• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An improved ant colony algorithm and its application in optimal routing problem

    2013-11-01 01:29:39SONGJinjuan宋錦娟BAIYanping白艷萍
    關(guān)鍵詞:艷萍

    SONG Jin-juan (宋錦娟),BAI Yan-ping (白艷萍)

    (Dept. of Mathematics, North University of China, Taiyuan 030051, China)

    An improved ant colony algorithm and its application in optimal routing problem

    SONG Jin-juan (宋錦娟),BAI Yan-ping (白艷萍)

    (Dept. of Mathematics, North University of China, Taiyuan 030051, China)

    Ant colony system (ACS), a kind of ant colony algorithm, is an effective way of solving shortest path problem, however, it has some defects. In this paper, ACS is improved for avoiding getting stuck in a local minimum, whose defects mainly include the following two aspects: initial pheromone solution and pheromone updating. In order to learn the advantages of improved ant colony system (IACS), experiments are conducted for some times. First, it is applied to 8 traveling salesman problem (TSP) instances, and compared with three self-organizing map (SOM) algorithms. Then the author analyzes the space complexity and convergence of two algorithms and compares them. Simulation results show that IACS has much better performance in solving TSP, and it has certain theoretical reference value and practical significance.

    ant colony system (ACS); pheromone; traveling salesman problem; spcae complexity

    0 Introduction

    The traveling salesman problem (TSP)[1]is an important problem and also a hot topic in today’s social studies. It is similar to job-shop scheduling,quadratic assignment problem, all of which can be summarized to combinatorial optimization problem. There are many heuristic intelligent algorithms for solving TSP, such as genetic algorithm(GA)[2], simulated annealing (SA)[3], self-organizing map (SOM)[4,5], ant colony algorithm(ACA)[6,7], and so on.

    The intelligent algorithm ACS, a kind of improved ACA, has many characteristics such as parallelism, positive feedback and collaboration, however, it still easily gets stuck in a local minimum. So in this paper, an improved ant colony system (IACS) is presented. A new way of calculating initial pheromone value is proposed and ACS global updating rule is adjusted, in which, in addition to the globally shortest path, the pheromone in globally longest path is also updated. Furthermore, the max-min ant system[8]is introduced to effectively stagnation phenomenon caused by great difference of pheromone between the shortest path and the longest path, which can improve the global searching range and avoid local minimum.At last, the rationality and validity of IACS are verified through computer simulation.

    1 Description of TSP

    The traveling salesman problem is a well-known NP-hard combinatorial optimization problem. TSP[1,9-11]is described as follows: Given a set of N cities, there is a salesman who tries to find the shortest closed path to visit the above N cities under the condition that each city is visited exactly once. It can also be described mathematically as follows: let C be a collection of N cities, where C={c1,c2,…,cN}; and d(ci,cj)∈R+stands for the distance between two cities, where ci,cj∈C(1≤i, j≤N). To achieve a city sequence {cω(1), cω(2), …, cω(N)} under the condition that it makes objective function

    be the smallest, where ω(1),ω(2),… , ω(N) is a full array of 1,2,…,N.

    2 Model of ACS

    In ACS, while building a path of TSP, ants can visit edges and change their pheromone level by using the local updating rule. Once all ants have completed their paths, the pheromone level is updated by using the global updating rule.

    2.1 ACS state transition rule

    In ACS, the state transition rule can be described as follows: an ant positioned on node i chooses the city j to move to using the rule given by

    2.2 ACS local updating rule

    After choosing a city (that means to visit a edge), the pheromone level of this edge is updated by the local updating rule:

    where ξ∈[0,1] is the local pheromone decaying parameter, and τ0is the initial pheromone concentration value of all edges.

    2.3 ACS global updating rule

    When all ants have completed their closed paths, only the globally best ant who builds the shortest path from the beginning of the trial is allowed to deposit pheromone. The pheromone level is updated by the global updating rule:

    where

    where ρ∈(0,1) is global pheromone decaying parameter, Δτijis pheromone increment of edge in this circulation, and Lgbis the length of the globally optimal path found so far.

    3 IACS

    The ACS is an improved ant colony optimization algorithm, the performance of which is improved remarkably, and it is greatly effective in solving TSP and other shortest path problems. However, it still easily gets stuck in a local minimum, so in this paper, some respects must be discussed in the following.

    3.1 Way of getting initial pheromone

    3.2 Pheromone updating rule

    In ACS, only the pheromone in globally shortest path is allowed to be updated, but in this paper, in addition to the globally shortest path, the pheromone in globally longest path is also updated. The pheromone updating rules in globally shortest and longest path are expressed as

    where ρ is the global pheromone decaying parameter, Lbestand Lworstare the length of the shortest and longest path, respectively.

    3.3 Max-min pheromone system

    After pheromone being updated, in order to effectively suppress stagnation phenomenon caused by great difference of pheromone between the shortest and the longest path, the pheromone in every edge is limited in a range [τmin,τmax][8], where τmin=10, τmax=0.0001.

    4 Steps of IACS

    The steps of IACS are represented as follows:

    Step 1: Parameter initialization

    Different parameter settings have different influence on experimental results of algorithm, so some experiments are conducted by setting a large number of different parameters, and ultimately the optimal parameter combination is got: α=1,β=2,ζ=0.5,ρ=0.6,q0=0.9, m=5,MaxNc=5 000, where MaxNc represent the maximum number of iteration.

    Step 2: Finding the optimal path

    In this paper, a set of m ants are placed on n starting nodes (n cities) randomly, and the starting nodes which have been visited by ants are placed in the current solution set tabuk. Each ant will visit the next city j by applying the state transition rules Eqs.(2) and (3), then j is also placed in the current solution set tabuk.

    Step 3: Pheromone local updating

    The pheromone in the paths!that ants have passed is updated by local updating rule, Eq.(4), then it is determined whether pheromone τij(where τijis the pheromone of path ) is contained in the range [τmin,τmax], if τij>τmax, let τij=τmax; if τij<τmin, let τij=τmin; otherwise, let τijbe itself.

    Step 4: Repeating step 2 and 3 until all ants complete their closed path.

    Step 5: After iterations of the above four steps, there will be m closed paths, comparing the lengths of m paths, the optimal solution and the worst solution are got and stored. Then the pheromone in the shortest path and the longest path is updated by Eqs.(7) and (8).

    Step 6: A set of m ants are placed on n starting nodes (n cities) randomly again, according to step 2, 3 and 4 for optimization, which is repeated, until the 1 000 iterations.

    Step 7: The program of path optimization ends until the number of iterations reaches the maximum value. Comparing with the 1 000 optimal solutions of 1 000 iterations, the globally optimal solution will be got, which is also the optimal solution of this algorithm searching for.

    5 Experimental results

    In order to verify the validity of IACS, 8 examples (such as lin105,ch130, ch150, rat195 and KroA200,etc.) obtained from the general TSPLIB[12]are adopted for experiments. For each example, it is conducted for 10 times, and then the best, average value and the relative error. The experimental results are shown in are calculated, respectively Table 1 and Table 2.

    Table 1 Comparison of the best value and time of two algorithms for 10 times

    Table 2 Comparison of the average value and relative error of two algorithms

    The above comparison of experimental results shows that the optimal value and average value obtained by the improved algorithm are greatly better, and relative error is much smaller than that of ACS, so the improved algorithm introduced in this paper is an effective algorithm. The following diagrams are the experimental results of the improved algorithm. (x stands for longitude, Y stands for latitude, and the unit for each of them is radian.)

    Fig.1 Optimal path graph of ch130

    Fig.2 Optimal path graph of eil51

    Fig.3 Optimal path graph of KroA200

    Fig.4 Optimal path graph of lin105

    Fig.5 Optimal path graph of ch150

    Fig.6 Optimal path graph of rat195

    Fig.7 Optimal path graph of st70

    Fig.8 Optimal path graph of pr152

    In order to further verify the fact that the improved algorithm has better performance, the results obtained by the improved algorithm are compared with that by three kinds of SOM algorithms: Favata-Walke Algorithm (F-W), non-corrdinate self-organizing may (NCSOM) and asymmetric self-organizing map (ASOM)[13]. The comparison results are shown in Table 3.

    Table 3 Comparison results of four algorithms

    From Table 3, it can be seen that for each example of TSP, the experimental results of the improved algorithm are greatly better than other three algorithms. And every optimal value obtained is almost close to the known optimal value.

    Finally, the author takes Chinese 34 cities-TSP, a practical problem, for example and makes a comparison between ISOM and ACS based in optimal pathing values and the time. Table 4 and Table 5 show the coordinates of Chinese 34 cities and the comparison of the results of two algorithms, respectively.

    Table 4 Coordinates of Chinese 34 cities

    Table 5 Comparison of the results of two algorithms

    For the instance Chinese 34 cities-TSP, the optimal path graphs and their corresponing schematic diagrams of variation of global optimal path for two algorithms are shown in Figs.9-12.

    Fig.9 Diagram of variation of global optimal path for IACS

    Fig.10 Optimal path graph for IACS

    Fig.11 Diagram of variation of global optimal path for ACS

    Fig.12 Optimal path graph for ACS

    6 Algorithm complexity and convergence

    Consindering the space complexity of algorithm, we need to analyse the data applied to the algorithm in the process of realization. The data mainly come from two aspects: the description of the problem and the auxiliary data for the realization of algorithm. Taking TSP for example, first, if the scale of TSP is n, we need a n-dimensional two order distance matrix describing the characteristics of the problem itself. For ACS, another n-dimensional two order matrix is needed to describe pheromone concentration of globally shortest path for each iteration. Then, in the process of searching for optimal solution, a n-order one-dimensional matrix is required to establish a tabu list for each ant in order to ensure that the cities visited are no longer chosen in one iteration. In conclusion, we can easily find that the space complexity of ACS algorithm for each iteration may be evaluated as follows: O(n×n)+O(M×n), where M is the number of ants. In IACS algorithm, two n-dimensional two-order matrices are required to describe pheromone concentration of global shortest path and longest path, respectively, so the space complexity of IACS algorithm for each iteration may be evaluated as: O(n×n×n)+O(M×n).

    From the comparison between Figs.17 and 19, we can find that ISOM almost reaches the global optimal value when the 600th iteration, while SOM has not reached the global optimal value when the 2 500th iteration. In summary, in spite of a litter higher space complexity of IACS, it has a faster convergence and can achieve better quality results than ACS.

    7 Conclusion and discussion

    This paper proposes a kind of improved intnlligent ant colony optimization algorithm based on the ACS easily falling into a local optimum, and introduces a kind of new pheromone updating rule and the max-min pheromone system, which makes the ability of the ACS in searching for the globally optimal pth stronger. From the experimental results above, it can easily be found that the improved algorithm has very good searching ability in TSP. However, from Table 1, it can be found that the time of two algorithm is greatly long, which is a aspect need to be improved in the future.

    [1] Balachandar S R, Kannan K. Randomized gravitational emulation search algorithm for symmetric traveling salesman problem. Applied Mathematics and Computation, 2007, 192(2): 413-421.

    [2] Goldberg D E. Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Boston, 1989.

    [3] Van Laarhoven P J, Aarts E H. Simulated annealing: theory and applications. Springer, 1987.

    [4] Kohonen T. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 1982, 43(1): 59-69.

    [5] Fort J C. Solving a combinatorial problem via self-organizing process: an application of the Kohonen algorithm to the traveling salesman problem. Biological Cybernetics, 1988, 59(1): 33-40.

    [6] Dorigo M, Gambardella L M, Ant colony system: a cooperative learning approach to the traveling salesman problem, IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-56.

    [7] Mullen R J, Monekosso D, Barman S, et al. A review of ant algorithms. Expert Systems with Applications, 2009, 36 (6): 9608-9617.

    [8] Stützle T, Hoos H H. Max-min ant system. Future Generation Computer Systems, 2000, 16(8): 889-914.

    [9] ZHANG Wen-dong, BAI Yan-ping, HU Hong-ping. The incorporation of an efficient initialization method and parameter adaptation using self-organizing maps to solve the TSP. Applied Mathematics and Computation, 2006, 172(1): 603-623.

    [10] CHENG Chi-bin, MAO Chun-pin. A modified ant colony system for solving the traveling salesman problem with time windows. Mathematical and Computer Modelling, 2007, 46(9/10): 1225-1235.

    [11] Yadlapalli S, Malik W A, Darbha S, et al. A lagrangian-based algorithm for a multiple depot, multiple traveling salesmen problem. Nonlinear Analysis: Real World Applications, 2009, 10(4): 1990-1999.

    [12] Ruprecht-karls-universitat heidelberg. Symmetric traveling salesman problem (TSP): TSP data, best solutions for symmetric TSPs. [2012-08-15]. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.

    [13] WU Ling-yun. The application for neural networks in combinatorial optimization and DNA sequencing. Department of Mathematics, Academy of Sciences, China, 2002: 51-56.

    date: 2012-09-30

    National Natural Science Foundation of China (No.61275120)

    SONG Jin-juan (jinjuansong666@163.com)

    CLD number: TP301.6 Document code: A

    1674-8042(2013)01-0023-07

    10.3969/j.issn.1674-8042.2013.01.006

    猜你喜歡
    艷萍
    Weighted norm inequalities for commutators of the Kato square root of second order elliptic operators on Rn
    基于JavaScript編程語言之 閉包技術(shù)在焦點(diǎn)輪播上的應(yīng)用
    A SPECTRAL METHOD FOR A WEAKLY SINGULAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATION WITH PANTOGRAPH DELAY*
    藏在毛衣里的愛
    新少年(2021年3期)2021-03-28 02:30:27
    春分
    NUMERICAL ANALYSIS FOR VOLTERRA INTEGRAL EQUATION WITH TWO KINDS OF DELAY?
    詠江石
    我的發(fā)現(xiàn)
    學(xué)吹泡泡
    可愛的小手套
    毛片一级片免费看久久久久| 国产综合懂色| 国产精品99久久久久久久久| 你懂的网址亚洲精品在线观看| 亚洲精品,欧美精品| 久久久久久久久大av| 亚洲国产精品成人综合色| 美女高潮的动态| 久久久久久久亚洲中文字幕| 日本黄大片高清| 久久精品国产自在天天线| 一级二级三级毛片免费看| 久久久色成人| 中文字幕久久专区| 欧美最新免费一区二区三区| 亚洲综合色惰| 2021少妇久久久久久久久久久| 色尼玛亚洲综合影院| 看免费成人av毛片| 亚洲熟女精品中文字幕| 18禁在线播放成人免费| 免费在线观看成人毛片| 国产成人午夜福利电影在线观看| 人人妻人人澡欧美一区二区| 亚洲av一区综合| 亚洲精品成人av观看孕妇| 免费观看精品视频网站| 日本免费在线观看一区| 男女下面进入的视频免费午夜| 欧美精品国产亚洲| 好男人视频免费观看在线| 晚上一个人看的免费电影| 久久久久免费精品人妻一区二区| 国产午夜精品久久久久久一区二区三区| 欧美另类一区| 日本黄色片子视频| 国产伦在线观看视频一区| 亚洲精品亚洲一区二区| 国产精品一区二区在线观看99 | 国产片特级美女逼逼视频| 老女人水多毛片| 国产男女超爽视频在线观看| 美女黄网站色视频| 欧美成人一区二区免费高清观看| 国产亚洲av片在线观看秒播厂 | 国产亚洲最大av| 简卡轻食公司| 日日摸夜夜添夜夜添av毛片| 亚洲成人中文字幕在线播放| 国产精品女同一区二区软件| 午夜福利成人在线免费观看| 日韩一区二区视频免费看| 国产精品.久久久| 91午夜精品亚洲一区二区三区| 在线观看一区二区三区| 国产一区二区亚洲精品在线观看| 一区二区三区免费毛片| 国产v大片淫在线免费观看| 久久久精品免费免费高清| 免费av不卡在线播放| 亚洲精品,欧美精品| 国产国拍精品亚洲av在线观看| 视频中文字幕在线观看| 日本欧美国产在线视频| 精品99又大又爽又粗少妇毛片| 亚洲av中文字字幕乱码综合| 你懂的网址亚洲精品在线观看| 日韩精品有码人妻一区| 国产成人福利小说| 少妇裸体淫交视频免费看高清| 嫩草影院入口| 久久久色成人| 欧美3d第一页| 精品亚洲乱码少妇综合久久| 久久这里有精品视频免费| 亚洲欧美日韩东京热| 美女脱内裤让男人舔精品视频| 亚洲av中文av极速乱| 精华霜和精华液先用哪个| 日韩大片免费观看网站| 综合色av麻豆| av卡一久久| 欧美xxxx性猛交bbbb| 天堂影院成人在线观看| 黄色日韩在线| 国产精品三级大全| 麻豆精品久久久久久蜜桃| 欧美日本视频| 最新中文字幕久久久久| 最后的刺客免费高清国语| 乱码一卡2卡4卡精品| 一级毛片黄色毛片免费观看视频| 男女边吃奶边做爰视频| 国产乱来视频区| 亚洲无线观看免费| 欧美bdsm另类| 最近手机中文字幕大全| 免费人成在线观看视频色| 国产爱豆传媒在线观看| 欧美性猛交╳xxx乱大交人| 国产精品一二三区在线看| 麻豆成人av视频| 亚洲欧美精品专区久久| 亚洲国产精品成人综合色| 久久精品国产鲁丝片午夜精品| 亚洲成人av在线免费| 高清日韩中文字幕在线| 久久久色成人| 亚洲,欧美,日韩| av免费观看日本| 欧美成人a在线观看| 尤物成人国产欧美一区二区三区| 寂寞人妻少妇视频99o| 国产成年人精品一区二区| 日韩亚洲欧美综合| 国产精品人妻久久久久久| 日日啪夜夜撸| 一二三四中文在线观看免费高清| 久久久a久久爽久久v久久| 国产一级毛片七仙女欲春2| 国产国拍精品亚洲av在线观看| 最近的中文字幕免费完整| 国产亚洲精品av在线| 精品人妻视频免费看| 欧美性感艳星| 精品久久久久久久久久久久久| 欧美日韩一区二区视频在线观看视频在线 | 国产精品一区二区在线观看99 | 亚洲最大成人手机在线| 成人午夜精彩视频在线观看| av免费观看日本| 亚洲国产最新在线播放| 成人午夜精彩视频在线观看| 亚洲欧美成人综合另类久久久| 能在线免费看毛片的网站| 亚洲av成人精品一区久久| 国产精品综合久久久久久久免费| 国产男人的电影天堂91| 国产中年淑女户外野战色| 色5月婷婷丁香| 久久久久网色| 亚洲国产av新网站| 免费看美女性在线毛片视频| 免费看美女性在线毛片视频| 国产精品久久久久久精品电影小说 | 少妇熟女欧美另类| 亚洲av成人精品一区久久| 亚洲精品aⅴ在线观看| 亚洲精品视频女| 亚洲欧洲国产日韩| 淫秽高清视频在线观看| 亚洲精品日韩在线中文字幕| 免费观看性生交大片5| 卡戴珊不雅视频在线播放| 人妻少妇偷人精品九色| 欧美丝袜亚洲另类| 亚洲图色成人| 亚洲欧美一区二区三区黑人 | 亚洲在线自拍视频| 永久网站在线| 国产精品爽爽va在线观看网站| 国产精品美女特级片免费视频播放器| 91狼人影院| 日韩中字成人| 亚洲最大成人手机在线| 欧美高清成人免费视频www| 亚洲成人精品中文字幕电影| 男女视频在线观看网站免费| av在线老鸭窝| 日本与韩国留学比较| 亚洲精品久久午夜乱码| 极品少妇高潮喷水抽搐| 日韩欧美 国产精品| 综合色av麻豆| 99久久人妻综合| 全区人妻精品视频| 国产精品爽爽va在线观看网站| 欧美成人精品欧美一级黄| .国产精品久久| av又黄又爽大尺度在线免费看| 乱系列少妇在线播放| 日韩一区二区三区影片| 人妻少妇偷人精品九色| 久久精品国产亚洲网站| 搞女人的毛片| 亚洲av成人av| 欧美 日韩 精品 国产| 最近中文字幕2019免费版| 亚洲熟妇中文字幕五十中出| 91精品国产九色| 在线a可以看的网站| 国产成人精品婷婷| 一级av片app| 国产高清不卡午夜福利| 男女国产视频网站| 亚洲美女搞黄在线观看| ponron亚洲| 在线观看美女被高潮喷水网站| 欧美高清性xxxxhd video| 欧美三级亚洲精品| 国国产精品蜜臀av免费| 国产91av在线免费观看| 欧美精品一区二区大全| 日韩成人av中文字幕在线观看| 亚洲图色成人| 黄片无遮挡物在线观看| 亚洲精品国产av成人精品| a级一级毛片免费在线观看| 国产黄频视频在线观看| 性色avwww在线观看| 国产伦精品一区二区三区四那| 国产午夜精品久久久久久一区二区三区| av卡一久久| 中文字幕久久专区| 日本色播在线视频| 老司机影院成人| 91狼人影院| 国产 亚洲一区二区三区 | 在线 av 中文字幕| 伊人久久精品亚洲午夜| 日韩三级伦理在线观看| 成人二区视频| 国产精品综合久久久久久久免费| 精品久久久久久久末码| 97超碰精品成人国产| 国产一区亚洲一区在线观看| 91精品国产九色| 亚洲欧美精品自产自拍| 一夜夜www| 免费黄频网站在线观看国产| 欧美日韩精品成人综合77777| 午夜福利视频1000在线观看| 中文资源天堂在线| 久久久久久久久久黄片| 嘟嘟电影网在线观看| 亚洲电影在线观看av| 日韩伦理黄色片| 男人和女人高潮做爰伦理| 日日摸夜夜添夜夜添av毛片| 亚洲自偷自拍三级| 特大巨黑吊av在线直播| 男女边摸边吃奶| 亚洲国产精品成人综合色| 青春草视频在线免费观看| 国产 一区精品| 日本一二三区视频观看| 亚洲欧美日韩东京热| 亚洲18禁久久av| 国产精品伦人一区二区| 中文天堂在线官网| 插阴视频在线观看视频| 内射极品少妇av片p| 免费不卡的大黄色大毛片视频在线观看 | 国产一级毛片在线| 1000部很黄的大片| 六月丁香七月| 特级一级黄色大片| 国产精品三级大全| 精品亚洲乱码少妇综合久久| av网站免费在线观看视频 | 久久亚洲国产成人精品v| 亚洲伊人久久精品综合| 女人被狂操c到高潮| 欧美三级亚洲精品| 美女内射精品一级片tv| 国产伦在线观看视频一区| 亚洲精品乱久久久久久| 欧美极品一区二区三区四区| 亚洲精品久久久久久婷婷小说| 亚洲欧美清纯卡通| 大香蕉久久网| 偷拍熟女少妇极品色| 国产高清三级在线| 免费播放大片免费观看视频在线观看| 国产亚洲一区二区精品| 午夜福利网站1000一区二区三区| av国产久精品久网站免费入址| 亚洲精品一二三| 七月丁香在线播放| 午夜精品国产一区二区电影 | 亚洲电影在线观看av| 麻豆国产97在线/欧美| 成人亚洲精品av一区二区| 久久鲁丝午夜福利片| 国产成人免费观看mmmm| 99久国产av精品| 久久久久久九九精品二区国产| 精品久久久久久久末码| 精品酒店卫生间| 狂野欧美激情性xxxx在线观看| 最近最新中文字幕大全电影3| 久久精品国产自在天天线| 国产麻豆成人av免费视频| 国产男女超爽视频在线观看| 最近中文字幕高清免费大全6| 波多野结衣巨乳人妻| 国产成人免费观看mmmm| 直男gayav资源| 国产午夜精品久久久久久一区二区三区| 久久久久精品性色| 欧美日韩一区二区视频在线观看视频在线 | 国产白丝娇喘喷水9色精品| 婷婷六月久久综合丁香| 国产一级毛片在线| 国产午夜精品久久久久久一区二区三区| 国产精品一区www在线观看| 熟女电影av网| 亚洲高清免费不卡视频| 黄色一级大片看看| 国产黄色小视频在线观看| 久久久久久久亚洲中文字幕| 国产成人精品久久久久久| 国产男人的电影天堂91| 精品人妻熟女av久视频| 久久久精品免费免费高清| 亚洲av国产av综合av卡| 欧美性猛交╳xxx乱大交人| 国产精品蜜桃在线观看| 22中文网久久字幕| 精品一区二区三区视频在线| 永久网站在线| 精品欧美国产一区二区三| 国产精品1区2区在线观看.| 在线观看美女被高潮喷水网站| 亚洲人成网站在线观看播放| 综合色av麻豆| 在线播放无遮挡| 国国产精品蜜臀av免费| 日韩欧美一区视频在线观看 | 国产伦理片在线播放av一区| or卡值多少钱| 伊人久久国产一区二区| 日产精品乱码卡一卡2卡三| 日韩欧美精品免费久久| 日韩一区二区视频免费看| 爱豆传媒免费全集在线观看| 观看免费一级毛片| 国产精品一及| 中文在线观看免费www的网站| 亚洲欧洲国产日韩| av线在线观看网站| 哪个播放器可以免费观看大片| 99热全是精品| 国产极品天堂在线| 国产69精品久久久久777片| 日韩人妻高清精品专区| 亚洲成人久久爱视频| 亚洲欧美一区二区三区黑人 | 永久网站在线| 成年人午夜在线观看视频 | 国产免费视频播放在线视频 | 精品久久久精品久久久| 亚洲经典国产精华液单| 性插视频无遮挡在线免费观看| 国产成人freesex在线| 一级二级三级毛片免费看| 久久久欧美国产精品| 欧美精品国产亚洲| 国产色婷婷99| av国产免费在线观看| 国产精品国产三级国产专区5o| 日韩人妻高清精品专区| 久久精品国产亚洲网站| 亚洲自拍偷在线| 啦啦啦啦在线视频资源| 五月伊人婷婷丁香| 午夜福利成人在线免费观看| 草草在线视频免费看| 国产91av在线免费观看| 精品一区二区免费观看| 十八禁国产超污无遮挡网站| 国产欧美另类精品又又久久亚洲欧美| 国产淫语在线视频| 夫妻午夜视频| 国产精品人妻久久久久久| 国产视频首页在线观看| 国产精品不卡视频一区二区| 美女xxoo啪啪120秒动态图| 亚洲精华国产精华液的使用体验| 舔av片在线| 日日摸夜夜添夜夜添av毛片| 最近中文字幕高清免费大全6| 亚洲欧美日韩东京热| 噜噜噜噜噜久久久久久91| 少妇的逼水好多| 国产一区二区亚洲精品在线观看| 小蜜桃在线观看免费完整版高清| 深爱激情五月婷婷| 国产探花极品一区二区| 免费观看无遮挡的男女| 亚洲成人av在线免费| 欧美zozozo另类| 亚洲,欧美,日韩| 日本爱情动作片www.在线观看| 少妇熟女aⅴ在线视频| 欧美日韩视频高清一区二区三区二| 国产伦理片在线播放av一区| 一区二区三区四区激情视频| 精品酒店卫生间| av在线天堂中文字幕| 欧美日本视频| 嫩草影院新地址| 日韩中字成人| 亚洲美女搞黄在线观看| 美女黄网站色视频| 国产色婷婷99| or卡值多少钱| 日韩,欧美,国产一区二区三区| 免费观看性生交大片5| 伦理电影大哥的女人| 国产精品久久视频播放| 国产一级毛片七仙女欲春2| 亚洲国产精品成人久久小说| 成人毛片a级毛片在线播放| 精品一区二区三区视频在线| 2022亚洲国产成人精品| 美女高潮的动态| 日韩欧美精品v在线| 成年免费大片在线观看| 久久精品夜夜夜夜夜久久蜜豆| 久久精品国产鲁丝片午夜精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产在线男女| 青青草视频在线视频观看| 久久精品国产亚洲av涩爱| 一区二区三区四区激情视频| 亚洲成人av在线免费| 国内精品宾馆在线| 久久久午夜欧美精品| 国产单亲对白刺激| 热99在线观看视频| 国产色爽女视频免费观看| 亚洲内射少妇av| 少妇的逼水好多| 国产综合精华液| 少妇熟女aⅴ在线视频| 美女内射精品一级片tv| 1000部很黄的大片| 日本黄色片子视频| 久久这里只有精品中国| 亚洲三级黄色毛片| 国产精品女同一区二区软件| 国产精品一区二区三区四区免费观看| 性插视频无遮挡在线免费观看| 肉色欧美久久久久久久蜜桃 | 国产伦精品一区二区三区四那| 听说在线观看完整版免费高清| 精品久久久久久久人妻蜜臀av| 亚洲国产欧美在线一区| 成人午夜精彩视频在线观看| 少妇裸体淫交视频免费看高清| 成人高潮视频无遮挡免费网站| av国产久精品久网站免费入址| 寂寞人妻少妇视频99o| 在线免费观看不下载黄p国产| 久久99蜜桃精品久久| 免费黄网站久久成人精品| 日日撸夜夜添| 成人午夜精彩视频在线观看| av在线播放精品| 成人亚洲精品一区在线观看 | 国产精品人妻久久久影院| 赤兔流量卡办理| 国产综合精华液| 国产精品1区2区在线观看.| 国产精品熟女久久久久浪| 精品人妻偷拍中文字幕| 欧美3d第一页| 九九久久精品国产亚洲av麻豆| 十八禁国产超污无遮挡网站| 我的女老师完整版在线观看| 亚洲av电影不卡..在线观看| 亚洲精品,欧美精品| 简卡轻食公司| 三级经典国产精品| 18禁在线播放成人免费| 日韩一区二区视频免费看| 在线免费观看的www视频| 亚洲av不卡在线观看| 2021天堂中文幕一二区在线观| 久久久色成人| 99视频精品全部免费 在线| 一二三四中文在线观看免费高清| av在线亚洲专区| 男女国产视频网站| 国产欧美日韩精品一区二区| 国产精品一及| 国产在线一区二区三区精| 在线观看一区二区三区| 麻豆av噜噜一区二区三区| 亚洲精品自拍成人| 精品一区二区三区视频在线| 你懂的网址亚洲精品在线观看| 久久午夜福利片| 人体艺术视频欧美日本| 亚洲精品国产av成人精品| 亚洲精品亚洲一区二区| 婷婷色av中文字幕| 亚洲欧美日韩无卡精品| 又爽又黄无遮挡网站| 亚洲精品日韩在线中文字幕| 人妻少妇偷人精品九色| 亚洲成色77777| 久久97久久精品| 欧美高清成人免费视频www| 少妇的逼好多水| 黄色欧美视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品一区蜜桃| 亚洲美女视频黄频| 亚洲美女搞黄在线观看| 久久精品国产自在天天线| 国产精品久久久久久久久免| av播播在线观看一区| 非洲黑人性xxxx精品又粗又长| 中文天堂在线官网| 亚洲国产精品成人久久小说| 国产精品一区二区性色av| 亚洲最大成人手机在线| 天堂中文最新版在线下载 | 91久久精品国产一区二区三区| 日韩电影二区| 国产一区二区亚洲精品在线观看| 国产在线男女| 美女内射精品一级片tv| 亚洲av中文av极速乱| 狠狠精品人妻久久久久久综合| 国产精品人妻久久久影院| 欧美人与善性xxx| 禁无遮挡网站| 亚洲乱码一区二区免费版| 国产大屁股一区二区在线视频| 最近视频中文字幕2019在线8| 欧美激情久久久久久爽电影| 免费观看无遮挡的男女| 亚洲av二区三区四区| 女人十人毛片免费观看3o分钟| 91精品一卡2卡3卡4卡| 国产欧美另类精品又又久久亚洲欧美| av女优亚洲男人天堂| 大又大粗又爽又黄少妇毛片口| 色综合站精品国产| 欧美人与善性xxx| 色播亚洲综合网| 国产伦一二天堂av在线观看| 一个人免费在线观看电影| 国内精品一区二区在线观看| 舔av片在线| 十八禁网站网址无遮挡 | 观看美女的网站| 色尼玛亚洲综合影院| 神马国产精品三级电影在线观看| 亚洲成人久久爱视频| 全区人妻精品视频| 能在线免费看毛片的网站| 成人高潮视频无遮挡免费网站| 亚洲精品色激情综合| 天堂影院成人在线观看| 精品久久久久久电影网| 99热这里只有精品一区| 午夜福利网站1000一区二区三区| 大香蕉97超碰在线| 亚洲经典国产精华液单| 一区二区三区免费毛片| 99久久九九国产精品国产免费| 日本av手机在线免费观看| 国产午夜精品论理片| 两个人视频免费观看高清| 少妇熟女aⅴ在线视频| 国产精品久久久久久av不卡| 伊人久久精品亚洲午夜| 少妇猛男粗大的猛烈进出视频 | 国产精品蜜桃在线观看| 精品久久久久久久久亚洲| 国产精品蜜桃在线观看| 亚洲欧洲国产日韩| 直男gayav资源| 国产成人精品婷婷| 中文资源天堂在线| 午夜福利在线观看吧| 国产免费一级a男人的天堂| 人妻少妇偷人精品九色| 久久国产乱子免费精品| 亚洲精品一区蜜桃| 高清日韩中文字幕在线| 免费少妇av软件| 国产男人的电影天堂91| 午夜免费观看性视频| 有码 亚洲区| av专区在线播放| 亚洲精品色激情综合| 夜夜爽夜夜爽视频| 久久久精品欧美日韩精品| 国产一区二区三区综合在线观看 | 免费黄网站久久成人精品| 久久99热这里只有精品18| 啦啦啦韩国在线观看视频| 99九九线精品视频在线观看视频| 日韩,欧美,国产一区二区三区| 好男人视频免费观看在线| 永久免费av网站大全| 国产精品一二三区在线看| 日韩精品有码人妻一区| 国产成人精品一,二区| 最近视频中文字幕2019在线8| 成人高潮视频无遮挡免费网站| www.色视频.com| 在现免费观看毛片| 欧美日韩一区二区视频在线观看视频在线 | .国产精品久久| 国产片特级美女逼逼视频| av网站免费在线观看视频 | 日本-黄色视频高清免费观看| 51国产日韩欧美| 菩萨蛮人人尽说江南好唐韦庄|