• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An improved ant colony algorithm and its application in optimal routing problem

    2013-11-01 01:29:39SONGJinjuan宋錦娟BAIYanping白艷萍
    關(guān)鍵詞:艷萍

    SONG Jin-juan (宋錦娟),BAI Yan-ping (白艷萍)

    (Dept. of Mathematics, North University of China, Taiyuan 030051, China)

    An improved ant colony algorithm and its application in optimal routing problem

    SONG Jin-juan (宋錦娟),BAI Yan-ping (白艷萍)

    (Dept. of Mathematics, North University of China, Taiyuan 030051, China)

    Ant colony system (ACS), a kind of ant colony algorithm, is an effective way of solving shortest path problem, however, it has some defects. In this paper, ACS is improved for avoiding getting stuck in a local minimum, whose defects mainly include the following two aspects: initial pheromone solution and pheromone updating. In order to learn the advantages of improved ant colony system (IACS), experiments are conducted for some times. First, it is applied to 8 traveling salesman problem (TSP) instances, and compared with three self-organizing map (SOM) algorithms. Then the author analyzes the space complexity and convergence of two algorithms and compares them. Simulation results show that IACS has much better performance in solving TSP, and it has certain theoretical reference value and practical significance.

    ant colony system (ACS); pheromone; traveling salesman problem; spcae complexity

    0 Introduction

    The traveling salesman problem (TSP)[1]is an important problem and also a hot topic in today’s social studies. It is similar to job-shop scheduling,quadratic assignment problem, all of which can be summarized to combinatorial optimization problem. There are many heuristic intelligent algorithms for solving TSP, such as genetic algorithm(GA)[2], simulated annealing (SA)[3], self-organizing map (SOM)[4,5], ant colony algorithm(ACA)[6,7], and so on.

    The intelligent algorithm ACS, a kind of improved ACA, has many characteristics such as parallelism, positive feedback and collaboration, however, it still easily gets stuck in a local minimum. So in this paper, an improved ant colony system (IACS) is presented. A new way of calculating initial pheromone value is proposed and ACS global updating rule is adjusted, in which, in addition to the globally shortest path, the pheromone in globally longest path is also updated. Furthermore, the max-min ant system[8]is introduced to effectively stagnation phenomenon caused by great difference of pheromone between the shortest path and the longest path, which can improve the global searching range and avoid local minimum.At last, the rationality and validity of IACS are verified through computer simulation.

    1 Description of TSP

    The traveling salesman problem is a well-known NP-hard combinatorial optimization problem. TSP[1,9-11]is described as follows: Given a set of N cities, there is a salesman who tries to find the shortest closed path to visit the above N cities under the condition that each city is visited exactly once. It can also be described mathematically as follows: let C be a collection of N cities, where C={c1,c2,…,cN}; and d(ci,cj)∈R+stands for the distance between two cities, where ci,cj∈C(1≤i, j≤N). To achieve a city sequence {cω(1), cω(2), …, cω(N)} under the condition that it makes objective function

    be the smallest, where ω(1),ω(2),… , ω(N) is a full array of 1,2,…,N.

    2 Model of ACS

    In ACS, while building a path of TSP, ants can visit edges and change their pheromone level by using the local updating rule. Once all ants have completed their paths, the pheromone level is updated by using the global updating rule.

    2.1 ACS state transition rule

    In ACS, the state transition rule can be described as follows: an ant positioned on node i chooses the city j to move to using the rule given by

    2.2 ACS local updating rule

    After choosing a city (that means to visit a edge), the pheromone level of this edge is updated by the local updating rule:

    where ξ∈[0,1] is the local pheromone decaying parameter, and τ0is the initial pheromone concentration value of all edges.

    2.3 ACS global updating rule

    When all ants have completed their closed paths, only the globally best ant who builds the shortest path from the beginning of the trial is allowed to deposit pheromone. The pheromone level is updated by the global updating rule:

    where

    where ρ∈(0,1) is global pheromone decaying parameter, Δτijis pheromone increment of edge in this circulation, and Lgbis the length of the globally optimal path found so far.

    3 IACS

    The ACS is an improved ant colony optimization algorithm, the performance of which is improved remarkably, and it is greatly effective in solving TSP and other shortest path problems. However, it still easily gets stuck in a local minimum, so in this paper, some respects must be discussed in the following.

    3.1 Way of getting initial pheromone

    3.2 Pheromone updating rule

    In ACS, only the pheromone in globally shortest path is allowed to be updated, but in this paper, in addition to the globally shortest path, the pheromone in globally longest path is also updated. The pheromone updating rules in globally shortest and longest path are expressed as

    where ρ is the global pheromone decaying parameter, Lbestand Lworstare the length of the shortest and longest path, respectively.

    3.3 Max-min pheromone system

    After pheromone being updated, in order to effectively suppress stagnation phenomenon caused by great difference of pheromone between the shortest and the longest path, the pheromone in every edge is limited in a range [τmin,τmax][8], where τmin=10, τmax=0.0001.

    4 Steps of IACS

    The steps of IACS are represented as follows:

    Step 1: Parameter initialization

    Different parameter settings have different influence on experimental results of algorithm, so some experiments are conducted by setting a large number of different parameters, and ultimately the optimal parameter combination is got: α=1,β=2,ζ=0.5,ρ=0.6,q0=0.9, m=5,MaxNc=5 000, where MaxNc represent the maximum number of iteration.

    Step 2: Finding the optimal path

    In this paper, a set of m ants are placed on n starting nodes (n cities) randomly, and the starting nodes which have been visited by ants are placed in the current solution set tabuk. Each ant will visit the next city j by applying the state transition rules Eqs.(2) and (3), then j is also placed in the current solution set tabuk.

    Step 3: Pheromone local updating

    The pheromone in the paths!that ants have passed is updated by local updating rule, Eq.(4), then it is determined whether pheromone τij(where τijis the pheromone of path ) is contained in the range [τmin,τmax], if τij>τmax, let τij=τmax; if τij<τmin, let τij=τmin; otherwise, let τijbe itself.

    Step 4: Repeating step 2 and 3 until all ants complete their closed path.

    Step 5: After iterations of the above four steps, there will be m closed paths, comparing the lengths of m paths, the optimal solution and the worst solution are got and stored. Then the pheromone in the shortest path and the longest path is updated by Eqs.(7) and (8).

    Step 6: A set of m ants are placed on n starting nodes (n cities) randomly again, according to step 2, 3 and 4 for optimization, which is repeated, until the 1 000 iterations.

    Step 7: The program of path optimization ends until the number of iterations reaches the maximum value. Comparing with the 1 000 optimal solutions of 1 000 iterations, the globally optimal solution will be got, which is also the optimal solution of this algorithm searching for.

    5 Experimental results

    In order to verify the validity of IACS, 8 examples (such as lin105,ch130, ch150, rat195 and KroA200,etc.) obtained from the general TSPLIB[12]are adopted for experiments. For each example, it is conducted for 10 times, and then the best, average value and the relative error. The experimental results are shown in are calculated, respectively Table 1 and Table 2.

    Table 1 Comparison of the best value and time of two algorithms for 10 times

    Table 2 Comparison of the average value and relative error of two algorithms

    The above comparison of experimental results shows that the optimal value and average value obtained by the improved algorithm are greatly better, and relative error is much smaller than that of ACS, so the improved algorithm introduced in this paper is an effective algorithm. The following diagrams are the experimental results of the improved algorithm. (x stands for longitude, Y stands for latitude, and the unit for each of them is radian.)

    Fig.1 Optimal path graph of ch130

    Fig.2 Optimal path graph of eil51

    Fig.3 Optimal path graph of KroA200

    Fig.4 Optimal path graph of lin105

    Fig.5 Optimal path graph of ch150

    Fig.6 Optimal path graph of rat195

    Fig.7 Optimal path graph of st70

    Fig.8 Optimal path graph of pr152

    In order to further verify the fact that the improved algorithm has better performance, the results obtained by the improved algorithm are compared with that by three kinds of SOM algorithms: Favata-Walke Algorithm (F-W), non-corrdinate self-organizing may (NCSOM) and asymmetric self-organizing map (ASOM)[13]. The comparison results are shown in Table 3.

    Table 3 Comparison results of four algorithms

    From Table 3, it can be seen that for each example of TSP, the experimental results of the improved algorithm are greatly better than other three algorithms. And every optimal value obtained is almost close to the known optimal value.

    Finally, the author takes Chinese 34 cities-TSP, a practical problem, for example and makes a comparison between ISOM and ACS based in optimal pathing values and the time. Table 4 and Table 5 show the coordinates of Chinese 34 cities and the comparison of the results of two algorithms, respectively.

    Table 4 Coordinates of Chinese 34 cities

    Table 5 Comparison of the results of two algorithms

    For the instance Chinese 34 cities-TSP, the optimal path graphs and their corresponing schematic diagrams of variation of global optimal path for two algorithms are shown in Figs.9-12.

    Fig.9 Diagram of variation of global optimal path for IACS

    Fig.10 Optimal path graph for IACS

    Fig.11 Diagram of variation of global optimal path for ACS

    Fig.12 Optimal path graph for ACS

    6 Algorithm complexity and convergence

    Consindering the space complexity of algorithm, we need to analyse the data applied to the algorithm in the process of realization. The data mainly come from two aspects: the description of the problem and the auxiliary data for the realization of algorithm. Taking TSP for example, first, if the scale of TSP is n, we need a n-dimensional two order distance matrix describing the characteristics of the problem itself. For ACS, another n-dimensional two order matrix is needed to describe pheromone concentration of globally shortest path for each iteration. Then, in the process of searching for optimal solution, a n-order one-dimensional matrix is required to establish a tabu list for each ant in order to ensure that the cities visited are no longer chosen in one iteration. In conclusion, we can easily find that the space complexity of ACS algorithm for each iteration may be evaluated as follows: O(n×n)+O(M×n), where M is the number of ants. In IACS algorithm, two n-dimensional two-order matrices are required to describe pheromone concentration of global shortest path and longest path, respectively, so the space complexity of IACS algorithm for each iteration may be evaluated as: O(n×n×n)+O(M×n).

    From the comparison between Figs.17 and 19, we can find that ISOM almost reaches the global optimal value when the 600th iteration, while SOM has not reached the global optimal value when the 2 500th iteration. In summary, in spite of a litter higher space complexity of IACS, it has a faster convergence and can achieve better quality results than ACS.

    7 Conclusion and discussion

    This paper proposes a kind of improved intnlligent ant colony optimization algorithm based on the ACS easily falling into a local optimum, and introduces a kind of new pheromone updating rule and the max-min pheromone system, which makes the ability of the ACS in searching for the globally optimal pth stronger. From the experimental results above, it can easily be found that the improved algorithm has very good searching ability in TSP. However, from Table 1, it can be found that the time of two algorithm is greatly long, which is a aspect need to be improved in the future.

    [1] Balachandar S R, Kannan K. Randomized gravitational emulation search algorithm for symmetric traveling salesman problem. Applied Mathematics and Computation, 2007, 192(2): 413-421.

    [2] Goldberg D E. Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Boston, 1989.

    [3] Van Laarhoven P J, Aarts E H. Simulated annealing: theory and applications. Springer, 1987.

    [4] Kohonen T. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 1982, 43(1): 59-69.

    [5] Fort J C. Solving a combinatorial problem via self-organizing process: an application of the Kohonen algorithm to the traveling salesman problem. Biological Cybernetics, 1988, 59(1): 33-40.

    [6] Dorigo M, Gambardella L M, Ant colony system: a cooperative learning approach to the traveling salesman problem, IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-56.

    [7] Mullen R J, Monekosso D, Barman S, et al. A review of ant algorithms. Expert Systems with Applications, 2009, 36 (6): 9608-9617.

    [8] Stützle T, Hoos H H. Max-min ant system. Future Generation Computer Systems, 2000, 16(8): 889-914.

    [9] ZHANG Wen-dong, BAI Yan-ping, HU Hong-ping. The incorporation of an efficient initialization method and parameter adaptation using self-organizing maps to solve the TSP. Applied Mathematics and Computation, 2006, 172(1): 603-623.

    [10] CHENG Chi-bin, MAO Chun-pin. A modified ant colony system for solving the traveling salesman problem with time windows. Mathematical and Computer Modelling, 2007, 46(9/10): 1225-1235.

    [11] Yadlapalli S, Malik W A, Darbha S, et al. A lagrangian-based algorithm for a multiple depot, multiple traveling salesmen problem. Nonlinear Analysis: Real World Applications, 2009, 10(4): 1990-1999.

    [12] Ruprecht-karls-universitat heidelberg. Symmetric traveling salesman problem (TSP): TSP data, best solutions for symmetric TSPs. [2012-08-15]. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.

    [13] WU Ling-yun. The application for neural networks in combinatorial optimization and DNA sequencing. Department of Mathematics, Academy of Sciences, China, 2002: 51-56.

    date: 2012-09-30

    National Natural Science Foundation of China (No.61275120)

    SONG Jin-juan (jinjuansong666@163.com)

    CLD number: TP301.6 Document code: A

    1674-8042(2013)01-0023-07

    10.3969/j.issn.1674-8042.2013.01.006

    猜你喜歡
    艷萍
    Weighted norm inequalities for commutators of the Kato square root of second order elliptic operators on Rn
    基于JavaScript編程語言之 閉包技術(shù)在焦點(diǎn)輪播上的應(yīng)用
    A SPECTRAL METHOD FOR A WEAKLY SINGULAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATION WITH PANTOGRAPH DELAY*
    藏在毛衣里的愛
    新少年(2021年3期)2021-03-28 02:30:27
    春分
    NUMERICAL ANALYSIS FOR VOLTERRA INTEGRAL EQUATION WITH TWO KINDS OF DELAY?
    詠江石
    我的發(fā)現(xiàn)
    學(xué)吹泡泡
    可愛的小手套
    国产高清国产精品国产三级 | 亚洲精品日本国产第一区| 国产在线男女| 99九九线精品视频在线观看视频| 亚洲av男天堂| 免费观看av网站的网址| 成年美女黄网站色视频大全免费 | 国产av国产精品国产| 亚洲精品久久午夜乱码| 美女国产视频在线观看| 久久这里有精品视频免费| 亚洲人成网站高清观看| 观看免费一级毛片| av在线app专区| 99热这里只有是精品50| 日韩成人伦理影院| 看十八女毛片水多多多| 人人妻人人澡人人爽人人夜夜| 国产亚洲一区二区精品| 又黄又爽又刺激的免费视频.| 久久毛片免费看一区二区三区| 在线天堂最新版资源| 自拍偷自拍亚洲精品老妇| av在线观看视频网站免费| 亚洲综合色惰| 久久综合国产亚洲精品| 国产精品久久久久成人av| 校园人妻丝袜中文字幕| 久久6这里有精品| 亚洲高清免费不卡视频| videossex国产| 老司机影院成人| 亚洲av免费高清在线观看| 啦啦啦啦在线视频资源| 精品一品国产午夜福利视频| 亚洲激情五月婷婷啪啪| 夫妻午夜视频| 99热6这里只有精品| 一个人免费看片子| 我的老师免费观看完整版| av又黄又爽大尺度在线免费看| 最后的刺客免费高清国语| 99久久人妻综合| 女人久久www免费人成看片| 国产精品成人在线| 国国产精品蜜臀av免费| 狂野欧美激情性bbbbbb| 久久久久久久国产电影| 一级黄片播放器| 亚洲伊人久久精品综合| 3wmmmm亚洲av在线观看| 搡女人真爽免费视频火全软件| 18禁裸乳无遮挡动漫免费视频| 男女边吃奶边做爰视频| 精品少妇久久久久久888优播| 97热精品久久久久久| 下体分泌物呈黄色| 欧美成人精品欧美一级黄| 亚洲欧美一区二区三区国产| 亚洲四区av| 久久久久久久大尺度免费视频| 国产爽快片一区二区三区| 国产在线男女| 亚洲经典国产精华液单| 欧美精品一区二区大全| 亚洲一区二区三区欧美精品| 国产精品成人在线| 有码 亚洲区| 毛片一级片免费看久久久久| 最近的中文字幕免费完整| 久久久久久久久久久丰满| kizo精华| 波野结衣二区三区在线| 亚洲精品久久久久久婷婷小说| 精品人妻视频免费看| 三级国产精品欧美在线观看| 国产爱豆传媒在线观看| 日本色播在线视频| 日本猛色少妇xxxxx猛交久久| 婷婷色综合www| 蜜桃久久精品国产亚洲av| 91精品一卡2卡3卡4卡| 看十八女毛片水多多多| 亚洲精品亚洲一区二区| 免费不卡的大黄色大毛片视频在线观看| av在线播放精品| av不卡在线播放| 中文字幕亚洲精品专区| 国产又色又爽无遮挡免| 国内少妇人妻偷人精品xxx网站| 亚洲av福利一区| 丰满少妇做爰视频| 美女视频免费永久观看网站| 黄色欧美视频在线观看| 精品国产露脸久久av麻豆| 国产精品无大码| 麻豆国产97在线/欧美| 91精品国产国语对白视频| 国模一区二区三区四区视频| 久久久久网色| 丝袜脚勾引网站| 热re99久久精品国产66热6| 精品人妻一区二区三区麻豆| 国产av一区二区精品久久 | 男女边摸边吃奶| 一级片'在线观看视频| 亚洲综合精品二区| 极品教师在线视频| 波野结衣二区三区在线| 亚洲国产欧美人成| 婷婷色av中文字幕| 全区人妻精品视频| 久久久久人妻精品一区果冻| 高清毛片免费看| 99re6热这里在线精品视频| 九草在线视频观看| 纯流量卡能插随身wifi吗| tube8黄色片| 人人妻人人看人人澡| 亚洲中文av在线| 日韩人妻高清精品专区| 26uuu在线亚洲综合色| 欧美国产精品一级二级三级 | 亚洲精品第二区| 国产精品99久久久久久久久| 视频区图区小说| 美女cb高潮喷水在线观看| 成人一区二区视频在线观看| 亚洲成人中文字幕在线播放| 男男h啪啪无遮挡| 内地一区二区视频在线| 国产女主播在线喷水免费视频网站| 一级毛片电影观看| 久久精品国产亚洲av天美| 免费观看av网站的网址| 综合色丁香网| 免费黄频网站在线观看国产| 亚洲av中文av极速乱| 国产黄片视频在线免费观看| 亚洲av成人精品一区久久| 男女啪啪激烈高潮av片| 久久99热这里只频精品6学生| av线在线观看网站| 高清黄色对白视频在线免费看 | 亚洲欧美一区二区三区国产| 一个人看视频在线观看www免费| 日韩制服骚丝袜av| 99热6这里只有精品| 亚洲欧美日韩东京热| 久久99热这里只有精品18| 五月天丁香电影| 欧美老熟妇乱子伦牲交| 18禁裸乳无遮挡动漫免费视频| 狂野欧美激情性bbbbbb| 人人妻人人澡人人爽人人夜夜| 亚洲自偷自拍三级| 少妇人妻精品综合一区二区| 亚洲欧美日韩东京热| 我的女老师完整版在线观看| 色视频www国产| 亚洲av二区三区四区| 日韩中文字幕视频在线看片 | 少妇被粗大猛烈的视频| 成年人午夜在线观看视频| 亚洲精华国产精华液的使用体验| 久久99热这里只有精品18| 国产精品久久久久久精品电影小说 | 亚洲av综合色区一区| 夫妻午夜视频| 18禁在线无遮挡免费观看视频| 欧美 日韩 精品 国产| 国产色婷婷99| 岛国毛片在线播放| 亚洲一区二区三区欧美精品| 亚洲国产精品专区欧美| av国产精品久久久久影院| 国产精品国产三级国产专区5o| 日韩欧美一区视频在线观看 | 亚洲精品乱久久久久久| 亚洲国产成人一精品久久久| 国产乱人视频| 国产免费视频播放在线视频| kizo精华| 精品午夜福利在线看| 国产视频内射| 人妻制服诱惑在线中文字幕| 成人特级av手机在线观看| 狠狠精品人妻久久久久久综合| 精品熟女少妇av免费看| 日日摸夜夜添夜夜爱| 夜夜爽夜夜爽视频| 亚洲熟女精品中文字幕| 欧美xxxx性猛交bbbb| 国产探花极品一区二区| 99久久中文字幕三级久久日本| 99热6这里只有精品| 黄色日韩在线| 超碰av人人做人人爽久久| 老师上课跳d突然被开到最大视频| 午夜日本视频在线| 亚洲aⅴ乱码一区二区在线播放| 天堂俺去俺来也www色官网| 国产在线免费精品| 丰满乱子伦码专区| 最近最新中文字幕大全电影3| 日本-黄色视频高清免费观看| 视频区图区小说| 人妻少妇偷人精品九色| 青春草视频在线免费观看| 交换朋友夫妻互换小说| 欧美性感艳星| 成人一区二区视频在线观看| 国产精品一及| 欧美 日韩 精品 国产| 亚洲av日韩在线播放| 久久99热这里只频精品6学生| 成人美女网站在线观看视频| 又大又黄又爽视频免费| 啦啦啦啦在线视频资源| 22中文网久久字幕| 一区二区三区乱码不卡18| 91狼人影院| 亚洲一级一片aⅴ在线观看| 久久精品国产亚洲网站| 久久国产精品大桥未久av | 免费在线观看成人毛片| 全区人妻精品视频| 在线观看免费高清a一片| 午夜免费观看性视频| 视频区图区小说| 少妇 在线观看| 国产男女超爽视频在线观看| 国产高清国产精品国产三级 | 狂野欧美激情性xxxx在线观看| 精品亚洲乱码少妇综合久久| 日本午夜av视频| 久久久色成人| 久久久久国产网址| 丰满乱子伦码专区| 国产色婷婷99| 中文字幕免费在线视频6| 久久精品国产自在天天线| 成人漫画全彩无遮挡| 久久精品国产亚洲网站| 人人妻人人看人人澡| 欧美精品人与动牲交sv欧美| 日韩av免费高清视频| 在线 av 中文字幕| 一级毛片aaaaaa免费看小| 中文字幕av成人在线电影| 黑人猛操日本美女一级片| 免费看日本二区| 人体艺术视频欧美日本| 精品午夜福利在线看| 麻豆乱淫一区二区| 成人高潮视频无遮挡免费网站| www.色视频.com| 精品人妻熟女av久视频| 91精品国产九色| 色网站视频免费| 最近最新中文字幕免费大全7| 国产精品一区www在线观看| 国产伦理片在线播放av一区| av网站免费在线观看视频| 三级经典国产精品| 日本av免费视频播放| 亚洲,一卡二卡三卡| 晚上一个人看的免费电影| 看免费成人av毛片| 日韩精品有码人妻一区| 18禁裸乳无遮挡免费网站照片| 一级毛片aaaaaa免费看小| 午夜福利在线在线| 色视频在线一区二区三区| 国产大屁股一区二区在线视频| 中文字幕av成人在线电影| 多毛熟女@视频| 国产69精品久久久久777片| 色5月婷婷丁香| 草草在线视频免费看| 高清不卡的av网站| 国产亚洲一区二区精品| 少妇的逼水好多| 男女啪啪激烈高潮av片| 成人特级av手机在线观看| 久久精品国产亚洲网站| 欧美日本视频| 美女主播在线视频| 六月丁香七月| 亚洲av综合色区一区| 少妇裸体淫交视频免费看高清| 久久人人爽人人片av| 久久精品国产亚洲av天美| 熟女av电影| 亚洲激情五月婷婷啪啪| 综合色丁香网| 尤物成人国产欧美一区二区三区| 99视频精品全部免费 在线| 日日撸夜夜添| 丰满少妇做爰视频| 国产色爽女视频免费观看| 两个人的视频大全免费| 日韩成人av中文字幕在线观看| 18禁动态无遮挡网站| 夫妻性生交免费视频一级片| 天天躁日日操中文字幕| 国产黄片美女视频| 少妇猛男粗大的猛烈进出视频| 国产毛片在线视频| 成人18禁高潮啪啪吃奶动态图 | 免费久久久久久久精品成人欧美视频 | 在线观看免费视频网站a站| 久久久久久伊人网av| 纯流量卡能插随身wifi吗| 国产精品福利在线免费观看| 日本黄色片子视频| av在线观看视频网站免费| 国产精品99久久99久久久不卡 | www.av在线官网国产| 欧美性感艳星| 欧美+日韩+精品| 男女国产视频网站| 国产精品人妻久久久久久| 国产精品三级大全| 国产av一区二区精品久久 | 精品亚洲乱码少妇综合久久| 精品一区二区免费观看| 尤物成人国产欧美一区二区三区| 亚洲国产精品专区欧美| 精品人妻一区二区三区麻豆| 七月丁香在线播放| 观看免费一级毛片| 大码成人一级视频| 亚洲三级黄色毛片| 久久人人爽人人爽人人片va| 美女中出高潮动态图| 亚州av有码| 97在线人人人人妻| 成人国产av品久久久| 久久97久久精品| 欧美+日韩+精品| 在线观看国产h片| videos熟女内射| 九九久久精品国产亚洲av麻豆| 国产欧美日韩一区二区三区在线 | 欧美精品一区二区大全| 国产精品一区www在线观看| 寂寞人妻少妇视频99o| 亚洲欧美清纯卡通| 亚洲第一区二区三区不卡| 亚洲va在线va天堂va国产| 黄色日韩在线| 国语对白做爰xxxⅹ性视频网站| .国产精品久久| 午夜福利视频精品| 亚洲成人av在线免费| 美女内射精品一级片tv| 九九在线视频观看精品| 亚洲综合精品二区| 精品酒店卫生间| 在线观看美女被高潮喷水网站| 人人妻人人看人人澡| 激情五月婷婷亚洲| 国产伦理片在线播放av一区| 校园人妻丝袜中文字幕| 国产精品一区二区三区四区免费观看| 在线观看免费高清a一片| 精品酒店卫生间| 日日摸夜夜添夜夜爱| 国产成人精品福利久久| 99久久综合免费| 三级经典国产精品| 丰满少妇做爰视频| 欧美xxⅹ黑人| 亚洲国产色片| 亚洲精品视频女| 久久精品夜色国产| 亚洲精品,欧美精品| 99热这里只有是精品在线观看| 午夜福利在线在线| 男人狂女人下面高潮的视频| 26uuu在线亚洲综合色| 亚洲人成网站在线播| 国内揄拍国产精品人妻在线| 精品人妻一区二区三区麻豆| 亚洲自偷自拍三级| 亚洲av中文字字幕乱码综合| 国产精品精品国产色婷婷| 亚洲无线观看免费| 国精品久久久久久国模美| 久久久久国产网址| videossex国产| 插逼视频在线观看| 国产淫片久久久久久久久| 日本-黄色视频高清免费观看| 2021少妇久久久久久久久久久| 久久毛片免费看一区二区三区| 男女边吃奶边做爰视频| 日日摸夜夜添夜夜添av毛片| 国产免费一级a男人的天堂| 成人免费观看视频高清| 亚洲aⅴ乱码一区二区在线播放| 看十八女毛片水多多多| 一级毛片我不卡| 免费观看在线日韩| 国产精品一区www在线观看| 亚洲精品亚洲一区二区| 一级av片app| 最黄视频免费看| 在线亚洲精品国产二区图片欧美 | 老司机影院毛片| 午夜老司机福利剧场| 夜夜看夜夜爽夜夜摸| 国产精品嫩草影院av在线观看| 91久久精品电影网| 久久99热6这里只有精品| av播播在线观看一区| a级毛色黄片| 亚洲精品日韩av片在线观看| av线在线观看网站| 欧美精品国产亚洲| 91精品一卡2卡3卡4卡| 天美传媒精品一区二区| av福利片在线观看| 女性被躁到高潮视频| 日韩人妻高清精品专区| 婷婷色av中文字幕| 菩萨蛮人人尽说江南好唐韦庄| videos熟女内射| 777米奇影视久久| a级一级毛片免费在线观看| 中国国产av一级| 高清视频免费观看一区二区| 嫩草影院入口| 大话2 男鬼变身卡| 99热全是精品| 久久精品久久久久久噜噜老黄| 精品人妻一区二区三区麻豆| 少妇的逼好多水| 亚洲精华国产精华液的使用体验| 亚洲欧美日韩卡通动漫| 肉色欧美久久久久久久蜜桃| 简卡轻食公司| 亚洲熟女精品中文字幕| 尤物成人国产欧美一区二区三区| 亚洲内射少妇av| 久久亚洲国产成人精品v| 国产综合精华液| 岛国毛片在线播放| 亚洲四区av| 久久精品人妻少妇| 欧美日韩亚洲高清精品| 成人国产av品久久久| 春色校园在线视频观看| 久久热精品热| 如何舔出高潮| 丰满人妻一区二区三区视频av| 国产精品麻豆人妻色哟哟久久| 97在线视频观看| 久久av网站| 卡戴珊不雅视频在线播放| 夜夜看夜夜爽夜夜摸| 国产黄色视频一区二区在线观看| 久久久久视频综合| 一级毛片aaaaaa免费看小| 99九九线精品视频在线观看视频| 亚洲av二区三区四区| 男人和女人高潮做爰伦理| 久久精品人妻少妇| 午夜精品国产一区二区电影| 国产一区亚洲一区在线观看| 欧美高清成人免费视频www| 久久久久久久精品精品| 色网站视频免费| 亚洲欧美中文字幕日韩二区| 久久99蜜桃精品久久| 国产久久久一区二区三区| 五月玫瑰六月丁香| 亚洲国产精品999| 卡戴珊不雅视频在线播放| 午夜福利在线观看免费完整高清在| 乱系列少妇在线播放| 国产 一区精品| 亚洲国产精品国产精品| 免费av中文字幕在线| 久久鲁丝午夜福利片| 最近手机中文字幕大全| 亚洲av中文av极速乱| 纯流量卡能插随身wifi吗| 亚洲精品色激情综合| 亚洲精品一二三| 91精品伊人久久大香线蕉| 国产精品一区二区性色av| 成年免费大片在线观看| 男女下面进入的视频免费午夜| 亚洲人成网站高清观看| 丰满迷人的少妇在线观看| 网址你懂的国产日韩在线| 国产片特级美女逼逼视频| 亚洲精品,欧美精品| 亚洲av在线观看美女高潮| 有码 亚洲区| 中国美白少妇内射xxxbb| 成人18禁高潮啪啪吃奶动态图 | 久久影院123| 91精品一卡2卡3卡4卡| 久久人人爽av亚洲精品天堂 | 91在线精品国自产拍蜜月| 精品少妇黑人巨大在线播放| 在线观看国产h片| 日本黄色日本黄色录像| 美女福利国产在线 | 黑人高潮一二区| 亚洲人成网站高清观看| 免费久久久久久久精品成人欧美视频 | 久久综合国产亚洲精品| 黄色一级大片看看| 91精品伊人久久大香线蕉| 国产有黄有色有爽视频| 久久久色成人| 亚洲激情五月婷婷啪啪| 亚洲精品中文字幕在线视频 | 亚洲美女黄色视频免费看| 女的被弄到高潮叫床怎么办| 亚洲欧洲国产日韩| 观看免费一级毛片| 久久久国产一区二区| 国产精品一二三区在线看| 91午夜精品亚洲一区二区三区| 国产黄色视频一区二区在线观看| 蜜臀久久99精品久久宅男| 亚洲精品456在线播放app| 亚洲av成人精品一二三区| 国产一区有黄有色的免费视频| 亚洲国产欧美人成| 高清视频免费观看一区二区| 午夜免费鲁丝| 国产精品一区二区三区四区免费观看| 欧美成人a在线观看| 久久人妻熟女aⅴ| 国产人妻一区二区三区在| 国产乱人视频| 日本黄色片子视频| 精品国产乱码久久久久久小说| 国产日韩欧美亚洲二区| 啦啦啦在线观看免费高清www| 小蜜桃在线观看免费完整版高清| 一级毛片久久久久久久久女| 国产成人一区二区在线| 综合色丁香网| 国产白丝娇喘喷水9色精品| av国产久精品久网站免费入址| 精品国产露脸久久av麻豆| 一本一本综合久久| 欧美精品人与动牲交sv欧美| 美女高潮的动态| 国产一区二区在线观看日韩| 涩涩av久久男人的天堂| 一级片'在线观看视频| 欧美日本视频| 国产精品久久久久久av不卡| 天堂中文最新版在线下载| 亚洲欧美一区二区三区国产| 国产精品无大码| 欧美成人午夜免费资源| 亚洲综合色惰| 国产色婷婷99| 激情 狠狠 欧美| 精品少妇黑人巨大在线播放| 国产成人a∨麻豆精品| 亚洲欧美精品自产自拍| a级毛色黄片| 亚洲熟女精品中文字幕| 亚洲av在线观看美女高潮| 久久久国产一区二区| 久久亚洲国产成人精品v| 国产成人a∨麻豆精品| 高清黄色对白视频在线免费看 | 一级av片app| 高清日韩中文字幕在线| 小蜜桃在线观看免费完整版高清| 亚洲精品久久午夜乱码| 久久鲁丝午夜福利片| 亚洲精品国产av成人精品| 日韩av不卡免费在线播放| 如何舔出高潮| 亚洲一级一片aⅴ在线观看| 国产精品人妻久久久久久| 国产免费视频播放在线视频| 欧美xxⅹ黑人| 妹子高潮喷水视频| 日韩精品有码人妻一区| 国产色婷婷99| 青青草视频在线视频观看| 亚洲中文av在线| 成年人午夜在线观看视频| 亚洲熟女精品中文字幕| 国产亚洲av片在线观看秒播厂| 欧美国产精品一级二级三级 | 欧美区成人在线视频| 国产精品99久久99久久久不卡 | 啦啦啦啦在线视频资源| 搡女人真爽免费视频火全软件| 成人综合一区亚洲| 青青草视频在线视频观看| 大陆偷拍与自拍| 国产黄色视频一区二区在线观看| 精品久久久久久久久亚洲| 中文在线观看免费www的网站| 色哟哟·www| 亚洲,欧美,日韩| 最近手机中文字幕大全| 中文字幕制服av| 亚洲伊人久久精品综合| 国产免费又黄又爽又色|