• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An investigation on neutron induced reactions on stable CNO isotopes?

    2014-03-07 12:24:25MAChunWang馬春旺CuiJuan呂翠娟WEIHuiLing魏慧玲andCAOXiGuang曹喜光
    Nuclear Science and Techniques 2014年4期

    MA Chun-Wang(馬春旺),L¨U Cui-Juan(呂翠娟),WEI Hui-Ling(魏慧玲),and CAO Xi-Guang(曹喜光)

    1Institute of Particleamp;Nuclear Physics,Henan Normal University,Xinxiang 453007,China

    2Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    An investigation on neutron induced reactions on stable CNO isotopes?

    MA Chun-Wang(馬春旺),1,?L¨U Cui-Juan(呂翠娟),1WEI Hui-Ling(魏慧玲),1and CAO Xi-Guang(曹喜光)2

    1Institute of Particleamp;Nuclear Physics,Henan Normal University,Xinxiang 453007,China

    2Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    The neutron induced reactions on stable Carbon,Nitrogen,and Oxygen isotopes are investigated by using the Talys1.4 toolkit with the default parameters.The neutron incident energy covers a range from 0.20MeV to 85.00MeV.For12C and14N,the Talys1.4 results agree with the experimental data,while the parameters should be adjusted for16O.Some Enwindows are found by comparing the main channels of n+C/N/O reactions, which induce element change.In these Enwindows,a specific element is activated to a different one while leaving the other element atoms unchanged.The results will facilitate the research of doping effects in organic materials by using neutron activation technique.

    Neutron activation,Doping,Organic material,C/N/O activation

    I.INTRODUCTION

    Doping is an important method to change the properties of materials.For example,the substitutions of some atoms in organic semi-conductors promote the charge transport and stability greatly[1,2].The general method for doping is chemical synthesis which introduces new elements into the original material.Actually,neutron activation is an important method to make doping in material,which can even change one element to other one,directly or after the decay of unstable isotopes produced by activation.In this situation,different to the chemical doping,different doping effects can be expected.

    It is well known that for different nuclei,there are different threshold energy values for specific channels in neutron induced reactions[3].For material having different elements, the different threshold energy values for neutron reactions provide a chance for specific activation if the neutron energy is selected in experiments.

    In this article,the neutron induced reactions on stable carbon,nitrogen,and oxygen isotopes will be investigated by usingaTalystoolkit.Theenergywindowsbetweenthedifferent isotopes will be analyzed.The theory is briefly discussed in Sec.II.The results are discussed in Sec.III,and a summary is presented in Sec.IV.

    II.METHODS

    The optical model can describe the neutron induced reaction well in a wide range of incident energies.In Talys1.4,the ECIS-06 is implanted as a subroutine to deal with the optical model calculations[4].The description of Talys1.4 and the implanted functions can be found in the user manual[5,6].

    In statistical models for predicting cross sections,nuclear level densities are used at excitation energies where discrete level informationis notavailable orincomplete.Severalmodels are implanted to describe the level density in Talys,which range from phenomenological analytical expressions to tabulated level densities derived from microscopic models.The constant temperature and Fermi-gas model is set as the default parameter of level density at low excitation energy region,while the Fermi-gas model is used in the high excitation energy region[6].

    Due to the threshold energy exists for different channels in the neutron induced reaction on a nucleus,one channel can only happen if the incident energy of the neutron is above the threshold,which potentially provides energy windows only one channel can happen while the other channels are prohibited.In this work,the incident energy of the calculated reactions ranges from 0.20MeV to 85.00MeV,and the default parameters in Talys1.4 are adopted.The main reaction channels include(n,np),(n,p),(n,α),(n,2n)and(n,γ).The calculated results are compared to the measured data,which are extracted from the EXFOR library provided by the National Nuclear Data Center(NNDC)[7].All the natural abundance data and the half-life time of isotopes are taken from Wikipedia[8].

    III.RESULTS AND DISCUSSION

    A.neutron induced reactions on carbon isotopes

    The C element has two stable isotopes,12C and13C,with natural abundances of 98.93%and 1.07%,respectively.Only the n+12,13C reactions are calculated.

    1.n+12C reactions

    The12C(n,p)12B,12C(n,α)9Be,and12C(n,2n)11C channels have been measured previously.12B is an unstable nucleus,which decays to12C via electron emission with a half-life time of 20.20ms.9Be is a stable isotope.11C is also unstable,which decays to11B via positron emission with a relative long half-life time of 20.334min.Thus the12C(n,2n)11C and12C(n,np)11B channels are the main channels which result in element changes with the same final products,11B. The results are plotted in Fig.1.

    Fig.1.(Color online)The yield of residues produced in n+12C reactions.The measured results are denoted by symbols,and the calculated results are represented by lines.

    First,for the12C(n,α)9Be channel,the Talys1.4 results are consistent with the measured results when En<11.00MeV[9],while the Talys1.4 results differ largely with the results measured by Stevens et al.[10]in the range of 18.65MeV < En< 21.46MeV.In the energy range of 20.00MeV < En< 60.70MeV,the Talys1.4 results are also much larger than the calculated results by Dimbylow et al.[11].Above En> 11.00MeV,the results of the12C(n, α)9Be channel have large difference,which suggests that further experiment should be performed for a systematic understanding.

    Second,for the12C(n,p)12B channel,the measured results by Kreger et al.[12]and Rimmer et al.[13]coincide when En<16.00MeV,but differ when Enis higher. The Talys1.4 results agree well with the measured results when En< 16.00MeV,but overestimate the measured results by Kreger et al.[12]in the range of 16.00MeV <En< 22.00MeV.The calculated results of12C(n,p)12B in the range of 20.00MeV< En< 60.70MeV by Dimbylow et al.[11],which also uses the optical model,prefer the measured results by Kreger et al.[12].Meanwhile,the Talys1.4 predicts similar results between12C(n,p)12B and12C(n,np)11B reactions when En<20.00MeV.

    Third,forthe12C(n,2n)11Cchannel,whichhavebeenmeasured by many groups,the measured data agree well when En<27.00MeV.The results can be divided into two groups in the range of 27.00MeV<En<40.00MeV,of which the upper group was measured by Welch et al.[14],Anders et al.[15],and Kim et al.[16];and the bottom group by Brill et al.[17],Uno et al.[18],Brolley et al.[19],and Soewarsono et al.[20].The calculated results by Dimbylow et al.[11]prefer the upper group results when En< 35.00MeV.Kim et al.[16]measured the results in the energy range from 55.00MeV to 64.00MeV.The calculated results by Talys1.4 largely overestimate the measured ones when En<50.00MeV,but agree with the measured results by Kim et al.[16].The calculated results by Dimbylow et al.[11]underestimate the measured results by Kim et al.[16].

    The threshold energies of the12C(n,α)9Be,12C(n,p)12B,12C(n,np)11B and12C(n,2n)11C channels increase,which are about 6.18MeV,13.64MeV,14.89MeV and 20.30MeV,respectively.The12C(n,γ)13C channel happens in the whole energy range,but have a much smaller probability compared to other channels.

    2.n+13C reactions

    Fig.2.(Color online)The yield of residues produced in the different channels of the n+13C reactions calculated by Talys1.4.

    No measured data for the neutron induced reactions on13C is found.The Talys1.4 calculated results are plotted in Fig.2.The threshold energy values increase with the(n,α), (n,2n),(n,p)and(n,np)channels,with the values 4.13MeV, 5.33MeV,13.64MeV and 16.50MeV,respectively.The(n, γ)channel has no lowest energy threshold.The(n,γ)and (n,p)channels have relatively low probabilities compared to the other channels.In the whole energy range calculated, when En<15.00MeV,the main channel is13C(n,α)10Be, in which10Be decays to10B by electron emission with a very long half-life time 1.39×106years;when En>15.00MeV, the dominant channel is13C(n,np)12B,in which12B mainly decays to12C with a half-life time 20.20ms.

    B. Neutron induced reactions on nitrogen isotopes

    The N element has two stable isotopes,14N and15N,with a natural abundance of 99.64%and 0.36%,respectively.Only the n+14,15N reactions are calculated.

    Fig.3.(Color online)The yield of residues produced in the different channel of n+14N reactions:(a)14N(n,α)11B;(b)14N(n,p)14C;(c) 14N(n,2n)13N;and(d)14N(n,np)13C and14N(n,γ)15N.The calculated results are plotted as different lines.

    1. n+14N reactions

    The calculated channels for the n+14N reaction are14N(n, np)13C,14N(n,p)14C,14N(n,α)11B,14N(n,γ)15N,and14N(n, 2n)13N reactions,respectively.The nuclei13C,15N,and11B are stable,while14C and13N are unstable.13N decays to13C by positron emission with a half-life time 9.965min.The(n, np),(n,p),(n,2n),and(n,α)channels are the main ones which will result in element changes.

    The results of the n+14N reaction are plotted in Fig.3.For clarity,the results are plotted in different panels.The14N(n, α)11B and14N(n,p)14C have small threshold energies,which are very similar.The14N(n,α)11B channel has been measured by different groups[21–25],and the14N(n,p)14C has also been measured[21,23–25].For the two channels,the data measured by different groups is consistent.The Talys1.4 results agree with the measured data in the low incident energies,but overestimate the measured results when the Enincreases.

    For the14N(n,2n)13N channel,the measured results[26–30]are consistent when En< 19.00MeV.When En>24.00MeV,the measured results by Brill et al.[17]and Yashima et al.[31]are relatively consistent,and the calculated results by Dimbylow et al.[11]also agree with the measured data but have relatively large errors.The predicted threshold energy value by Talys1.4 is En≈11.00MeV,but the Talys1.4 cross sections overestimate the measured results in the whole energy range,which increases fast with Enand reaches maximum at En=24.00MeV and decreases with Enwhen En> 24.00MeV.Since13N decays to13C,the final production is the same as the14N(n,np)13C channel. The14N(n,np)13C channel has a low threshold energy value of about 6.00MeV,and the cross section of the channel increase fast with En,which peaks at about En=14.00MeV.

    Fig.4.(Color online)The yield of residues produced in the different channel of the n+15N reactions calculated by Talys1.4.

    Fig.5.(Color online)The yield of residues produced in different channels of n+16O reaction.(a)16O(n,α)13C;(b)16O(n,p)16N;(c)16O(n, 2n)15O;and(d)16O(n,np)15N and16O(n,γ)17O.The results calculated by Talys1.4 are plotted as lines.

    The threshold energies increase in the order of(n,α), (n,np),and(n,2n),which are about 0.13MeV,5.67MeV and 11.27MeV,respectively.The(n,γ)and(n,p)channel happens in the whole Enrange and forms a peak around 19.00MeVand 9.50MeV with a wide width,but the cross sections are very small compared to other channels.

    2. n+15N reactions

    No measured data for the n+15N reaction is found.Only the Talys1.4 calculated results are plotted in Fig.4.The calculated results for the(n,np)and(n,α)channels have almost the same values when En<12.00MeV and the(n,np)channel has much larger values than that of the(n,α)channel.At the same time,the cross sections of(n,p)and(n,2n)channels only have small difference when En>17.00MeV.The (n,np),(n,α),(n,p),and(n,2n)channels have relatively similar threshold energy values,which are about 8.57MeV, 8.09MeV,9.55MeV and 11.56MeV,respectively. The cross sections of the(n,γ)channel are much smaller compared to the other channels.When En>40.00MeV,large fluctuations are found in the results of the(n,p)and(n,γ) channels.

    C. Neutron induced reactions on oxygen isotopes

    The O element has three stable isotopes,16O,17O,and18O, with a natural abundance of 99.75%,0.0038%,and 0.205%. Only the n+16,18O reactions are calculated.

    1. n+16O reactions

    In Fig.5,the results of the n+16O reactions are plotted.The channels include16O(n,α)13C,16O(n,p)16N,16O(n, 2n)15O,16O(n,np)15N,and16O(n,γ)17O.16N decays to16O by emitting electron with a half-life time of 7.13s.Thus the main channels which make the element change are16O(n, α)13C and16O(n,np)15N.

    For the16O(n,α)13C channel,the Talys1.4 calculated results are consistent with these measured by Johnson et al.[32],andSeitz etal.[33]exceptthose byDivatia etal.[34] when Enis smaller than 5.00MeV.When En>7.00MeV, the measured results by Dickens et al.[35],Bormann et al.[36],and Dandy et al.[37]are consistent,but the Talys1.4 calculated results are unable to reproduce measured data well.

    Fig.6. (Color online)The yields of residues produced in the different channels of the n+18O reactions calculated by Talys1.4.

    For the16O(n,p)16N channel,the measured results by Martin et al.[38],Bormann et al.[39],and Seeman et al.[40] agree well.The measured results by Subashi et al.[41]and DeJuren et al.[42]also agree with those results but have relatively large difference.The Talys1.4 calculated results largely underestimate the measured results but have similar trend to the measured ones.

    For the16O(n,2n)15O channel,the measured results by Yashima et al.[33]and Brill et al.[17]are in different energy ranges,but for the overlapping range of En,the results have some difference.The Talys1.4 results overestimate the measured ones when En<40.00MeV,but underestimate the measured ones when En>40.00MeV.

    The16O(n,np)15N and16O(n,γ)17O channels have not been measured.For the16O(n,np)15N channel,the probability increases fast above the threshold energy of 10.57MeV and has a maximum value around En=20.00MeV.The16O(n,γ)17O channel happens in the whole Enrange but have much smaller values.

    The Talys1.4 calculated threshold energies of the(n,α), (n,p),(n,np)and(n,2n)channels for16O are 2.36MeV, 10.25MeV,10.57MeV and 16.65MeV,with peaks form at around 10.00MeV,14.50MeV,26.00MeV and 28.00MeV, respectively.

    2.n+18O reactions

    The main channels that the n+18O reactions cover are18O(n,α)15C,18O(n,np)17N,18O(n,p)18N,18O(n,2n)17O, and18O(n,γ)19O.17N can decay to16O and17O with a halflife time of 4.173s;18N can decay to18O,14C,or17O with a half-life time of 622ms,which are all stable nuclei(14C has a very long half-life time).

    In Fig.6,the calculated results for the channels are plotted. The thresholds of the(n,α),(n,2n),(n,p), and(n,np)channels are 5.29MeV,8.49MeV,13.85MeV and 14.49MeV,and the peaks form at around 10.00MeV, 17.00MeV,18.00MeV and 49.50MeV,respectively.When En> 33.00MeV,the yield of the(n,p)channel has large fluctuations with En.

    D.Comparison between main channels of n+C/N/O isotopes

    The differences between the threshold energies of the different channels make it possible to change one element to another. To change the element in organic materials specifically,the incident energy of the neutron should be selected to fit the energy window,as has been illustrated in the results above.The comparison between the thresholds of the main channel inducing element changes will show the Enwindow more clearly.

    For12C,both the final production of12C(n,np)11B and12C(n,2n)11C are11B since11C decays to11B via positron emission with a half-life time of 20.30ms.The threshold energy of12C(n,α)9Be is about 6.18MeV.When En>7.00MeV,12C can be changed to9Be.The threshold energy of12C(n,np)11B is about 14.89MeV.When En>16.00MeV,12C can be changed to9Be and11B.This provides actual application of neutron activation on C isotopes. The chemically synthesized compound,in which a C atom is substituted by a B atom,demonstrates a novel molecular engineering concept of organic semiconductors[43].For14N,the most important channel is(n,2n),which happens at very low neutron incident energy.Since the final yields in the n+14,15N reactions are mainly carbon isotopes,we do not discuss the energy window for these channels.For16O, the main channels are16O(n,α)13C and16O(n,np)15N when En<15.00MeV,withtheproductionof13Cand15N,respectively.There is also an Enwindow between the two channels in the range from 4.00MeV to 11.00MeV.With larger En, the16O(n,2n)15O channel is opened.15O decays to14N by emitting a positron with a half-life time of 70.60s,i.e.,16O is changed to14N finally.

    For a better understanding of the energy windows,the energy above the Talys calculated threshold energy for each channel is plotted in Fig.8.The numbers from 1 to 24 represent the channels and the alphabet from a to w represent the values of the threshold energies,of which are also listed as follows(the unit is MeV):1,En=0 for the14N(n,p)14C and(n,γ)channel of C/N/O;2,14N(n,α)11B (a=0.13);3,16O(n,α)13C(b=2.36);4,13C(n,α)10Be (c=4.13);5,18O(n,α)15C(d=5.29);6,13C(n,2n)12C (e=5.33);7,14N(n,np)13C(f=5.67);8,12C(n,α)9Be (g=6.18);9,15N(n,α)12B(h=8.09);10,18O(n,2n)17O (i=8.49);11,15N(n,np)14C(j=8.57);12,15N(n,p)15C (k=9.55);13,16O(n,p)16N(l=10.25);14,16O(n,np)15N (m=10.57);15,14N(n,2n)13N(n=11.27);16,15N(n, 2n)14N(o=11.56);17,13C(n,p)13B(p=13.635);18,12C(n,p)12B(q=13.645);19,18O(n,p)18N(r=13.85);20,18O(n,np)17N(s=14.49);21,12C(n,np)11B(t=14.89);22,13C(n,np)12B(u=16.49);23,16O(n,2n)15O(v=16.65); 24,12C(n,2n)11C(w=20.30).Though the energy windows are clearly shown in Fig.8,it should be carefully analyzed when the neutron is used to activate special compounds,including different elements.

    Fig.7.(Color online)Comparison among the results of the main channels of n+C/N/O reactions which induce element changes.

    Fig.8.(Color online)The comparison among the threshold energies of different channels which induce element changes(See the text for explanation).

    IV.CONCLUSION

    In this article,the neutron induced reactions on the stable C,N,and O isotopes are investigated by using the Talys1.4 toolkit,which calculates the reactions in the framework of optical model.On the one hand,it is found that for12C and14N, the Talys1.4 results agree with the experimental data,while for16O,the parameters in Talys1.4 should be adjusted for a better prediction.On the other hand,a systematic comparison among the main channels of n+C/N/O reactions which induce element change are performed to find Enwindows among the original C,N,and O stable isotopes(by considering the final production of the channel,i.e.,direct change or indirect change through decay to a different element isotope). In these Enwindows,specific elements can be activated to a different one while leaving the other element unchanged.The results may help to study material modification by using neutron induced doping techniques such as in organic materials like the organic semiconductor.

    [1]Ikai M,Tokito S,et al.Appl Phys Lett,2001,79:156–158.

    [2]Scherf U and List E J W.Adv Mater,2002,14:477–487.

    [3]Ding D Z,Ye C T,Zhao Z X,et al.Neutron Physics.Bejing (China):Atomic Energy Publishing,2005.

    [4]Raynal J.Notes on ECIS94,CEA Saclay Report No.CEA-N-2772,1994.

    [5]Ma C W,Jing R Y,Feng X,et al.Chinese Phys C,2014.(in press)

    [6]Koning A J,Hilaire S,Duijvestijn M C,et al.User Manual of Talys-1.4.(http://www.talys.eu/_leadmin/ talys/user/docs/talys1.4.pdf).

    [7]https://www-nds.iaea.org/exfor/exfor.htm

    [8]http://en.wikipedia.org/wiki/Isotope

    [9]Brede H J,Dietze G,Klein H,et al.Nucl Sci Eng,1991,1: 22–34.

    [10]Stevens A P.INIS microfiche,No.3596,1976.

    [11]Dimbylow P J.Phys Med Biol,1980,4:637–649.

    [12]Kreger W E and Kern B D.Phys Rev,1959,113:890–894.

    [13]Rimmer E M and Fisher P S.Nucl Phys A,1968,108:567–576.

    [14]Welch P,Johnson J,Randers-Pehrson G,et al.B Am Phys Soc, 1981,26:708.

    [15]Anders B,Herges P,Scobel W.Z Phys A-Hadron Nucl,1981, 4:353–361.

    [16]Kim E,Nakamura T,Konno A,et al.Nucl Sci Eng,1998,129: 209–223.

    [17]Brill O D,Vlasov N A,Kalinin S P,et al.Dokl Akad Nauk+, 1961,1,55.

    [18]UnoY,UwaminoY,SoewarsonoTS,etal.NuclSciEng,1996, 122:247–257.

    [19]Brolley J E,Jr,Fowler J L,et al.Phys Rev,1952,88:618–621.

    [20]Soewarsono T S,Uwamino Y,Nakamura T.JAERI-M Reports, No.92,027,354,1992.

    [21]Gabbard F,Bichsel H,Bonner T W.Nucl Phys,1959,14:277–294.

    [22]Khryachkov V Y,Kuzminov B D,Dunaev M V,et al.Atomnaya Energiya,2006,101:760–765.

    [23]Morgan G L.Nucl Sci Eng,1979,70:163–176.

    [24]Johnson C H and Barschall H H.Phys Rev,1950,80:818–823.

    [25]Bollmann W and Zuenti W.Helve Phys Acta,1951,24:517–550.

    [26]SakaneH,KasugaiY,ShibataM,etal.AnnNuclEnergy,2001, 28:1175–1192.

    [27]RyvesTB,KolkowskiP,ZiebaKJ.JPhysGNuclPartic,1978, 4:1783–1792.

    [28]Bormann M,Fretwurst E,Schehka P,et al.Nucl Phys,1965, 63:438–448.

    [29]Mc Crary J H and Morgan I L.B Am Phys Soc,1960,5:246.

    [30]Ferguson J M and Thompson W E.Phys Rev,1960,118:228–232.

    [31]Yashima H,Terunuma K,Nakamura T,et al.J Nucl Sci Technol,2004,4:70–73.

    [32]Johnson C H,Fowler J L,Feezel R M.Oak Ridge National Lab.Reports,No.4743,37,1972.

    [33]Seitz J and Huber P.Helvetica Physica Acta,1955,28:227–244.

    [34]Divatia A S,Sekharan K K,Mehta M K,et al.Nucl Data React Conf,1966,1:233.

    [35]Dickens J K and Perey F G.Nucl Sci Eng,1970,40:283–293.

    [36]Bormann M,Cierjacks S,Fretwurst E,et al.Z Phys,1963,174: 1.

    [37]Dandy D,Wankling J L,Parnell C J.Aldermaston Reports, No.60/68,1968.

    [38]Martin H C.Phys Rev,1954,93:498–499.

    [39]Bormann M,Dreyer F,Neuert H,et al.Nucl Data React Conf, 1967,1:225.

    [40]Seeman K W and Moore W E.Knolls Atomic Power Lab.No. 2214,1962.

    [41]Subashi M,Gueltekin E,Reyhankan I A,et al.Nucl Sci Eng, 2000,135:260–266.

    [42]DeJuren J A,Stooksbury R W,Wallis M.Phys Rev,1962,127: 1229–1232.

    [43]Wang X Y,Lin H R,Lei T,et al.Angew Chem Int Edit,2013, 52:3117–3120.

    (Received April 24,2014;accepted in revised form May 27,2014;published online July 4,2014)

    10.13538/j.1001-8042/nst.25.040501

    ?Supported by the National Natural Science Foundation of China(No. 11305239),the Program for Science and Technology Innovation Talents in Universities of Henan Province(13HASTIT046)

    ?Corresponding author,machunwang@126.com

    九色亚洲精品在线播放| 亚洲经典国产精华液单| 日韩制服丝袜自拍偷拍| 国产精品熟女久久久久浪| 黄色毛片三级朝国网站| av一本久久久久| 亚洲av电影在线观看一区二区三区| 人妻一区二区av| 国产免费又黄又爽又色| 91成人精品电影| 美女午夜性视频免费| 久久精品熟女亚洲av麻豆精品| 国产成人午夜福利电影在线观看| 日韩精品免费视频一区二区三区| 亚洲国产看品久久| www.自偷自拍.com| 精品人妻一区二区三区麻豆| 欧美人与性动交α欧美软件| 中文字幕最新亚洲高清| 亚洲内射少妇av| 亚洲一级一片aⅴ在线观看| 七月丁香在线播放| 免费播放大片免费观看视频在线观看| 夫妻性生交免费视频一级片| 少妇的逼水好多| 人妻 亚洲 视频| 一级爰片在线观看| 天天影视国产精品| 成人亚洲欧美一区二区av| 男人操女人黄网站| 在线观看美女被高潮喷水网站| 免费黄色在线免费观看| 赤兔流量卡办理| 精品人妻偷拍中文字幕| www.精华液| 免费在线观看视频国产中文字幕亚洲 | 国产欧美日韩综合在线一区二区| 综合色丁香网| 最近2019中文字幕mv第一页| 韩国精品一区二区三区| 丝瓜视频免费看黄片| 国产xxxxx性猛交| 999久久久国产精品视频| 侵犯人妻中文字幕一二三四区| 婷婷色综合www| 国产精品久久久久久av不卡| av国产精品久久久久影院| 国产综合精华液| 丝袜美足系列| 九色亚洲精品在线播放| 免费黄网站久久成人精品| 在线观看免费视频网站a站| 亚洲男人天堂网一区| 只有这里有精品99| 青春草亚洲视频在线观看| 精品少妇一区二区三区视频日本电影 | 亚洲精品成人av观看孕妇| 精品一区二区三卡| 国产精品av久久久久免费| 日韩制服骚丝袜av| 午夜福利视频精品| 狠狠精品人妻久久久久久综合| 欧美激情 高清一区二区三区| 老鸭窝网址在线观看| 国产精品三级大全| 久久精品夜色国产| 午夜免费男女啪啪视频观看| 1024视频免费在线观看| 国产高清国产精品国产三级| 一级黄片播放器| 秋霞伦理黄片| 久久久亚洲精品成人影院| 色哟哟·www| av女优亚洲男人天堂| 国产免费又黄又爽又色| 国产女主播在线喷水免费视频网站| 亚洲一级一片aⅴ在线观看| 最近手机中文字幕大全| 国产一区有黄有色的免费视频| 一级毛片黄色毛片免费观看视频| 国产精品亚洲av一区麻豆 | 91成人精品电影| 在线天堂最新版资源| 桃花免费在线播放| 人妻人人澡人人爽人人| 国产日韩欧美在线精品| 纵有疾风起免费观看全集完整版| 国产片内射在线| 亚洲欧美日韩另类电影网站| 欧美人与善性xxx| 亚洲色图 男人天堂 中文字幕| 在线观看美女被高潮喷水网站| 欧美 日韩 精品 国产| 欧美激情极品国产一区二区三区| 日韩不卡一区二区三区视频在线| 夜夜骑夜夜射夜夜干| 欧美av亚洲av综合av国产av | 国产激情久久老熟女| a 毛片基地| 一区二区日韩欧美中文字幕| 婷婷色麻豆天堂久久| 国产高清国产精品国产三级| 如何舔出高潮| 99国产综合亚洲精品| 18禁裸乳无遮挡动漫免费视频| 亚洲av免费高清在线观看| 精品国产一区二区三区四区第35| 精品人妻偷拍中文字幕| 综合色丁香网| 久久人人97超碰香蕉20202| 欧美日韩综合久久久久久| 成年女人毛片免费观看观看9 | 黑人猛操日本美女一级片| 侵犯人妻中文字幕一二三四区| 成年人午夜在线观看视频| av在线老鸭窝| 日韩,欧美,国产一区二区三区| 成年美女黄网站色视频大全免费| 国产精品成人在线| 日韩精品有码人妻一区| 精品一区二区三区四区五区乱码 | 中文字幕制服av| 亚洲经典国产精华液单| 欧美精品国产亚洲| 国产乱来视频区| 午夜免费男女啪啪视频观看| 婷婷色综合大香蕉| 国产免费一区二区三区四区乱码| 亚洲欧美色中文字幕在线| 纵有疾风起免费观看全集完整版| 久久久久人妻精品一区果冻| 中文字幕亚洲精品专区| 熟女电影av网| 有码 亚洲区| 国产无遮挡羞羞视频在线观看| 成年人免费黄色播放视频| 精品久久久久久电影网| 久久久久网色| 熟女av电影| 五月伊人婷婷丁香| 欧美 亚洲 国产 日韩一| 精品人妻在线不人妻| 成人手机av| 久久韩国三级中文字幕| 91成人精品电影| 一级片免费观看大全| 免费av中文字幕在线| 热re99久久精品国产66热6| 国产免费现黄频在线看| 自拍欧美九色日韩亚洲蝌蚪91| 婷婷色综合www| 国产日韩欧美亚洲二区| 免费在线观看完整版高清| 国产高清不卡午夜福利| 亚洲av欧美aⅴ国产| 免费人妻精品一区二区三区视频| 国产精品免费大片| 不卡av一区二区三区| 男人舔女人的私密视频| 久久毛片免费看一区二区三区| 午夜福利在线观看免费完整高清在| 伊人亚洲综合成人网| 国产亚洲av片在线观看秒播厂| 女人久久www免费人成看片| 国产精品 国内视频| 亚洲综合色网址| 丝袜脚勾引网站| 考比视频在线观看| 亚洲美女黄色视频免费看| 久久久久久久精品精品| 日韩中文字幕欧美一区二区 | 成人黄色视频免费在线看| 精品国产乱码久久久久久小说| 在线观看一区二区三区激情| 久久久欧美国产精品| 人体艺术视频欧美日本| 亚洲美女黄色视频免费看| 激情五月婷婷亚洲| 国产老妇伦熟女老妇高清| 在线观看一区二区三区激情| 中文字幕最新亚洲高清| 精品久久久精品久久久| 精品视频人人做人人爽| 日本色播在线视频| 国产老妇伦熟女老妇高清| 高清视频免费观看一区二区| 精品一区二区三区四区五区乱码 | 国产黄色免费在线视频| 久久国产亚洲av麻豆专区| 巨乳人妻的诱惑在线观看| 黄片无遮挡物在线观看| 中文字幕精品免费在线观看视频| 亚洲第一青青草原| 爱豆传媒免费全集在线观看| 亚洲精品在线美女| 国产av码专区亚洲av| 欧美精品av麻豆av| 乱人伦中国视频| 欧美精品一区二区大全| 黄色毛片三级朝国网站| 欧美变态另类bdsm刘玥| 亚洲av男天堂| 亚洲三区欧美一区| 成年美女黄网站色视频大全免费| 欧美日韩视频高清一区二区三区二| 91成人精品电影| av在线观看视频网站免费| 王馨瑶露胸无遮挡在线观看| 考比视频在线观看| 国产成人免费观看mmmm| 国产日韩欧美视频二区| 大陆偷拍与自拍| 91久久精品国产一区二区三区| 久久精品国产亚洲av天美| 亚洲精品aⅴ在线观看| 国精品久久久久久国模美| 国产xxxxx性猛交| 一区在线观看完整版| 亚洲精品日本国产第一区| 亚洲精品美女久久av网站| 亚洲综合色网址| 国产欧美日韩一区二区三区在线| 亚洲av欧美aⅴ国产| 午夜福利视频精品| 亚洲欧美成人精品一区二区| 十分钟在线观看高清视频www| 亚洲三区欧美一区| 满18在线观看网站| 国产免费视频播放在线视频| 亚洲精华国产精华液的使用体验| 亚洲av男天堂| 飞空精品影院首页| 一级片免费观看大全| av卡一久久| 亚洲人成网站在线观看播放| 爱豆传媒免费全集在线观看| 久久久久久人妻| 久久久国产精品麻豆| www.精华液| 亚洲伊人色综图| 91午夜精品亚洲一区二区三区| 午夜91福利影院| 熟女av电影| av又黄又爽大尺度在线免费看| 女人被躁到高潮嗷嗷叫费观| 亚洲精品自拍成人| 国产精品熟女久久久久浪| 免费大片黄手机在线观看| 97在线视频观看| 国产深夜福利视频在线观看| 久久99蜜桃精品久久| 欧美 亚洲 国产 日韩一| 看免费成人av毛片| 男女高潮啪啪啪动态图| 久久久国产欧美日韩av| 国产熟女午夜一区二区三区| 国产黄色视频一区二区在线观看| 香蕉丝袜av| 校园人妻丝袜中文字幕| 久久狼人影院| 色婷婷av一区二区三区视频| 9热在线视频观看99| 亚洲成av片中文字幕在线观看 | 午夜久久久在线观看| 国产精品熟女久久久久浪| 在线观看免费视频网站a站| 国产极品天堂在线| 国产激情久久老熟女| 日韩 亚洲 欧美在线| av视频免费观看在线观看| 日韩av在线免费看完整版不卡| 国产高清国产精品国产三级| 999精品在线视频| videosex国产| 成人国语在线视频| www日本在线高清视频| h视频一区二区三区| 2022亚洲国产成人精品| 黄色怎么调成土黄色| 韩国精品一区二区三区| 成人毛片60女人毛片免费| 亚洲精品国产色婷婷电影| 晚上一个人看的免费电影| 久久女婷五月综合色啪小说| 我的亚洲天堂| 久久久欧美国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲伊人色综图| 亚洲精品,欧美精品| 亚洲欧美一区二区三区久久| 在线亚洲精品国产二区图片欧美| 欧美变态另类bdsm刘玥| 欧美精品人与动牲交sv欧美| 亚洲精品国产色婷婷电影| 中文字幕亚洲精品专区| 香蕉丝袜av| 久久久精品94久久精品| 一区二区三区激情视频| av有码第一页| 搡女人真爽免费视频火全软件| av电影中文网址| 考比视频在线观看| 日本色播在线视频| 一级毛片我不卡| 成年女人在线观看亚洲视频| 亚洲天堂av无毛| 亚洲五月色婷婷综合| 午夜福利网站1000一区二区三区| 亚洲欧美清纯卡通| 午夜福利在线免费观看网站| 啦啦啦在线免费观看视频4| 人妻一区二区av| av一本久久久久| 欧美97在线视频| 极品人妻少妇av视频| 久久久久久久大尺度免费视频| 亚洲精品,欧美精品| 一级a爱视频在线免费观看| 免费观看av网站的网址| 咕卡用的链子| 久久久久久久久久人人人人人人| 久久 成人 亚洲| 国产在线视频一区二区| 校园人妻丝袜中文字幕| 99国产精品免费福利视频| 国产精品欧美亚洲77777| 九九爱精品视频在线观看| 91成人精品电影| 丁香六月天网| 一级,二级,三级黄色视频| 亚洲色图综合在线观看| tube8黄色片| 欧美日韩成人在线一区二区| 国产免费一区二区三区四区乱码| 久热这里只有精品99| 91aial.com中文字幕在线观看| 在线观看美女被高潮喷水网站| 伊人久久大香线蕉亚洲五| 男女下面插进去视频免费观看| 久久99热这里只频精品6学生| 亚洲伊人色综图| 麻豆av在线久日| 高清不卡的av网站| 日本欧美视频一区| av在线观看视频网站免费| 亚洲婷婷狠狠爱综合网| 两个人免费观看高清视频| 精品国产乱码久久久久久小说| 久久久久网色| 欧美+日韩+精品| 亚洲一级一片aⅴ在线观看| 丰满饥渴人妻一区二区三| 国产男女超爽视频在线观看| 激情五月婷婷亚洲| 高清在线视频一区二区三区| 国产 一区精品| 啦啦啦啦在线视频资源| 一区在线观看完整版| 国产精品久久久久久精品古装| 国产极品天堂在线| 久久久久久免费高清国产稀缺| 国产精品偷伦视频观看了| 麻豆乱淫一区二区| 久久99蜜桃精品久久| 久久精品久久久久久久性| 街头女战士在线观看网站| 麻豆精品久久久久久蜜桃| 欧美亚洲 丝袜 人妻 在线| 亚洲精品第二区| 亚洲一区二区三区欧美精品| 亚洲欧美精品综合一区二区三区 | 国产精品 欧美亚洲| 美女午夜性视频免费| 精品久久蜜臀av无| 巨乳人妻的诱惑在线观看| 国产精品人妻久久久影院| 91成人精品电影| 女人精品久久久久毛片| 涩涩av久久男人的天堂| 中文字幕色久视频| 久久精品熟女亚洲av麻豆精品| 亚洲精品乱久久久久久| 美女中出高潮动态图| 啦啦啦在线观看免费高清www| 欧美av亚洲av综合av国产av | 老司机亚洲免费影院| 天堂中文最新版在线下载| 2021少妇久久久久久久久久久| 日本-黄色视频高清免费观看| 美国免费a级毛片| 肉色欧美久久久久久久蜜桃| 成年人午夜在线观看视频| 国产女主播在线喷水免费视频网站| 久久久久网色| 这个男人来自地球电影免费观看 | 午夜免费男女啪啪视频观看| 亚洲欧洲精品一区二区精品久久久 | 久久久久久人人人人人| 亚洲国产av新网站| 亚洲精品一区蜜桃| 精品一区二区免费观看| 欧美精品高潮呻吟av久久| 可以免费在线观看a视频的电影网站 | av视频免费观看在线观看| 成人影院久久| 免费大片黄手机在线观看| 99久久综合免费| 可以免费在线观看a视频的电影网站 | 久久国产精品大桥未久av| 女人精品久久久久毛片| 又粗又硬又长又爽又黄的视频| 老汉色∧v一级毛片| 精品福利永久在线观看| av卡一久久| 亚洲男人天堂网一区| 精品久久蜜臀av无| 一区二区日韩欧美中文字幕| 又大又黄又爽视频免费| 侵犯人妻中文字幕一二三四区| 欧美激情高清一区二区三区 | 亚洲国产精品一区三区| 国产xxxxx性猛交| 亚洲国产av新网站| 香蕉精品网在线| 1024视频免费在线观看| 99久国产av精品国产电影| 人人妻人人澡人人爽人人夜夜| 9色porny在线观看| 日韩一区二区视频免费看| 日韩不卡一区二区三区视频在线| 一级黄片播放器| 交换朋友夫妻互换小说| 春色校园在线视频观看| 伦理电影大哥的女人| 久久人人爽av亚洲精品天堂| 亚洲 欧美一区二区三区| 丁香六月天网| 波多野结衣一区麻豆| 九色亚洲精品在线播放| 免费观看在线日韩| 久久久久久久久免费视频了| 狂野欧美激情性bbbbbb| 亚洲av日韩在线播放| 国产精品免费视频内射| 国产熟女午夜一区二区三区| 涩涩av久久男人的天堂| 多毛熟女@视频| 人人妻人人爽人人添夜夜欢视频| 男男h啪啪无遮挡| 国产av码专区亚洲av| 亚洲精品日本国产第一区| freevideosex欧美| 男人舔女人的私密视频| 可以免费在线观看a视频的电影网站 | tube8黄色片| 亚洲欧洲日产国产| 国产一区二区三区综合在线观看| 王馨瑶露胸无遮挡在线观看| 精品福利永久在线观看| 美女视频免费永久观看网站| 日韩一卡2卡3卡4卡2021年| 亚洲国产看品久久| 伦理电影免费视频| 国产精品.久久久| 一区二区三区乱码不卡18| 成人毛片a级毛片在线播放| 国产精品一二三区在线看| 欧美日韩精品成人综合77777| 亚洲美女搞黄在线观看| 日韩av免费高清视频| 亚洲第一青青草原| 亚洲国产欧美网| 亚洲精品aⅴ在线观看| 丰满饥渴人妻一区二区三| 一区二区av电影网| h视频一区二区三区| 我的亚洲天堂| 你懂的网址亚洲精品在线观看| 欧美日韩精品网址| 男人操女人黄网站| 涩涩av久久男人的天堂| 91久久精品国产一区二区三区| 成年人免费黄色播放视频| 一级毛片我不卡| 日韩av在线免费看完整版不卡| 欧美成人精品欧美一级黄| 色婷婷av一区二区三区视频| 人妻 亚洲 视频| 一区二区三区四区激情视频| 久久精品国产亚洲av高清一级| 亚洲三区欧美一区| 久久久久久伊人网av| 午夜福利一区二区在线看| 色视频在线一区二区三区| 免费高清在线观看日韩| 久久精品夜色国产| 26uuu在线亚洲综合色| 国产成人精品一,二区| 亚洲欧洲精品一区二区精品久久久 | 国产精品国产av在线观看| 日日摸夜夜添夜夜爱| 欧美日韩一区二区视频在线观看视频在线| 麻豆乱淫一区二区| av片东京热男人的天堂| 久久久欧美国产精品| 久久韩国三级中文字幕| 电影成人av| 三上悠亚av全集在线观看| 精品午夜福利在线看| 人人妻人人爽人人添夜夜欢视频| 日韩免费高清中文字幕av| 亚洲精品视频女| 欧美成人午夜免费资源| 欧美另类一区| av有码第一页| 亚洲一区中文字幕在线| 欧美日韩精品成人综合77777| 亚洲第一av免费看| 久久99热这里只频精品6学生| 免费观看在线日韩| 超碰97精品在线观看| 国产成人免费观看mmmm| 国产精品香港三级国产av潘金莲 | 女性生殖器流出的白浆| 在线观看免费高清a一片| 亚洲成色77777| 毛片一级片免费看久久久久| videosex国产| 99久久综合免费| 90打野战视频偷拍视频| 99久久综合免费| 国产男女超爽视频在线观看| 美女福利国产在线| 亚洲成色77777| 我要看黄色一级片免费的| 亚洲第一区二区三区不卡| 99久久综合免费| 在线天堂最新版资源| 亚洲精品日本国产第一区| 老鸭窝网址在线观看| 亚洲精品第二区| 街头女战士在线观看网站| 999精品在线视频| 26uuu在线亚洲综合色| 精品亚洲乱码少妇综合久久| 亚洲成国产人片在线观看| 亚洲欧美色中文字幕在线| 2018国产大陆天天弄谢| 国产成人午夜福利电影在线观看| 91久久精品国产一区二区三区| 亚洲男人天堂网一区| 91在线精品国自产拍蜜月| 欧美最新免费一区二区三区| 一边摸一边做爽爽视频免费| 日日撸夜夜添| 亚洲成av片中文字幕在线观看 | 久久久国产精品麻豆| 亚洲一区中文字幕在线| 亚洲欧洲国产日韩| 国产不卡av网站在线观看| 久久久久久久亚洲中文字幕| av在线播放精品| 一级片免费观看大全| 亚洲av在线观看美女高潮| 国产亚洲最大av| 大陆偷拍与自拍| 久久精品久久久久久久性| 亚洲国产欧美在线一区| 久久鲁丝午夜福利片| 9热在线视频观看99| 久久这里只有精品19| 欧美av亚洲av综合av国产av | 欧美日韩视频高清一区二区三区二| www.av在线官网国产| 好男人视频免费观看在线| 黑丝袜美女国产一区| 成年人午夜在线观看视频| 一区二区三区精品91| 国产爽快片一区二区三区| 99热网站在线观看| 涩涩av久久男人的天堂| xxx大片免费视频| 男女无遮挡免费网站观看| 国产视频首页在线观看| 91精品三级在线观看| 免费观看无遮挡的男女| 叶爱在线成人免费视频播放| 五月天丁香电影| 只有这里有精品99| 国产爽快片一区二区三区| 18禁裸乳无遮挡动漫免费视频| 一区二区日韩欧美中文字幕| 国产成人av激情在线播放| 久久女婷五月综合色啪小说| 色婷婷久久久亚洲欧美| 亚洲人成电影观看| 在线亚洲精品国产二区图片欧美| 成人国语在线视频| 国产午夜精品一二区理论片| 久久青草综合色| 香蕉丝袜av| 国产 精品1| 亚洲熟女精品中文字幕| 亚洲av在线观看美女高潮| 熟女少妇亚洲综合色aaa.| 尾随美女入室| 亚洲色图综合在线观看| 欧美日韩一区二区视频在线观看视频在线| 97精品久久久久久久久久精品| 观看av在线不卡| 新久久久久国产一级毛片| 一级片'在线观看视频| 国产精品二区激情视频| 亚洲欧美一区二区三区久久| 欧美精品一区二区大全|