吳大鵬,張普寧,王汝言
(重慶郵電大學 寬帶泛在接入技術研究所,重慶 400065)
隨著各種智能設備的大量涌現,移動自組織網絡(MANET, mobile ad hoc network)得到了快速的發(fā)展,內置藍牙或Wi-Fi模塊的移動終端可自組織成各種微型網絡,以實現數據共享和交互[1],其應用范圍包括交通狀況信息交互[2]、野生動物監(jiān)控[3,4]、偏遠地區(qū)無線網絡接入[5,6]等。但是,在移動自組織網絡中,節(jié)點間轉發(fā)數據之前需建立端到端路徑[7],由于網絡稀疏、節(jié)點快速移動和通信范圍受限等因素,源節(jié)點和目標節(jié)點間的路徑經常出現斷裂,導致節(jié)點之間無法通信。為實現該種環(huán)境下的通信,充分利用節(jié)點移動過程所帶來的相遇機會,研究人員提出了機會網絡體系結構[8]。
機會網絡的概念部分繼承于延遲容忍網絡(DTN, delay tolerance network),其數據轉發(fā)形式與系統架構具有延遲容忍網絡的一般化特征,但針對機會網絡的相關研究強化了對節(jié)點高速移動、拓撲快速變化的網絡環(huán)境的適應性,以滿足復雜動態(tài)場景下的通信需求。機會網絡中節(jié)點轉發(fā)數據前不需建立端到端路徑,與MANET所采用的存儲—轉發(fā)通信模式不同,機會網絡采取更為靈活的存儲—攜帶—轉發(fā)模式進行通信。顯然,通信過程充分利用了節(jié)點隨機移動帶來的相遇機會,有效地克服了端到端路徑失效所造成的通信中斷問題。但是,機會網絡在增加通信靈活性的同時,也為路由協議的設計帶來了巨大的挑戰(zhàn)。
目前,針對機會網絡的特點,國內外的研究人員提出了多種路由機制。根據相同消息在網絡中的分布情況,可以將這些機制分為2類:多副本機制和單副本機制。文獻[9]指出多副本機制擁有較低的時延和較高的可靠性,但其占用了大量的網絡帶寬及緩存空間,消耗了節(jié)點大量能量,不適用于資源受限的機會網絡。文獻[10]對當前的單副本機制進行了深入研究,指出在節(jié)點能量及帶寬受限的情況下,單副本路由策略在網絡資源開銷方面具備較強的優(yōu)勢。然而,機會網絡中的鏈路具有間斷連接特性,單副本機制的設計需要考慮多種因素,以合理地選擇中繼節(jié)點,達到有效降低網絡資源開銷的目的。目前,單副本路由機制中比較具有代表性的是PROPHET機制[11],其基本原理是根據節(jié)點運動過程歷史信息,利用概率傳遞性預測相遇狀態(tài),進而決定消息的轉發(fā)。但是,與其他類型的通信網絡路由協議研究類似,所提出的PROPHET機制采用靜態(tài)抽象圖建立網絡中節(jié)點和鏈路之間的關系[12]。對于機會網絡中的節(jié)點來說,隨機運動過程使得節(jié)點間的鏈路具有時變特性,傳統的靜態(tài)抽象圖無法準確、及時地反映鏈路隨時間的變化情況,導致相關路由機制無法有效工作[13]。
本文提出了一種適用于機會網絡的消息轉發(fā)策略 CSAMT(connection status aware message transmission),節(jié)點根據歷史態(tài)勢信息建立時序圖模型,描述與網絡中各個節(jié)點之間的關系,并動態(tài)地以多維方式感知節(jié)點間的連接態(tài)勢,其中,包括可達率、時延及跳數3個方面因素,利用所提出的均衡方法,經過非均勻量化,進而以分布式的方式對消息轉發(fā)進行決策。
傳統靜態(tài)圖方法將節(jié)點間非同時出現的鏈路聚合為非時變的連接圖。然而,網絡拓撲動態(tài)改變是機會網絡的內在屬性,這種靜態(tài)或聚合的分析方法忽略了節(jié)點間連接出現的時間順序,使得節(jié)點間可用的通信路徑被嚴重高估。時序圖模型將傳統的非時變靜態(tài)圖以時間順序劃分為一系列有限的離散時間序列圖,以反映機會網絡拓撲動態(tài)演進過程和趨勢,進而,感知節(jié)點的運動規(guī)律及連接態(tài)勢。
采用靜態(tài)圖方法將節(jié)點運動過程進行抽象的結果如圖1(a)所示,隨機運動的節(jié)點作為圖1(a)中的頂點,節(jié)點之間的相遇過程則抽象為邊,其中,ei表示節(jié)點之間通過隨機運動過程產生連接。
時序圖模型可將上述多個節(jié)點之間的運動過程表示為 G = < V ( G), E( G ), φ(G)> ,其中, V ( G)={A, B, C, D, E},E ( G ) = {e1, e2, e3, e4, e5, e6, e7},φ(G):E→V×V,如圖1(b)所示,可知,圖G為無向簡單圖。圖 GTi=< V ( GTi),E( GTi),φ(GTi)> 為 Ti時刻的時間序列圖,其中, V ( GTi) ? V( G), E( GTi)?E( G),φ(GTi):E( GTi) → V ( GTi)× V ( GTi),且圖 GTi為G的真子圖。連接序列圖中對應節(jié)點間的虛線為時間演進邊,其權值如式(1)所示,表示為節(jié)點的相遇間隔時間。
圖1 時序圖轉化過程
圖1(a)中存在節(jié)點A經邊e3、e6投遞消息到達節(jié)點B的路徑,而由圖1(b)可知,邊e6先于e3出現,此時A尚未與節(jié)點D相遇,進而,節(jié)點B就無法通過節(jié)點D收到來自于節(jié)點A的消息。顯然,靜態(tài)抽象圖方法忽略了節(jié)點相遇間隔、相遇頻率及連接出現的先后順序,視節(jié)點間的連接為同時存在,過高地估計了節(jié)點間存在的通信鏈路。圖1(b)所示的時序圖保存了節(jié)點相遇時間間隔、相遇頻率及連接次序等信息,忽略實際中并不存在的通信路徑,為準確分析節(jié)點間連接態(tài)勢提供了依據。
機會網絡中節(jié)點相遇狀態(tài)在時間域內連續(xù)可變,為了便于分析,可將其抽象為離散化狀態(tài),每個節(jié)點在本地緩存內保存相遇信息列表,如表1所示,其中包含相遇節(jié)點的ID號及相遇時間。
表1 相遇信息
與機會網絡中的消息轉發(fā)原理類似,當隨機運動的節(jié)點相遇之后,交換彼此緩存內的相遇信息列表,該列表相對消息較小,其傳輸開銷可忽略不計。網絡狀態(tài)在有限的時間尺度內趨于穩(wěn)定,通過不斷地交換相關信息,節(jié)點能夠近似地獲知全網的節(jié)點相遇狀態(tài),進而,以獲得的相遇時間順序為軸線即可得到網絡連接態(tài)勢時序。其建立過程分為2個步驟進行。1)狀態(tài)點創(chuàng)建。在每個相遇時刻,為網絡中的每個節(jié)點創(chuàng)建相應的狀態(tài)點。如節(jié)點A發(fā)生了3次相遇事件,則在時序圖中分別在1T、2T、7T時刻建立A1, A2, A73個狀態(tài)點;2)建立關聯。以沿時間順序的有向虛線連接相同節(jié)點的不同狀態(tài)點,每一條虛線的權值為前后相遇時刻的差值,代表2個狀態(tài)點之間的時間距離,再以無權重的無向實線連接當前時刻相遇的兩節(jié)點的狀態(tài)點,即可建立不同狀態(tài)點之間的關聯。
對于采用存儲—攜帶—轉發(fā)消息傳輸方式的機會網絡來說,節(jié)點隨機運動使得網絡狀態(tài)具有時變特性,中繼節(jié)點的選擇至關重要,需要考慮當前網絡狀態(tài)。通常,節(jié)點間的相遇間隔時間、網絡負載率以及可達率為典型的網絡狀態(tài)表征參數,中繼節(jié)點選擇過程中需要對三者進行綜合考慮。
根據時序圖iTG 中相關信息,由時間演進邊eTe[V( GTi)]的對應權值,可獲知任意節(jié)點之間的相遇間隔時間估計值 P ( i, j),如式(2)所示。
其中,p ( i, j, Ti, null)表示給定時刻 Ti,節(jié)點i在 Ti后任意時刻與節(jié)點j的最短相遇間隔時間。節(jié)點隨機移動使得節(jié)點之間在不同時刻可能多次相遇,本文選取各次相遇間隔時間的均值用于相遇間隔時間估計過程。
其次,網絡負載率反映了成功投遞消息所需的轉發(fā)次數,其定義如式(3)所示,其中,γ為網絡負載率,delN 為轉發(fā)的消息總數,sn為成功投遞到目標節(jié)點的消息數??梢姡D發(fā)次數越多,則網絡負載率越大。
根據時序圖 GTi中的相關信息,采用最短路徑算法可獲知任意節(jié)點間投遞消息所需的跳數G( i, j),如式(4)所示。
其中, g ( i, j, Ti, null)為給定Ti時刻,節(jié)點i在Ti后任意時刻投遞消息到達節(jié)點j所需的最小跳數。通過比較消息到達目標節(jié)點所需的平均跳數,選擇所需跳數較少的節(jié)點作為中繼節(jié)點進行消息轉發(fā),能夠有效減少網絡負載。
網絡中任意節(jié)點間可能存在多條潛在通信鏈路,源節(jié)點與目標節(jié)點間存在的潛在通信路徑越多,則消息被成功投遞的概率越高。因此,網絡中任意兩節(jié)點間的相對可達率 V ( i, j)如式(5)所示。
其中, (,)V i j表示在節(jié)點i的n次相遇中存在從節(jié)點i到節(jié)點j的路徑的概率。顯然,若節(jié)點到達目標節(jié)點的V值越大,消息由該節(jié)點轉發(fā)到達目標節(jié)點的成功率越高。
根據動態(tài)時序圖模型及所感知的相關網絡狀態(tài),本部分對節(jié)點轉發(fā)消息的能力進行分析,并綜合考慮多個因素對消息轉發(fā)過程的影響,然后利用非均勻量化方法獲得轉發(fā)消息的相對能力,進而更加合理地選擇中繼節(jié)點,完成對消息轉發(fā)。
根據建立的時序圖模型,節(jié)點能夠利用保存的歷史信息,估計消息到達網絡中任意節(jié)點的期望時延、平均跳數及相對可達率。然而,機會網絡中節(jié)點隨機移動,本地監(jiān)測結果無法準確反應網絡中其他節(jié)點狀態(tài),需要以分布式的方式感知整個網絡范圍內節(jié)點間的連接態(tài)勢,進而預測節(jié)點轉發(fā)消息的能力。
機會網絡中的各個節(jié)點獨立地進行隨機運動,節(jié)點相遇之后彼此交換本地時序圖相關信息,隨著運動過程的持續(xù),節(jié)點能夠獲知網內其他節(jié)點的相關連接狀態(tài)。
從時延角度來說,中繼節(jié)點的選擇應以最小化時延為目標,因此,定義網絡中節(jié)點投遞消息到達給定節(jié)點j的最小時延min()P j如式(6)所示。
通過所建立的時序圖模型,可獲知到達節(jié)點 j的最小時延,進而獲知在整個網絡內,各個節(jié)點在消息轉發(fā)時延方面的相對能力,即時延度 Wp( i, j),如式(7)所示,從定義可知,節(jié)點相遇間隔時間越長,則節(jié)點投遞消息到目標節(jié)點的期望時延越大,即式(7)中 P ( i, j)越大,則其針對節(jié)點j的時延度 Wp( i, j)就越小。
同理,從網絡負載角度來說,需選擇到達目標節(jié)點跳數最少的節(jié)點作為中繼節(jié)點,利用時序圖模型,通過式(8)可獲知到達節(jié)點j所需的最小跳數。
節(jié)點i針對j在轉發(fā)跳數方面的相對能力,即中繼度g(,)W i j如式(9)所示。
節(jié)點i轉發(fā)消息到達節(jié)點j所需的平均跳數越多,即式(9)中 G ( i, j)越大,則其對節(jié)點j的中繼度 Wg( i, j)越弱,經節(jié)點i轉發(fā)消息到j的網絡開銷越大。
與時延和跳數不同,針對節(jié)點j的相對可達率Vmax(j)可定義為網絡中的所有節(jié)點在有限次機會內與節(jié)點j相遇的最大概率,如式(10)所示。
進而,節(jié)點i轉發(fā)消息到節(jié)點j的能力,即可達度 Wv( i, j)如式(11)所示,節(jié)點i轉發(fā)消息到達節(jié)點j的相對可達率 V ( i, j)越大,則可達度 Wv( i, j)越高,經該節(jié)點成功轉發(fā)消息到達節(jié)點 j的概率越大。
機會網絡的網絡性能與所采取的消息傳輸策略直接相關,其中,中繼節(jié)點的選擇至關重要,需要綜合考慮時延度、中繼度與可達度3個方面因素,使所提消息傳輸策略獲得較好的網絡性能。
對于由三維向量組成的空間來說,若將一組由3個空間向量構成的線性無關向量組作為基底,則該幾何空間中的任意元素都可以唯一地表示成這一向量組的線性組合[14]。以本節(jié)點為坐標原點,與3個不共面的向量構成空間的一個仿射標架,如圖 2 所示。
圖2 節(jié)點轉發(fā)消息效用度抽象模型
假設時延度與中繼度共線,則可推得式(12)。
進而,得到式(13)。
由式(1)、式(3)、式(5)~式(8)可進一步推得式(14)。
根據時序圖 GTk中對 p ( i, j, Tk,null)及 g ( i, j, Tk,null)的定義可知,不存在同一λ使得 p ( i, j,Tk,null)與 g ( i, j, Tk,null)在不同的 Tk時刻均滿足線性關系,因此,時延度與中繼度不共線。同理可證得可達度與中繼度不共線。
若 K1,K2,K3中,最后一個不為零的數為 Kn,顯然 n ≠ 1,若 n = 1 ,因,故
若 K2≠ 0 ,則,即,與所得不共線矛盾,故 K2= 0 。
再設 K3≠ 0 , ? =- K1K3, β =-K2K3,則存在唯一的實數對(? , β )滿足式(16)。
由此可知,
由式(4)、式(8)、式(9)可進一步推得式(17)。
由 g ( i, j, Tk,null)的定義可知,在不同的 Tk, Tj時刻, g ( i, j, Tk,null)取值不同,因此,不存在唯一的實數對(? , β )滿足式(16),故 K3= 0 ,不存在不全為零的數使得式(15)成立。因此,為線性無關向量組,則節(jié)點轉發(fā)消息的效用度就可由個向量唯一的表示。
為滿足不同場景下的需求,實現網絡性能的動態(tài)可控調整,定義αm,m = p, v, g分別為時延度、中繼度及可達度對節(jié)點轉發(fā)消息效用度的影響因子,且三者滿足式(19)所示歸一化條件。
由此,節(jié)點轉發(fā)消息效用值 Q ( i, j)的計算方法如式(20)所示。通過調整αm,并對節(jié)點投遞消息的時延度、中繼度及可達度取模,實現對效用值Q( i, j)的動態(tài)均衡。
不同節(jié)點轉發(fā)消息到達目標節(jié)點的能力差異程度無法由單個節(jié)點的態(tài)勢體現,均勻量化的方法只在量化初始值為均勻分布時才能達到最佳效果,而機會網絡中節(jié)點的移動具有隨機性,無法確定根據節(jié)點相遇時間信息得出的消息轉發(fā)效用值服從[0,1]內的均勻分布,因此,本文采用適用于絕大多數情況的非均勻量化的方法[15],如式(21)所示。
其中,Q為輸入量化值, Q '為量化輸出值。β為常數,它決定了量化器的壓擴程度。針對目標節(jié)點的Q值越大,則量化輸出值 Q '越高,其轉發(fā)消息到達目標節(jié)點的能力越強。隨機運動過程中,相遇的節(jié)點利用量化效用值感知自身與對方節(jié)點轉發(fā)消息能力的差異,進而對消息的轉發(fā)進行分布式決策,直至消息到達目的節(jié)點。
所提出消息傳輸機制的偽代碼如下。
本文采用機會網絡環(huán)境(ONE, opportunistic network environment)[16~18]仿真平臺驗證所提出機制的有效性,并與典型的多副本路由機制 Epidemic以及單副本路由機制PROPHET進行對比。仿真參數設置如表 2所示。本文選取 ?p= 0 .45, ?v= 0 .35,?g= 0 .2。
表2 仿真參數設置
顯然,在給定網絡區(qū)域及節(jié)點移動速度后,節(jié)點相遇總次數與節(jié)點的個數直接相關。本部分主要驗證節(jié)點數量變化對所提出的CSAMT消息傳輸策略的影響情況,其中主要包括網絡負載率、消息成功投遞率及消息平均時延3個方面。
CSAMT、PROPHET、Epidemic的負載率如上圖3所示。結果表明網絡負載率隨節(jié)點數量的增加而逐漸上升,3種消息傳輸策略中,CSAMT增長幅度遠小于 PROPHET與 Epidemic。CSAMT較PROPHET與Epidemic在網絡負載率方面平均降低了48.3%以上,且由圖3所示曲線可知:增加節(jié)點數量會使得CSAMT較PROPHET與Epidemic在負載率性能增益上進一步提高。
圖3 不同節(jié)點個數下負載率的比較
節(jié)點個數對消息成功投遞率的影響如圖 4所示,隨著節(jié)點數量的增加,CSAMT、PROPHET、Epidemic三者的消息成功投遞率都呈上升趨勢,當節(jié)點個數為85時,CSAMT較其他兩者有大約5.6%的性能提升,且由圖4可知,節(jié)點數量的增加會使CSAMT在投遞率方面的優(yōu)勢更為明顯。
圖4 不同節(jié)點個數下消息成功投遞率的比較
圖5描述了節(jié)點個數對消息傳輸時延的影響情況,CSAMT、PROPHET及 Epidemic的消息平均時延都隨著節(jié)點數量的增加而快速下降。當節(jié)點個數為55時,CSAMT比 PROPHET的時延減小約7.8%,僅較Epidemic略差。節(jié)點個數大于55時,CSAMT較PROPHET性能增益幅度逐漸減小,到95個節(jié)點時兩者的時延性能已基本相當。
圖5 不同節(jié)點個數下消息平均時延的比較
由上述結果可知,當節(jié)點采用PROPHET機制進行消息傳輸時,雖然節(jié)點數量的增加使得各個節(jié)點能夠獲知較多的相遇概率信息,但是如前所述,該機制沒有考慮到節(jié)點間鏈路出現的時間順序,過高地估計了節(jié)點之間的連接性,因此,消息轉發(fā)次數較多,使得網絡負載率隨節(jié)點數量增加而急劇上升,同時,PROPHET與Epidemic對于中繼節(jié)點選擇的不合理性也限制了消息投遞率、時延及網絡負載的性能提升;另外,對于多副本傳輸策略 Epidemic來說,中繼節(jié)點的選擇過程并未考慮節(jié)點之間的連接態(tài)勢,而是利用所有節(jié)點間的相遇機會,節(jié)點以泛洪的方式將消息副本在網絡中進行擴散,雖然能夠獲得相對較小的時延,但是極大地浪費了有限的網絡資源。所提出的CSAMT傳輸策略中,節(jié)點根據保存的歷史信息建立模型估計節(jié)點間連接出現的態(tài)勢,從而更加準確地選擇中繼節(jié)點,有效地避免了消息在網絡中盲目地傳輸,且該機制的擴展性較好。隨著節(jié)點數量的增加,節(jié)點間相遇次數增多,CSAMT機制即可由感知的網絡狀態(tài)演進趨勢,更好地利用節(jié)點移動帶來的通信機會投遞消息,因而雖節(jié)點數量增多,但其負載率依然較低,能夠更好地適應資源受限的機會網絡。
節(jié)點的緩存容量決定了節(jié)點可攜帶的消息數量,機會網絡中的節(jié)點緩存容量通常是非常有限的,如何利用有限的節(jié)點緩存容量更有效地完成對消息的中繼轉發(fā)是機會網絡消息傳輸策略的研究重點。本部分主要分析節(jié)點緩存容量的變化對CSAMT消息傳輸策略的影響。
不同緩存空間下 CSAMT、PROPHET與Epidemic的網絡負載率如圖 6所示,CSAMT、PROPHET、Epidemic的負載率均呈現快速下降趨勢,且 CSAMT的負載率一直較 PROPHET與Epidemic低49.5%以上,充分表明了CSAMT相比兩者在降低網絡負載方面的優(yōu)勢。
圖6 不同緩存空間下負載率的比較
節(jié)點緩存空間對 CSAMT、PROPHET與Epidemic的消息成功投遞率的影響如圖7所示,隨著節(jié)點緩存空間的逐漸增加,3種算法的投遞率均呈快速上升趨勢。緩存空間較為有限時,CSAMT的投遞率優(yōu)于PROPHET及Epidemic,在緩存空間為8MB時CSAMT較兩者提高14.9%以上,隨著緩存空間進一步增加,CSAMT策略的性能增益有所降低。
圖7 不同緩存空間下投遞率的比較
圖8描述了緩存空間變化對消息平均時延的影響,從結果中可知,增加節(jié)點緩存空間可以減少PROPHET與Epidemic的消息平均時延,而CSAMT算法的時延則趨于穩(wěn)定,且一直較PROPHET小,其中,當緩存空間為6MB時,CSAMT較PROPHET的平均時延減少了13.4%。隨著緩存空間的逐漸加大,PROPHET的時延性能逐漸接近CSAMT,但最終仍較CSAMT略差。
圖8 不同緩存空間下消息平均時延的比較
由上述結果可知,增大節(jié)點緩存空間可以增加節(jié)點攜帶的消息數量,使得相遇的節(jié)點間可傳遞的消息數量增多,同等連接狀況下,消息遇到目標節(jié)點的概率增大,從而有效提升了消息的投遞率和平均時延性能。如前所述,PROPHET機制雖然可由歷史信息進行相遇概率預測,但PROPHET忽視了節(jié)點相遇的時間先后順序,沒有準確地把握連接的演進趨勢,過高地估計了鏈路的可用性,造成消息不合理的轉發(fā)次數過多,雖然消息被投遞的概率增大,卻因中繼節(jié)點的選擇不合理,造成較差的投遞率與平均時延性能以及較高的網絡負載。Epidemic機制的洪泛策略將網絡中消息副本的冗余度最大化,雖可獲得較好的消息投遞率與平均時延性能,但其未考慮節(jié)點鏈接的演進趨勢,造成對網絡資源的極大浪費。所提出的CSAMT消息轉發(fā)機制通過建立時序圖模型,能夠由獲知的節(jié)點移動規(guī)律及網絡拓撲演進趨勢,充分考慮節(jié)點之間的負載度、中繼度和可達度3個方面因素,進而估算節(jié)點轉發(fā)消息的效用值,實現中繼節(jié)點選擇過程的分布式決策,從而有效地降低了消息轉發(fā)過程中參與協作緩存的節(jié)點數量,達到了降低網絡負載的目的;同時,各個節(jié)點的緩存利用率也隨之上升。中繼節(jié)點選擇過程中,節(jié)點充分地考慮了網絡中的各個節(jié)點之間的連通情況,所選擇的中繼節(jié)點能夠以較高的概率到達目的節(jié)點,實現了消息投遞率和時延性能上的增益,有效地改善了網絡性能。
為充分利用機會網絡受限的網絡資源,進一步改善網絡性能,本文提出了一種節(jié)點連接態(tài)勢感知的消息傳輸策略。首先根據建立的時序圖模型對節(jié)點移動規(guī)律進行感知,進而分析節(jié)點轉發(fā)消息的能力,并利用所提出的均衡方法進行均衡、量化,得到節(jié)點轉發(fā)消息的效用值,最后,綜合考慮負載度、中繼度和可達度3個方面因素選擇中繼節(jié)點。仿真結果表明,本文提出的CSAMT消息傳輸策略能夠有效地提高消息成功投遞率,降低消息平均時延,并大幅降低網絡負載,即可利用較少的網絡資源達到較高的性能增益,完全滿足機會網絡資源受限情況下進行消息傳輸的要求。
[1] 董超, 錢睿, 陳貴海等. 無線自組織網絡中流間網絡編碼機會發(fā)現方法的研究[J]. 通信學報, 2011, 32(10): 92-98.DONG C, QIAN R, CHEN G H, et al. Method for discovering in-tra-session network coding opportunity in wireless ad hoc networks[J].Journal on Communications, 2011, 32(10):92-98.
[2] MORGAN Y L. Notes on DSRC & WAVE standards suite: its architecture, design, and characteristics[J]. IEEE Communications Surveys& Tutorials, 2010, 12(4): 504-518.
[3] JUANG P, OKI H, WANG Y, et al. Energy-efficient computing for wildlife tracking: design trade-offs and early experiences with Zebra-Net[J]. ACM SIGARCH Computer Architecture News, 2002,37(10): 96-107.
[4] SMALL T, HAADS Z J. The shared wireless infostation model: a new ad hoc networking paradigm[A]. Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing.Annapolis[C]. Annapolis, MD, USA, 2003.233-244.
[5] PENTLAND A, FLETCHER R, HASSON A. DakNet: rethinking connectivity in developing nations[J]. Computer, 2004, 37(1): 78-83.
[6] DORIA A, UDEN M, PANDEY D P. Providing connectivity to the saami nomadic community[A]. Proceedings of the 2nd International Conference on Open Collaborative Design for Sustainable Innovation[C]. Bangalore, India, 2002.
[7] 聶志, 劉靜, 甘小鶯等. 移動ad hoc網絡中機會路由轉發(fā)策略的研究[J].重慶郵電大學學報(自然科學版), 2010, 22(4): 421-425.NIE Z, LIU J, GAN X Y, et al. A relay node selection technique for opportunistic routing in mobile ad hoc networks[J]. Journal of Chongqing University of Posts and Telecommunications, 2010, 22(4):421-425.
[8] 熊永平, 孫利民, 牛建偉等. 機會網絡[J]. 軟件學報, 2009, 20(1):124-137.XIONG Y P, SUN L M, NIU J W, et al. Opportunistic networks[J].Journal of Software, 2009, 20(1): 124-137.
[9] THRASYVOULOS S, KONSTANTINOS P, CAULIGI S R. Efficient routing in intermittently connected mobile networks: the multiple-copy case[J]. IEEE/ACM Transactions on Networking, 2008, 16(1): 77-90.
[10] THRASYVOULOS S, KONSTANTINOS P, CAULIGI S R. Efficient routing in intermittently connected mobile networks: the single-copy case[J]. IEEE/ACM Transactions on Networking, 2008, 16(1): 63-76.
[11] ANDERS L, AVRI D, OLOV S. Probabilistic routing in intermittently connected networks[A]. ACM SIGMOBILE Mobile Computing and Communications Review[C]. New York, NY, USA, 2003, 7(3):19-20.
[12] 卓瑩, 龔春葉, 龔正虎. 網絡傳輸態(tài)勢感知的研究與實現[J]. 通信學報, 2010, 31(9): 54-63.ZHUO Y, GONG C Y, GONG Z H. Research and implementation of network transmission situation awareness[J]. Journal on Communications,2010, 31(9): 54-63.
[13] VASSILIS K. Sequence diagramsgraphs[J]. Physica A: Statistical Mechanics and Its Applications, 2009, 388(6):1007-1023.
[14] 潘國榮, 趙鵬飛. 基于空間向量的三維基準轉換模型[J]. 大地測量與地球動力學, 2009, 29(6): 79-82.PAN G R, ZHAO P F. 3D datum transformation model based on space vector[J]. Journal of Geodesy and Geodynamics, 2009, 29(6): 79-82.
[15] WEI D, HOA V P, OLGICA M. Distortion-rate functions for quantized compressive sensing[A]. IEEE Workshop on Networking and Information Theory[C]. Greece, 2009.171-175.
[16] KER?NEN A, OTT J, K?RKK?INEN T. The ONE simulator for DTN protocol evaluation[A]. The 2nd International Conference on Simulation Tools and Techniques[C]. Rome, Italy, 2009. 1-10.
[17] VASCON G J W, FARID FARAHMAND, JQEL JOSE P C R. Retiring replicants: congestion control for intermittently-connected networks[A].IEEE Proceedings INFOCOM[C]. San Diego, USA, 2010. 1-9.
[18] VASCON G J S, FARID FARAHMAND, JQEL JOSE P C R. Impact of vehicle movement models on VDTN routing strategies for rural connectivity[J]. International Journal of Mobile Network Design and Innovation, 2009, 3(2): 103-111.