在线观看一区二区| 夜夜夜夜夜久久久久| 12—13女人毛片做爰片一| 午夜福利在线观看吧| 人人妻人人看人人澡| 国产91精品成人一区二区三区| 亚洲成a人片在线一区二区| 中文亚洲av片在线观看爽| 欧美日韩乱码在线| 精品久久久久久久人妻蜜臀av| 久久中文看片网| 亚洲欧美日韩高清专用| 亚洲av二区三区四区| 少妇裸体淫交视频免费看高清| 麻豆av噜噜一区二区三区| 99视频精品全部免费 在线| 一级毛片久久久久久久久女| 丁香六月欧美| 99热只有精品国产| 校园春色视频在线观看| 国产三级中文精品| 久久性视频一级片| 亚洲精品一卡2卡三卡4卡5卡| 男女之事视频高清在线观看| 日日摸夜夜添夜夜添小说| 欧美黑人欧美精品刺激| 成熟少妇高潮喷水视频| 亚洲真实伦在线观看| 成人性生交大片免费视频hd| 999久久久精品免费观看国产| 欧美黑人巨大hd| 国产伦在线观看视频一区| 国产精品三级大全| 直男gayav资源| 一a级毛片在线观看| 国产麻豆成人av免费视频| 欧美激情国产日韩精品一区| 五月玫瑰六月丁香| 欧洲精品卡2卡3卡4卡5卡区| 日韩中字成人| 亚洲一区高清亚洲精品| 日韩精品青青久久久久久| 精品欧美国产一区二区三| 少妇熟女aⅴ在线视频| 久久久久久大精品| 国产色爽女视频免费观看| 少妇被粗大猛烈的视频| 国产69精品久久久久777片| 日韩精品青青久久久久久| 在现免费观看毛片| 久久久久久久久久成人| 一个人免费在线观看的高清视频| 免费在线观看日本一区| 国产精品免费一区二区三区在线| 久久精品国产亚洲av天美| 男女下面进入的视频免费午夜| 老司机午夜十八禁免费视频| 成人毛片a级毛片在线播放| 高清毛片免费观看视频网站| 亚洲av二区三区四区| 一区二区三区四区激情视频 | 少妇高潮的动态图| 我要搜黄色片| 真人做人爱边吃奶动态| 欧美一区二区国产精品久久精品| 久久国产精品人妻蜜桃| 香蕉av资源在线| 国产精品久久久久久久久免 | 亚洲欧美日韩无卡精品| 51国产日韩欧美| 亚洲精品亚洲一区二区| 久久久国产成人免费| 身体一侧抽搐| 男人和女人高潮做爰伦理| 动漫黄色视频在线观看| 俺也久久电影网| 亚洲国产高清在线一区二区三| 高清毛片免费观看视频网站| 小说图片视频综合网站| 欧美成人一区二区免费高清观看| 亚洲色图av天堂| 毛片一级片免费看久久久久 | 国产精品一区二区免费欧美| 美女高潮喷水抽搐中文字幕| 久久国产精品人妻蜜桃| 国产精品,欧美在线| 九色国产91popny在线| 国产91精品成人一区二区三区| 中文在线观看免费www的网站| 亚洲美女视频黄频| 别揉我奶头 嗯啊视频| 少妇丰满av| 国产久久久一区二区三区| 男女下面进入的视频免费午夜| 午夜福利成人在线免费观看| 热99在线观看视频| www.熟女人妻精品国产| 亚洲成人中文字幕在线播放| 老司机福利观看| www日本黄色视频网| 亚洲欧美精品综合久久99| 搡女人真爽免费视频火全软件 | 一进一出抽搐gif免费好疼| 国产真实乱freesex| 97碰自拍视频| 午夜激情欧美在线| 无遮挡黄片免费观看| 国产精品久久久久久久久免 | 国产精品久久久久久人妻精品电影| 免费无遮挡裸体视频| 嫩草影院入口| 国产视频一区二区在线看| 日韩高清综合在线| 精品一区二区三区人妻视频| 一级作爱视频免费观看| 精品一区二区三区人妻视频| 国产精品美女特级片免费视频播放器| 又粗又爽又猛毛片免费看| 在线免费观看不下载黄p国产 | 国产真实伦视频高清在线观看 | 亚洲avbb在线观看| av在线观看视频网站免费| 成年女人毛片免费观看观看9| 国内揄拍国产精品人妻在线| 十八禁国产超污无遮挡网站| 国产一区二区在线av高清观看| 99国产精品一区二区三区| 99久久无色码亚洲精品果冻| 99视频精品全部免费 在线| 国产亚洲精品久久久com| 人妻夜夜爽99麻豆av| 午夜激情欧美在线| 亚洲国产精品sss在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产精品av视频在线免费观看| 九色国产91popny在线| 久久人人爽人人爽人人片va | 亚洲第一区二区三区不卡| 午夜精品久久久久久毛片777| 国产三级中文精品| 成人鲁丝片一二三区免费| 男人舔女人下体高潮全视频| 日本在线视频免费播放| 亚洲国产欧洲综合997久久,| 少妇的逼水好多| 日本免费a在线| 婷婷亚洲欧美|