何 非,商玉鳳,梁 心,陶建武
(1.空軍航空大學(xué) 數(shù)學(xué)教研室,長(zhǎng)春 130022;2.空軍航空大學(xué) 飛行器控制系,長(zhǎng)春 130022)
均衡規(guī)劃問(wèn)題在經(jīng)濟(jì)學(xué)和社會(huì)學(xué)等領(lǐng)域應(yīng)用廣泛[1-3],文獻(xiàn)[4-5]給出了解數(shù)學(xué)規(guī)劃問(wèn)題的動(dòng)邊界組合同倫方法,并將該方法應(yīng)用到求解變分不等式問(wèn)題和多目標(biāo)規(guī)劃問(wèn)題中[6-7],與已有的組合同倫內(nèi)點(diǎn)法相比,應(yīng)用該方法不需要初始點(diǎn)為可行集的內(nèi)點(diǎn),但不能保證終止點(diǎn)一定為可行集的內(nèi)點(diǎn).本文給出了求解均衡規(guī)劃問(wèn)題均衡點(diǎn)的同倫方法,稱為半內(nèi)點(diǎn)法組合同倫方程,所求問(wèn)題約束除了含有不等式約束外還有等式約束,且任給x(0)∈RN均可作為初始點(diǎn),而當(dāng)同倫參數(shù)tk<δ(0<δ<1)時(shí),可以保證同倫路徑上的點(diǎn)x(k)∈Ω(0),從而在應(yīng)用上不需考慮通過(guò)解方程組的形式找到初始點(diǎn),計(jì)算方便,并在較弱條件下證明了同倫路徑的存在性和收斂性.
[1]Cachon G P,Netessine S.Game Theory in Supply Chain Analysis[M].Dordrecht:Kluwer,2003.
[2]Facchinei F,PANG Jongshi.Exact Penalty Functions for Generalized Nash Problems[M].Heidelberg:Springer,2006:115-126.
[3]Krawczyk J.Numerical Solutions to Coupled-Constraint (or Generalised Nash)Equilibrium Problems [J].Computational Management Science,2007,4(2):183-204.
[4]于波,商玉鳳.解非凸規(guī)劃問(wèn)題的動(dòng)邊界組合同倫方法 [J].數(shù)學(xué)研究與評(píng)論,2006,26(4):831-834.(YU Bo,SHANG Yufeng.Boundary Moving Combined Homotopy Method for Nonconvex Nonlinear Programming [J].Journal of Mathematical Research and Exposition,2006,26(4):831-834.)
[5]商玉鳳,于波.凸規(guī)劃的動(dòng)邊界組合同倫方法及其收斂性 [J].吉林大學(xué)學(xué)報(bào):理學(xué)版,2006,44(3):357-361.(SHANG Yufeng, YU Bo.Boundary Moving Combined Homotopy Method for Nonconvex Nonlinear Programming and Its Convergence[J].Journal of Jilin University:Science Edition,2006,44(3):357-361.)
[6]SHANG Yufeng,YU Bo.A Constraint Shifting Homotopy Method for Convex Multi-objective Programming[J].Journal of Computational and Applied Mathematics,2011,236(5):640-646.
[7]SHANG Yufeng,XU Qing,YU Bo.A Globally Convergent Non-interior Point Homotopy Method for Solving Variational Inequalities[J].Optimization Methods and Software,2011,26(6):933-943.
[8]M?kel?M M,Neittaanm?ki P.Nonsmooth Optimization:Analysis and Algorithms with Applications to Optimal Control[M].Singapore:World Scientific Publishing Company,Inc,1992.
[9]Allgower E L,Georg K.Numerical Path Following[M].Handbook of Numerical Analysis.Vol.5.Amsterdam:[s.n.],1996.