• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Very Expressive Intuitionistic Fuzzy Rough Description Logics for the Semantic Web

    2013-10-28 03:54:40JIANGYuncheng
    關(guān)鍵詞:國家自然科學(xué)基金直覺責(zé)編

    JIANG Yuncheng

    (School of Computer Science, South China Normal University, Guangzhou 510631, China)

    VeryExpressiveIntuitionisticFuzzyRoughDescriptionLogicsfortheSemanticWeb

    JIANG Yuncheng*

    (School of Computer Science, South China Normal University, Guangzhou 510631, China)

    The state-of-the-art and some existing problems of intuitionistic fuzzy rough Description Logics(DLs) for the Semantic Web are analyzed. An integration between the theories of intuitionistic fuzzy DLs and rough DLs, i.e., intuitionistic fuzzy rough DLs, has been provided based on (,)-intuitionistic fuzzy rough set theory. Concretely, the intuitionistic fuzzy rough DLIFRSROIQ(D) is presented, which is the extension of the expressive DLSROIQ(D) behind OWL 2. It is proved that the reasoning tasks (knowledge base satisfiability, concept satisfiability, subsumption, logical consequence, ABox consistency, BTCB, and BSB reasoning) in the intuitionistic fuzzy rough DLIFRSROIQ(D) may be reduced to the corresponding reasoning in the fuzzy DL over complete latticesL*-SROIQ(D), respectively.

    Keywords: description logics; fuzzy description logics; rough description logics; (,)-intuitionistic fuzzy rough sets; Semantic Web

    In the last years, the use of ontologies as formalisms for knowledge representation in many different application domains has grown significantly[1]. Ontologies have been successfully used as part of expert and multi-agent systems, as well as a core element in the Semantic Web, which proposes to extend the current Web to give information a well-defined meaning[2-3]. An ontology is defined as an explicit and formal specification of a shared conceptualization[4], which means that ontologies represent the concepts and the relationships in a domain promoting interrelation with other models and automatic processing. Ontologies allow to add semantics to data, making knowledge maintenance, information integration as well as the reuse of components easier[1].

    The current standard language for ontology creation is the Web Ontology Language (OWL)[1,5], which consists of the three increasingly expressive sublanguages OWL Lite, OWL DL, and OWL Full. OWL Full is the most expressive level but reasoning within it becomes undecidable, OWL Lite has the lowest complexity and OWL DL is a balanced tradeoff between expressiveness and reasoning complexity. However, since its first development, several limitations on expressiveness of OWL have been identified, and consequently several extensions to the language have been proposed[1].

    Description Logics (DLs for short)[6]are a family of knowledge representation languages which can be used to represent the terminological knowledge of an application domain in a structured and formally well-understood way. Each logic is denoted by using a string of capital letters which identify the constructors of the logic and therefore its complexity[1]. Important characteristics of DLs are high expressivity together with decidability, which guarantee that reasoning algorithms always terminate with correct answers. Nowadays, DLs have been proved to be very useful as ontology languages. For example, OWL Lite, OWL DL, and OWL 2 have a formal semantics and a reasoning support through a mapping to the expressive DLsSHIF(D),SHOIN(D), andSROIQ(D), respectively[1,5-9]. More precisely, without regarding annotation properties of OWL, the OWL Lite, OWL DL, and OWL 2 are equivalent to DLsSHIF(D),SHOIN(D), andSROIQ(D), respectively.

    Nevertheless, it has been widely pointed out that classical DLs[6]are not appropriate to deal with imprecise and vague knowledge, which is inherent to several real world domains[1,10]. The rising popularity of DLs and their use, and the need to deal with uncertainty and vagueness, both especially in the Semantic Web[2-3], is increasingly attracting the attention of many researchers and practitioners towards DLs able to cope with uncertainty and vagueness[11]. Several extensions of DLs have been proposed relying on various extensions of classic logic: there have been probabilistic[12], possibilistic[13], fuzzy[1,14-18], and rough[19-20]extensions that have fundamental differences in terms of semantics and thus in the types of knowledge they model. The probabilistic and possibilistic approaches capture uncertainty and make it possible to represent uncertain knowledge, whereas the fuzzy approach captures vagueness and allows to represent fuzzy knowledge, and the rough approach deal withes rough (or imprecise) knowledge.

    Despite the growing popularity of these extended DLs such as probabilistic DLs, possibilistic DLs, fuzzy DLs, and rough DLs, relatively little work has been carried out in integrating them to the management of uncertain and imprecise information, the aim being to develop some new DL theories of uncertainty and vagueness stronger than both of them. At this aspect, we have carried out some works. For instance, we integrated fuzzy DLs (resp., intuitionistic fuzzy DLs) and rough DLs based on fuzzy rough set theory[21-22](resp., intuitionistic fuzzy rough set theory[22-25]), in other words, we presented fuzzy rough DLs[26](resp., intuitionistic fuzzy rough DLs[27]). There also are some related works. For example, Lukasiewicz and Straccia[28]present probabilistic fuzzy description logic programs, which combine fuzzy description logics, fuzzy logic programs, and probabilistic uncertainty in a uniform framework for the Semantic Web, and define important concepts dealing with both probabilistic uncertainty and fuzzy vagueness, such as the expected truth value of a crisp sentence and the probability of a vague sentence. In this paper, we will further study intuitionistic fuzzy rough DLs. The main reasons are as follows.

    (i) The intuitionistic fuzzy rough DLIFRALCpresented in [27] is an intuitionistic fuzzy rough extension of the DLALC[9]. It is well-known that inALC, there only exist concept negation, concept conjunction, concept disjunction, existential quantification, and universal quantification constructors. Therefore,IFRALCcan not deal with number restrictions, nominals, concrete domain, inverse roles, and role hierarchies, which are important ingredients of the DLsSHIF(D),SHOIN(D), andSROIQ(D). Moreover, these DLsSHIF(D),SHOIN(D), andSROIQ(D) are essentially the theoretical basis of the Web Ontology Language OWL, the state of the art language to specify ontologies[1,5-9]. In this paper, we will extend the intuitionistic fuzzy rough DLIFRALC[27]with the underlying DLSROIQ(D) which is the corresponding DL of the ontology description language OWL 2.

    (ii) The intuitionistic fuzzy rough DLIFRALCpresented in[27] is based on the intuitionistic fuzzy rough set theory presented in[24]. It is well-known that combining intuitionistic fuzzy set theory and rough set theory may result in a new hybrid mathematical structure for the requirement of knowledge processing systems. Research on this topic has been investigated by a number of authors[23-25]. Various tentative definitions of intuitionistic fuzzy rough sets were explored to extend rough set theory to the intuitionistic fuzzy environment[23]. For example, Zhou and Wu[24]explored a general framework for the study of various relation-based intuitionistic fuzzy rough approximation operators when the intuitionistic fuzzy triangular norm=min. However, rough set models for approximations of intuitionistic fuzzy sets with respect to an arbitrary intuitionistic fuzzy approximation space on the basis of general intuitionistic fuzzy logical operators have not been studied. Since the intuitionistic fuzzy rough DLIFRALCpresented in[27] is based on the intuitionistic fuzzy rough set theory presented in[24], therefore, theIFRALCcan not express general intuitionistic fuzzy logical operators correspondingly. Zhou et al.[25]present a generalized (,)-intuitionistic fuzzy rough set theory by employing intuitionistic fuzzy logical operators in the intuitionistic fuzzy set theory proposed by Cornelis et al.[29]. This paper will present new intuitionistic fuzzy rough DLs based on the (,)-intuitionistic fuzzy rough set theory[25].

    (iii) In fuzzy DLs (resp., fuzzy rough DLs, intuitionistic fuzzy rough DLs), there are crisp subsumption and fuzzy subsumption for fuzzy concepts (resp., fuzzy rough concepts, intuitionistic fuzzy rough concepts)[1,15-17]. The intuitionistic fuzzy rough DLIFRALC[27]considers the crisp subsumption. This paper will consider the fuzzy subsumption, i.e., subsumption relationship may hold to some degree which is taken from a complete lattice. The adopted approach is more general than the crisp subsumption based approach.

    In this paper we extend the intuitionistic fuzzy rough DLIFRALC[27]from the above mentioned three aspects. More concretely, an intuitionistic fuzzy extension of the DLSROIQ(D) is defined[1,7-8], i.e., we present the intuitionistic fuzzy rough DLIFRSROIQ(D) based on the (,)-intuitionistic fuzzy rough set theory[25], and provide its syntax, semantics, and reasoning algorithms.

    1 Preliminaries

    1.1 Description Logic SROIQ(D)

    DLs[6]are based on a common family of languages, called description languages, which provide a set of constructors to build concept (class) and role (property) descriptions. Such descriptions can be used in axioms and assertions of DL knowledge bases and can be reasoned about with respect to DL knowledge bases by DL systems[15].

    SROIQ(D)[1,7]extendsSROIQ[1,8]with concrete domains[30], in other words,SROIQ(D) extendsALCstandard DL[9]with transitive roles (ALCplus transitive roles is calledS), complex role axioms (R), nominals (O), inverse roles (I), qualified number restrictions (Q) and concrete domains (D).

    A concrete domain is a pairΔD,ΦD, whereΔDis a concrete interpretation domain andΦDis a set of concrete predicatesdwith a predefined aritynand an interpretationdD?(ΔD)n.

    SROIQ(D) assumes three alphabets of symbols, for individuals, roles and concepts. Abstract individuals are denoteda,b. Concrete individuals are denotedv. The abstract roles (denoted byR) of the language can be built inductively according to the following syntax rule:R→RA|R-|U. Concrete roles are denotedTand cannot be complex. The concepts (denoted byCorD) of the language can be built inductively from atomic concepts (A), top concept, bottom concept ⊥, named individuals (oi), abstract roles (R), concrete roles (T), simple roles (S, which will be defined below) and concrete predicatesdas follows, wheren,mdenote natural numbers:

    C,D→A||⊥|CD|CD|C|?R.C|?R.C|

    ?R.d|?R.d|{o1,…,om}|(≥nS.C)| (≤nS.

    C)| (≥nT.d)| (≤nT.d)| ?S.self.

    Expression of the form (≥nS.C), (≤nS.C) are called qualified number restrictions, while expression of the form (≥nS), (≤nS) are called unqualified number restrictions. (=nS.C) is an abbreviation for (≥nS.C)(≤nS.C), and (=nS) is an abbreviation for (≥nS)(≤nS). The case for concrete number restrictions is similar.

    AnSROIQ(D) knowledge base (KB) comprises two parts: the intensional knowledge, i.e., general knowledge about the application domain (a Terminological Box or TBoxTB, and a Role Box or RBoxRB), and the extensional knowledge, i.e., particular knowledge about some specific situation (an Assertional Box or ABoxABwith statements about individuals).

    An ABox consists of a finite set of assertions about individuals:

    ?concept assertionsa:C;

    ?role assertions (a,b):R;

    ?negated role assertions (a,b):R;

    ?concrete role assertions (a,v):T;

    ?negated concrete role assertions (a,v):T;

    ?inequality assertionsa≠b;

    ?equality assertionsa≠b.

    A TBox consists of a finite set of general concept inclusion (GCI) axiomsCD. We also say thatDis a superclass ofC, and thatCis a subclass ofD. A concept equivalenceC≡Dis a shorthand for the pair of axiomsCDandDC.

    Letwbe a role chain (a finite string of roles not including the universal roleU). An RBox consists of a finite set of role axioms:

    ?role inclusion axioms (RIAs)wRorT1T2, in RIAs of the formR1R2we also say thatR2is a super-role ofR1, and thatR1is a sub-role ofR2;

    ?transitive role axiomstrans(R);

    ?disjoint role axiomsdis(S1,S2) ordis(T1,T2);

    ?reflexive role axiomsref(R);

    ?irreflexive role axiomsirr(S);

    ?symmetric role axiomssym(R);

    ?asymmetric role axiomsasy(S).

    A role equivalenceR≡R′ is a shorthand for the pair of axiomsRR′ andR′R.

    Simple roles are inductively defined as follows:

    ?RAis simple if does not occur on the right side of aRIA;

    ?R-is simple ifRis;

    ?ifRoccurs on the right side of aRIA,Ris simple if, for eachwR,w=Sfor a simple roleS.

    Note that concrete roles are always simple and non-complex.

    ?w=RR, or

    ?w=R-, or

    ?w=S1…SnandSiRfor alli=1,…,n, or

    ?w=RS1…SnandSiRfor alli=1,…,n, or

    ?w=S1…SnRandSiRfor alli=1,…,n.

    In order to guarantee the decidability of the logic, there are some restrictions in the use of roles:

    ?some concept constructors require simple roles: non-concrete qualified number restrictions and local reflexivity;

    ?some role axioms also require simple roles: disjoint, irreflexive and asymmetric role axioms;

    ?role axioms cannot contain the universal roleU;

    An interpretationIwith respect to a concrete domainDis a pair (ΔI, ?I) consisting of a non empty setΔI(the interpretation domain) disjoint withΔDand an interpretation function ?Imapping:

    ?every abstract individualaonto an elementaIofΔI;

    ?every concrete individualvonto an elementvDofΔD;

    ?every atomic conceptAonto a setAI?ΔI;

    ?every abstract atomic roleRAonto a relation (RA)I?ΔI×ΔI;

    ?every concrete roleTonto a relationTI?ΔI×ΔD;

    ?everyn-ary concrete predicatedonto the interpretationdD?(ΔD)n.

    The interpretation is extended to complex concepts and roles by the inductive definitions as follows, where #Xdenotes the cardinality of the setX:

    ?UI=ΔI×ΔI; ()I=ΔI; (⊥)I=;

    ?(CD)I=CIDI; (CD)I=CIDI;

    ?Ia:C iffaICI;

    ?I(a,b):Riff (aI,bI)RI;

    ?I(a,b):Riff (aI,bI)RI;

    ?I(a,v):Tiff (aI,vD)TI;

    ?I(a,v):Tiff (aI,vD)TI;

    ?Ia=biffaI=bI;

    ?Ia≠biffaI≠bI;

    ?ICDiffCI?DI;

    ?IR1…Rn…RnI?RI;

    ?IT1T2iff (T1)I?(T2)I;

    ?Itrans(R) iff (x,y)RIand (y,z)RIimply (x,z)RI, ?x,y,zΔI;

    ?Idis(S1,S2) iff (S1)I(S2)I=;

    ?Idis(T1,T2) iff (T1)I(T2)I=;

    ?Iref(R) iff (x,x)RI, ?xΔI;

    ?Iirr(S) iff (x,x)SI, ?xΔI;

    ?Isym(R) iff (x,y)RIimply (y,x)RI, ?x,yΔI;

    ?Iasy(S) iff (x,y)SIimply (y,x)SI, ?x,yΔI.

    The interpretationI=(ΔI, ?I) satisfies the axiom (or assertion)ω, orIis a model ofω, iffIω. We say thatIsatisfies a knowledge baseKB=(AB,TB,RB), orIis a model ofKB, denotedIKB, iffIωfor each axiom (or assertion) inAB,TB,RB. We say thatKBis satisfiable (resp., unsatisfiable) iffKBhas a (resp., no) model. An axiom (or assertion)ωis a logical consequence ofKB, denotedKBω, iff each model ofKBsatisfiesω.

    A DL not only stores axioms and assertions, but also offers some reasoning services. Some important reasoning problems inSROIQ(D) are summarized as follows:

    KBsatisfiability: given a knowledge baseKB, decide whetherKBis satisfiable;

    concept satisfiability: given a knowledge baseKBand a conceptC, decide whetherKB/C⊥;

    subsumption: given a knowledge baseKBand conceptsCandD, decide whetherKBCD;

    instance: given a knowledge baseKB, an individuala, andaconceptC, decide whetherKBC(a); given a knowledge baseKB, individualsa,b(resp., an individualaand a valuev), and a roleR(resp.,), decide whetherKBR(a,b) (resp.,KBT(a,v)).

    We can obtain the reasoning algorithm of concept satisfiability ofSROIQ(D) by integrating the reasoning algorithms of concept satisfiability ofSROIQ[8]andSHOQ(D)[30], that is to say, we need to extend theSROIQ-tableau algorithm[8]with datatype-rules[30-31].

    1.2(,)-IntuitionisticFuzzyRoughSets

    We first review a special lattice on [0, 1]×[0, 1] (where [0, 1] is the unit interval) and its logical operations originated by Cornelis et al.[29].

    DenoteL*={(x1,x2)([0, 1]×[0, 1]|x1+x2≤1}. We define a relation ≤L*onL*as follows:

    x1≤y1andx2≥y2.

    Then the relation ≤L*is a partial ordering onL*and the pair (L*, ≤L*) is a complete lattice with the smallest element 0L*=(0, 1) and the greatest element 1L*=(1, 0)[25,29]. The meet operatorand the join operatoron (L*, ≤L*) which are linked to the ordering ≤L*are, respectively, defined as follows: ?(x1,x2), (y1,y2)L*,

    (x1,x2)(y1,y2)=(min(x1,y1), max(x2,y2)),

    (x1,x2)(y1,y2)=(max(x1,y1), min(x2,y2)).

    (y1,y2)≥L*(x1,x2)?(x1,x2)≤L*(y1,y2),

    andx=y?x≤L*yandx≥L*y.

    An intuitionistic fuzzy negator onL*is a decreasing mapping:L*→L*satisfying(0L*)=1L*and(1L*)=0L*. If((x))=xfor allxL*, thenis called an involutive intuitionistic fuzzy negator. The mappingS, defined asS(x1,x2)=(x2,x1), ?(x1,x2)L*, is called the standard intuitionistic fuzzy negator.

    Since ≤L*is a partial ordering, the order-theoretic definitions of conjunction and disjunction onL*called intuitionistic fuzzy triangular norm (intuitionistic fuzzy t-norm for short) and intuitionistic fuzzy triangular conorm (intuitionistic fuzzy t-conorm for short) are introduced as follows:

    An intuitionistic fuzzy t-norm onL*is an increasing, commutative, associative mapping:L*×L*→L*satisfying(1L*,x)=xfor allxL*. An intuitionistic fuzzy t-conorm onL*is an increasing, commutative, associative mappingS:L*×L*→L*satisfyingS(0L*,x)=xfor allxL*.

    An intuitionistic fuzzy t-normand an intuitionistic fuzzy t-conormSonL*are said to dual with respect to an intuitionistic fuzzy negatorif

    ((x),(y))=((x,y)), ?x,yL*;

    ((x),(y))=((x,y)), ?x,yL*.

    (0L*, 0L*)=1L*,(1L*, 0L*)=0L*,
    (0L*, 1L*)=1L*,(1L*, 1L*)=1L*.

    Now we recall some basic notions of intuitionistic fuzzy sets presented by Atanassov[33]. LetUbe a nonempty set called the universe of discourse. The classes of all subsets (resp., fuzzy sets) ofUwill be denoted by(U) (resp.,(U)).

    Let a setUbe fixed. An intuitionistic fuzzy setAinUis an object having the form

    A={x,μA(x),γA(x)|xU},

    We introduce some basic operations onI(U) as follows[25,33]: ?A,BI(U),

    ?A?BiffB?A;

    ?A=BiffA?BandB?A;

    ?AB={x,min(μA(x),μB(x)),max(γA(x),γB(x))|xU};

    ?AB={x,max(μA(x),μB(x)),min(γA(x),γB(x))|xU}.

    We know that an intuitionistic fuzzy relationR[25,35-36]onUis an intuitionistic fuzzy subsetU×U, namely,Ris given by

    R={(x,y),μR(x,y),γR(x,y)|(x,y)U×U},

    In general the round composition of intuitionistic fuzzy relationsR1,R2, …,Rn-1,RninI(U×U) is the intuitionistic fuzzy relationsR1R2…Rn-1RninI(U×U) defined by

    (R1R2…Rn-1Rn)(x,y)=

    Rn-1(yn-2,yn-1),Rn(yn-1,y)).

    In what follows, we introduce the basic notions of (,)-intuitionistic fuzzy rough sets[25].

    LetUbe a non-empty universe of discourse andRbe an intuitionistic fuzzy relation onU. The pair (U,R) is called an intuitionistic fuzzy approximation space.

    Let (U,R) be an intuitionistic fuzzy approximation space,andbe a continuous intuitionistic fuzzy t-norm and an intuitionistic fuzzy implicator onL*, respectively. Then the-upper intuitionistic fuzzy rough approximation operatorand the-lower intuitionistic fuzzy rough approximation operatorhave the following properties: ?A,B,AiI(U) (?iJ,Jis an index set),

    2 Intuitionistic Fuzzy Description Logic IFSROIQ(D)

    The main goal of this paper is to provide intuitionistic fuzzy rough DLIFRSROIQ(D), which is the extension of intuitionistic fuzzy DLIFSROIQ(D).

    IFSROIQ(D) is the fuzzy extension ofSROIQ(D) presented in Section 1.1 based on intuitionistic fuzzy set theory[25,33,35]. Obviously,IFSROIQ(D) is an extension of the intuitionistic fuzzy DLIFALC[27].

    Definition1[7,17]A fuzzy concrete domainDis a pairΔD,ΦD, whereΔDis a concrete interpretation domain andΦDis a set of fuzzy concrete predicatesdwith an aritynand an interpretationdD: (ΔD)n→[0, 1], which is ann-ary fuzzy relation overΔD. In the following for simplicity we assume arity 1.

    C,D→A||⊥|CD|CD|C|?R.C|?R.C|

    ?T.d| ?T.d| {α1/o1,…,αm/om}| (≥mS.

    C)| (≤nS.C)| (≥mT.d)| (≤nT.d)|

    ?S.self|mod(C)| [C≥L*α]| [C≤L*β].

    The abstract roles (denoted byR) of the language can be built inductively according to the following syntax rule:R→RA|R-|U|mod(R)| [R≥L*α], whereUis a universal role.

    In the rest of this paper we will assumeL*{≥L*, >L*, ≤L*,

    Definition3An intuitionistic fuzzy knowledge baseIFKBcomprises an intuitionistic fuzzy ABoxIFAB, an intuitionistic fuzzy TBoxIFTBand an intuitionistic fuzzy RBoxIFRB, i.e.,IFKB=IFAB,IFTB,IFRB.

    An intuitionistic fuzzy ABoxIFABconsists of a finite set of intuitionistic fuzzy assertions of one of the following types:

    ?an intuitionistic fuzzy concept assertiona:C≥L*α,a:C>L*α,a:C≤L*αora:C

    ?an intuitionistic fuzzy role assertionψ≥L*α,ψ>L*α,ψ≤L*αorψ

    An intuitionistic fuzzy TBoxIFTBconsists of a finite set of intuitionistic fuzzy GCIs (IFGCIsfor short) of the form (CDL*α, whereL*stands for ≥L*or >L*.

    An intuitionistic fuzzy RBoxIFRBconsists of a finite set of intuitionistic fuzzy role axioms of the following types:

    ?intuitionistic fuzzyIFRIAswRL*α, wherew=R1R2…Rmis a role chain,T1T2L*α;

    ?transitive role axiomstrans(R);

    ?disjoint role axiomsdis(S1,S2),dis(T1,T2);

    ?reflexive role axiomsref(R);

    ?irreflexive role axiomsirr(S);

    ?symmetric role axiomssym(R);

    ?asymmetric role axiomsasy(S).

    Definition4Simple roles are defined as follows:

    ?RAis simple if it does not occur on the right side of anIFRIA;

    ?R-is simple ifRis simple;

    ?ifRoccurs on the right side of anIFRIA,Ris simple if, for each (wRL*α,w=Sfor a simple roleS.

    As inFSROIQ(D), there are also some restrictions in the use of roles, in order to guarantee the decidability ofIFSROIQ(D). These restrictions are the same as that ofFSROIQ(D) (see [1] and [7] for more details).

    Obviously, the syntax ofIFSROIQ(D) is the extension of that ofFSROIQ(D)[1,7], i.e., theIFSROIQ(D) allows to express that a sentence is true to some degree, which is not taken from the unit interval[0, 1], but from the complete latticeL*.

    The semantics ofIFSROIQ(D) is also the extension of the semantics of fuzzy DLFSROIQ(D)[1,7].

    Definition5An intuitionistic fuzzy interpretationIwith respect to a fuzzy concrete domainDis a tuple (ΔI, ?I) consisting of a non empty setΔI(the interpretation domain) disjoint withΔDand an interpretation function ?Imapping:

    ?every abstract individualaonto an elementaIofΔI;

    ?every concrete individualvonto an elementvDofΔD;

    ?every conceptConto a functionCI:ΔI→L*;

    ?every abstract roleRonto a functionRI:ΔI×ΔI→L*;

    ?every concrete roleTonto a functionTI:ΔI×ΔD→L*;

    ?everyn-ary concrete fuzzy predicatedonto the fuzzy relationdD: (ΔD)n→L*;

    ?every modifiermodonto a functionfmod:L*→L*.

    Given arbitrary intuitionistic fuzzy t-norm, intuitionistic fuzzy t-conorm, intuitionistic fuzzy negatorand intuitionistic fuzzy implicator, the intuitionistic fuzzy interpretationIis extended to complex concepts and roles as follows, ?xΔI:

    ?(⊥)I(x)=0L*;

    ?(CD)I(x)=(CI(x),DI(x));

    ?(CD)I(x)=(CI(x),DI(x));

    ?(?R.C)I(x)=y ΔI{(RI(x,y),CI(y))};

    ?(?R.C)I(x)=y ΔI{(RI(x,y),CI(y))};

    ?(?T.d)I(x)=v ΔD{(TI(x,v),dD(v))};

    ?(?T.d)I(x)=v ΔD{(TI(x,v),dD(v))};

    ?(≥mS.C)I(x)=y1,…,ymΔI[({(SI(x,yi),CI(yi))},j

    ?(≤nS.C)I(x)=y1,…,yn+1ΔI[({(SI(x,yi),CI(yi))},j

    ?(≥mT.d)I(x)=v1,…,vmΔD[({(TI(x,vi),dD(vi))},j

    ?(≤nT.d)I(x)=v1,…,vn+1ΔD[({(SI(x,vi),dD(vi))},j

    ?(?S.self)I(x)=SI(x,x);

    ?(mod(C))I(x)=fmod(CI(x));

    ?([C≥L*α])I(x)=1L*ifCI(x)(L*α, 0L*otherwise;

    ?([C(L*β])I(x)=1L*ifCI(x)(L*β, 0L*otherwise;

    ?(R-)I(x,y)=RI(y,x);

    ?(U)I(x,y)=1L*;

    ?(mod(R))I(x,y)=fmod(RI(x,y));

    ?([R≥L*α])I(x,y)=1L*ifRI(x,y)≥L*α, 0L*otherwise.

    As inFSROIQ(D), we do not impose unique name assumption, i.e., two nominals might refer to the same individual.

    The intuitionistic fuzzy interpretation function is extended to intuitionistic fuzzy axioms as follows:

    ?(a:C)I=CI(aI);

    ?((a,b):R)I=RI(aI,bI);

    ?((a,b):R)I=(RI(aI,bI));

    ?((a,v):T)I=TI(aI,vD);

    ?((a,v):T)I=(TI(aI,vD));

    ?(CD)I=xΔI{(CI(x),DI(x))};

    ?(R1…RmR)I=x1,…,xm+1ΔI{(((x1,x2), …,(xm,xm+1)),RI(x1,xm+1))};

    ?(T1T2)I=xΔI,vΔD{((x,v),(x,v))}.

    The satisfaction of an intuitionistic fuzzy axiom (or assertion)ωin an intuitionistic fuzzy interpretationI, denotedIω, is defined as follows:

    ?Ia:CL*αiff (a:C)IL*α;

    ?I(a,b):RL*αiff ((a,b):R)IL*α;

    ?I((a,b):RL*αiff ((a,b):R)IL*α;

    ?I(a,v):TL*αiff ((a,v):T)IL*α;

    ?I((a,v):TL*αiff ((a,v):T)IL*α;

    ?Ia≠biffaI≠bI;

    ?Ia=biffaI=bI;

    ?ICDL*αiff (CD)IL*α;

    ?I(R1…RmRL*αiff (R1…RmR)IL*α;

    ?IT1T2L*αiff (T1T2)IL*α;

    ?Itrans(R) iff ?x,yΔI,RI(x,y)≥L*zΔI{(RI(x,z),RI(z,y))};

    ?Idis(S1,S2) iff ?x,yΔI,(x,y)=0L*or(x,y)=0L*;

    ?Idis(T1,T2) iff ?xΔI,yΔD,(x,y)=0L*or(x,y)=0L*;

    ?Iref(R) iff ?xΔI,RI(x,x)=1L*;

    ?Iirr(S) iff ?xΔI,SI(x,x)=0L*;

    ?Isym(R) iff ?x,yΔI,RI(x,y)=RI(y,x);

    ?Iasy(S) iff ?x,yΔI, ifSI(x,y)>L*0L*thenSI(y,x)=0L*.

    An intuitionistic fuzzy interpretationIsatisfies an intuitionistic fuzzy RBoxIFRB(writtenIIFRB) (resp., intuitionistic fuzzy TBoxIFTB(writtenIIFTB), intuitionistic fuzzy ABoxIFAB(writtenIIFAB)) iffIωfor all elementsωIFRB(resp.,ωIFTB,ωIFAB); in this case, we say thatIis a model ofIFRB(resp.,IFTB,IFAB).

    An intuitionistic fuzzy interpretationIsatisfies an intuitionistic fuzzy knowledge baseIFKB=IFAB,IFTB,IFRB, orIis a model ofIFKB, denotedIIFKB, iffIis a model ofIFRBIFTBIFAB, i.e.,IIFRB,IIFTB, andIIFAB. We sayIFKBis satisfiable (unsatisfiable) iff there exists (does not exist) an intuitionistic fuzzy interpretationIwhich satisfies all elements inIFKB.

    An intuitionistic fuzzy axiom (or assertion)ωis a logical consequence of an intuitionistic fuzzy knowledge baseIFKB, denotedIFKBω, iff every model ofIFKBsatisfiesω.

    LetCandDbe two concepts. We say thatCis subsumed byDto degreeαwith respect toIFKB(writtenFRKBCD≥L*α) if for every modelIofIFKBit holds thatICD≥L*α.

    An intuitionistic fuzzy ABoxIFABis consistent with respect toIFRBandIFTBif there exists a modelIofIFRBandIFTBsuch thatIIFAB.

    Similarly with the fuzzy DLFSHOIN(D)[11]andFSROIQ(D)[1,7], in addition to the standard reasoning problems defined above, two other important reasoning problems ofIFSROIQ(D) are the best truth certainty bound (BTCB) problem and the best satisfiability bound (BSB) problem, which we describe in the following.

    Given an intuitionistic fuzzy knowledge baseIFKBand a classical axiom (or assertion)ρ, whereρis neither a transitive role axiom, disjoint role axiom, reflexive role axiom, irreflexive role axiom, symmetric role axiom, or asymmetric role axiom nor an equality or inequality axiom, it is of interest to computeρ’s best lower and upper certainty value bounds (best certainty value bound). The greatest lower bound ofρwith respect toIFKB, denoted byglb(IFKB,ρ), is defined byglb(IFKB,ρ)={α|IFKBρ≥L*α}, whereφ=0L*. Similarly, the least upper bound ofρwith respect toIFKB, denoted bylub(IFKB,ρ), is defined bylub(IFKB,ρ)={α|IFKBρ≤L*α}, whereφ=1L*.

    The best satisfiability bound of a conceptCwith respect toIFKB, denoted byglb(IFKB,C), is defined byglb(IFKB,C)=IxΔI{CI(x)|IIFKB}. Intuitively, among all modelsIofIFKB, we determine the maximal degree of certainty that the conceptCmay have over all individualsxΔI.

    3 Intuitionistic Fuzzy Rough Description Logic IFRSROIQ(D)

    In the current section, we will provide the intuitionistic fuzzy roughIFRSROIQ(D). This includes the syntax, semantics, and reasoning ofIFRSROIQ(D). In fact,IFRSROIQ(D) is also a rough extension of the intuitionistic fuzzy DLIFSROIQ(D) presented in Section 2.

    3.1 Syntax and Semantics

    C,D→A||⊥|CD|CD|C|?R.C|?R.C|

    ?T.d|?T.d|{α1/o1,…,αm/om}|(≥mS.C)|

    (≤nS.C)|(≥mT.d)|(≤nT.d)|?S.self|

    Regarding the definitions of the abstract roles, concrete roles, intuitionistic fuzzy rough knowledge base, and simple roles ofIFRSROIQ(D), it is similar to that ofIFSROIQ(D). For example, an intuitionistic fuzzy rough TBoxIFRTBconsists of a finite set of intuitionistic fuzzy rough GCIs (IFRGCIsfor short) of the formCD≥L*αorCD>L*α, whereCandDare concepts ofIFRSROIQ(D). Comparing with theIFGCIofIFSROIQ(D), theIFRGCIofIFRSROIQ(D) can have intuitionistic fuzzy lower approximation concepts and intuitionistic fuzzy upper approximation concepts.

    Regarding the semantics of intuitionistic fuzzy rough knowledge base and the reasoning problems ofIFRSROIQ(D), they are similar to that ofIFSROIQ(D). For instance, an intuitionistic fuzzy rough interpretationIsatisfiesCDL*α, denotedICDL*α, iff (CD)IL*α.

    Comparing with classical DLs[6], fuzzy DLs[1,14-18], and intuitionistic fuzzy DLs (see Section 2 and [27]), the most distinguished characteristic of intuitionistic fuzzy rough DLIFRSROIQ(D) is that TBox and ABox have the intuitionistic fuzzy lower approximation concepts and intuitionistic fuzzy upper approximation concepts inIFRSROIQ(D).

    Theorem1For any conceptsC,D, and intuitionistic fuzzy-equivalence relationinIFRSROIQ(D), their intuitionistic fuzzy lower and intuitionistic fuzzy upper approximation concepts satisfy the following properties:

    (7)CD?

    (8)CD?).

    Proof to be omitted.

    3.2 Reasoning

    In this section, we will prove that the reasoning problems inIFRSROIQ(D) may be reduced to the corresponding reasoning in the intuitionistic fuzzy DLIFSROIQ(D).

    Given an arbitrary conceptCinIFRSROIQ(D), we define a translation function ?t:IFRSROIQ(D)→IFSROIQ(D) fromIFRSROIQ(D) toIFSROIQ(D) that fulfills the following conditions:

    ?At=A;

    ?⊥t=⊥;

    ?{α1/o1,…,αm/om}t={α1/o1,…,αm/om};

    ?(CD)t=CtDt;

    ?(CD)t=CtDt;

    ?(?R.C)t=?R.Ct;

    ?(?R.C)t=?R.Ct;

    ?(?S.Self)t=?S.Self;

    ?(≥mS.C)t=≥mS.Ct;

    ?(≤nS.C)t=≤nS.Ct;

    ?(?T.d)t=?T.d;

    ?(?T.d)t=?T.d;

    ?(≥mT.d)t=≥mT.d;

    ?(≤nT.d)t=≤nT.d;

    ?(mod(C))t=mod(Ct);

    ?([C≥L*α])t=[Ct≥L*α];

    ?([C≤L*β])t=[Ct≤L*β];

    Given an arbitraryIFRGCICDL*αinIFRSROIQ(D), we can translate theIFRGCICDL*αinIFRSROIQ(D) into anIFGCICtDtL*αinIFSROIQ(D) using the above translation function ?t.

    Given an arbitrary intuitionistic fuzzy rough TBoxIFRTB={C1D1L*α1, …,CkDkL*αk} inIFRSROIQ(D), we can translate theIFRTB={C1D1L*α1, …,CkDkL*αk} into an intuitionistic fuzzy TBoxIFRTBt={(C1)t(D1)tL*α1, …,(Ck)t(Dk)tL*αk} inIFSROIQ(D) using the above translation function ?t.

    Given an arbitrary intuitionistic fuzzy rough ABoxIFRAB={a1:C1L*α1, …,ap:CpL*αp,ψ1L*β1, …,ψqL*βq,a11=b11, …,a1s=b1s,a21≠b21, …,a2t≠b2t} inIFRSROIQ(D), whereψiis of the form (a,b):R, (a,b):R, (a,v):T, or (a,v):T, we can translate the intuitionistic fuzzy rough ABoxIFRABinto an intuitionistic fuzzy ABoxIFRABt={a1:L*α1, …,ap:L*αp,ψ1L*β1, …,ψqL*βq,a11=b11, …,a1s=b1s,a21≠b21, …,a2t≠b2t} inIFSROIQ(D) using the above translation function ?t.

    Given an arbitrary intuitionistic fuzzy (rough) RBoxIFRRB={ω1, …,ωl} inIFRSROIQ(D), whereωi(1≤i≤l) is anIFRRIAof the formwiRiL*αiorT1iT2iL*βi, or a role assertion of the formtrans(R),dis(S1,S2),dis(T1,T2),ref(R),irr(S),sym(R) orasy(S), we can translate the intuitionistic fuzzy (rough) RBoxIFRRBinto an intuitionistic fuzzy RBoxIFRRBt={ref(),sym(),trans(), …,ref(),sym(),trans(),ω1, …,ωl} inIFSROIQ(D) using the above translation function ?t.

    Given an arbitrary intuitionistic fuzzy rough knowledge baseIFRKB=IFRAB,IFRTB,IFRRBinIFRSROIQ(D), we can theIFRKBinto an intuitionistic fuzzy knowledge baseIFRKBt=IFRABt,IFRTBt,IFRRBtinIFSROIQ(D) using the above translation function ?t.

    In the following, we prove the correctness of the translation function ?t, i.e., we prove that the satisfiability, subsumption, logical consequence, ABox consistency, BTCB, and BSB reasoning inIFRSROIQ(D) may be reduced to the corresponding reasoning inIFSROIQ(D).

    Theorem2Given an intuitionistic fuzzy rough knowledge baseIFRKB=IFRAB,IFRTB,IFRRBinIFRSROIQ(D),IFRKBt=IFRABt,IFRTBt,IFRRBtis the intuitionistic fuzzy knowledge base inIFSROIQ(D) obtained from the translation function ?t.IFRKBis satisfiable, iffIFRKBtis satisfiable.

    Theorem3Given a conceptC, an intuitionistic fuzzy rough knowledge baseIFRKB=IFRAB,IFRTB,IFRRBinIFRSROIQ(D),CtandIFRKBt=IFRABt,IFRTBt,IFRRBtare the concept and the intuitionistic fuzzy knowledge base inIFSROIQ(D) obtained from the translation function ?t, respectively.Cisα-satisfiable with respect toIFRKB, iffCtisα-satisfiable with respect toIFRKBt.

    Theorem4Given two conceptsC,D, and an intuitionistic fuzzy rough knowledgeIFRKBinIFRSROIQ(D),CtandDt, andIFRKBtare the concepts, and intuitionistic fuzzy knowledge base inIFSROIQ(D) obtained from the translation function ?t, respectively.Cis subsumed byDto degreeαwith respect toIFRKBiffCtis subsumed byDtto degreeαwith respect toIFRKBt. Formally,IFRKBCDL*αiffIFRKBtCtDtL*α.

    Theorem5Given an intuitionistic fuzzy rough axiom (or assertion)ω, and an intuitionistic fuzzy rough knowledgeIFRKBinIFRSROIQ(D),ωtandIFRKBtare the intuitionistic fuzzy axiom (or assertion) and intuitionistic fuzzy knowledge base inIFSROIQ(D) obtained from the translation function ?t, respectively.ωis a logical consequence ofIFRKB, iffωtis a logical consequence ofIFRKBt. Formally,IFRKBωiffIFRKBtωt.

    Theorem6Given an intuitionistic fuzzy rough ABoxIFRAB, an intuitionistic fuzzy rough TBoxIFRTB, and an intuitionistic fuzzy rough RBoxIFRRBinIFRSROIQ(D),IFRABt,IFRTBt, andIFRRBtare the intuitionistic fuzzy ABox, intuitionistic fuzzy TBox, and intuitionistic fuzzy RBox inIFSROIQ(D) obtained from the translation function ?t, respectively.IFRABis consistent with respect toIFRRBandIFRTB, iffIFRABtis consistent with respect toIFRRBtandIFRTBt.

    Theorem7Given an intuitionistic fuzzy rough knowledgeIFRKB=IFRAB,IFRTB,IFRRB, an axiom (or assertion)ρ, whereρis neither a transitive role axiom, disjoint role axiom, reflexive role axiom, irreflexive role axiom, symmetric role axiom, or asymmetric role axiom nor an equality or inequality axiom, and a conceptCinIFRSROIQ(D),IFRKBt=IFRABt,IFRTBt,IFRRBt,ρt, andCtare the intuitionistic fuzzy knowledge base, axiom (or assertion), and concept inIFSROIQ(D) obtained from the translation function ?t, respectively. Then

    (1)glb(IFRKB,ρ)=glb(IFRKBt,ρt);

    (2)lub(IFRKB,ρ)=lub(IFRKBt,ρt);

    (3)glb(IFRKB,C)=glb(IFRKBt,Ct).

    4 Conclusion

    Handling uncertainty and vagueness has started to play an important role in ontology languages for the Semantic Web. An integration between the theories of expressive intuitionistic fuzzy DLs and expressive rough DLs has been provided. More concretely, towards sophisticated formalisms for reasoning under fuzzy uncertainty and rough uncertainty in the Semantic Web, we have presented a kind of very expressive intuitionistic fuzzy rough DLIFRSROIQ(D), which is the intuitionistic fuzzy rough extension of the expressive DLSROIQ(D) behind OWL 2 based on (,)-intuitionistic fuzzy rough set theory. We have proved that the main reasoning tasks in theIFRSROIQ(D) may be reduced to the corresponding reasoning in the fuzzy DL over complete latticesL*-SROIQ(D). As far as future directions are concerned, these will include the extension of the DLSROIQ(D) based on probabilistic rough set theory and interval-valued (fuzzy) rough set theory, in order to provide reasoning support for the probabilistic rough DLs and interval-valued (fuzzy) rough DLs, respectively.

    [1] BOBILLO F,DELGADO M,GOMEZ-ROMERO J,et al.Fuzzy description logics under G?del semantics[J]. Int J Approx Reason, 2009,50(3): 494-514.

    [2] BERNERS-LEE T, HENDLER J, LASSILA O. The semantic Web[J]. Scientific American,2001,284(5):34-43.

    [3] PATEL-SCHNEIDER P F,HORROCKS I.A comparison of two modelling paradigms in the Semantic Web[J]. J Web Semant,2007,5(4):240-250.

    [4] GRUBER T R. A translation approach to portable ontology specifications[J].Knowledge Acquisition,1993, 5(2):199-220.

    [5] HORROCKS I,PATEL-SCHNEIDER P F,HARMELEN F V. From SHIQ and RDF to OWL: The making of a Web ontology language[J]. J Web Semant,2003,1(1):7-26.

    [6] BAADER F,CALVANESE D,MCGUINNESS D,et al.The description logic handbook: Theory, implementation and applications[M]. 2nd Ed. Cambridge:Cambridge University Press, 2007.

    [7] BOBILLO F. Managing vagueness in ontologies[D]. Spain:University of Granada, 2008.

    [8] HORROCKS I,KUTZ O,SATTLER U.The even more irresistible SROIQ[C]∥DOHERTY P, MYLOPOULOS J, WELTY C.Proceedings of the 10th international conference of knowledge representation and reasoning.Palo Alto, California, USA:AAAI Press, 2006:57-67.

    [9] HORROCKS I, PATEL-SCHNEIDER P.Reducing OWL entailment to description logic satisfiability[J]. J Web Semant,2004,1(4):345-357.

    [10] SANCHEZ E.Fuzzy logic in the Semantic web: Covering a missing link[M]∥SANCHEZ E.Capturing intelligence: Fuzzy logic and the semantic web, Elsevier, 2006:ix-xiii.

    [11] LUKASIEWICZ T,STRACCIA U.Managing uncertainty and vagueness in description logics for the Semantic Web[J].J Web Semant,2008,6(4):291-308.

    [12] LUKASIEWICZ T.Expressive probabilistic description logics[J].Artif Intell,2008,172(6-7) : 852-883.

    [13] HOLLUNDER B.An alternative proof method for possibilistic logic and its application to terminological logics[J]. Int J Approx Reason,1995,12(2):85-109.

    [14] BOBILLO F,STRACCIA U. Fuzzy description logics with general t-norms and datatypes[J]. Fuzzy Set Syst,2009,160(23):3382-3402.

    [15] STOILOS G,STAMOU G,PAN J Z, et al.Reasoning with very expressive fuzzy description logics[J].J Artif Intell Res, 2007,30(8):273-320.

    [16] STRACCIA U.Reasoning within fuzzy description logics[J]. J Artif Intell Res, 2001, 14:137-166.

    [17] STRACCIA U.A fuzzy description logic for the Semantic Web[M]∥SANCHEZ E.Capturing intelligence: Fuzzy logic and the semantic web.Amsterdam, Netherlands:Elsevier Science Publishers, 2006:73-90.

    [18] STRACCIA U.Description logics over lattices[J].Int J Uncertain Fuzz,2006,14(1):1-16.

    [19] JIANG Y,WANG J,TANG S,et al.Reasoning with rough description logics: An approximate concepts approach[J]. Inform Sciences,2009,179(5):600-612.

    [20] SCHLOBACH S,KLEIN M,PEELEN L.Description logics with approximate definitions: Precise modeling of vague concepts[C]∥VELOSO M M.Proceedings of the 20th international joint conference on artificial intelligence, Palo Alto, California, USA:AAAI Press, 2007:557-562.

    [21] DUBOIS D, PRADE H. Rough fuzzy sets and fuzzy rough sets[J].Int J Gen Syst, 1990,17(2-3):191-209.

    [22] MI J,LEUNG Y,ZHAO H,et al.Generalized fuzzy rough sets determined by a triangular norm[J].Inform Sciences,2008,178(16):3203-3213.

    [23] CORNELIS C,COCK M D,KERRE E E.Intuitionistic fuzzy rough sets: At the crossroads of imperfect knowledge[J]. Expert System, 2003,20(5):260-270.

    [24] ZHOU L,WU W.On generalized intuitionistic fuzzy rough approximation operators[J].Inform Sciences, 2008,178(11):2448-2465.

    [25] ZHOU L,WU W,ZHANG W.On characterization of intuitionistic fuzzy rough sets based on intuitionistic fuzzy implicators[J]. Inform Sciences,2009,179(7):883-898.

    [26] JIANG Y,WANG J,DENG P, et al.Reasoning within expressive fuzzy rough description logics[J].Fuzzy Set Syst,2009,160(23):3403-3424.

    [27] JIANG Y,TANG Y,WANG J,et al.Reasoning within intuitionistic fuzzy rough description logics[J].Inform Sciences,2009,179(14):2362-2378.

    [28] LUKASIEWICZ T,STRACCIA U.Description logic programs under probabilistic uncertainty and fuzzy vagueness[J]. Int J Approx Reason,2009,50(6):837-853.

    [29] CORNELIS C,DESCHRIJVER G, KERRE E E.Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: Construction, classification, application[J]. Int J Approx Reason,2004: 35(1):55-95.

    [30] LUTZ C,ARECES C,HORROCKS I,et al.Keys, nominals, and concrete domains[J].J Artif Intell Res,2005,23:667-726.

    [31] MOTIK B,HORROCKS I.OWL datatypes: Design and implementation[C]∥Proceedings of the 7th international Semantic Web conference, Lecture notes in computer science. New York:Springer-Verlag, 2008,5318:307-322.

    [32] PAWLAK Z. Rough sets: Theoretical aspects of reasoning about data[M].Dordrecht,Netherlands:Kluwer Academic Publishers, 1991.

    [33] ATANASSOV K. Intuitionistic fuzzy sets[M]. Heidelberg/New York :Physica-Verlag, 1999.

    [34] DESCHRIJVER G,KERRE E F. On the relationship between some extensions of fuzzy set theory[J].Fuzzy Set Syst,2003,133(2):227-235.

    [35] DESCHRIJVER G,KERRE E E.On the composition of intuitionistic fuzzy relations[J].Fuzzy Set Syst, 2003,136(3):333-361.

    [36] BUSTINCE H,BURILLO P. Structures on intuitionistic fuzzy relations[J].Fuzzy Set Syst,1996,78(3):293-303.

    2013-09-24

    國家自然科學(xué)基金項目(61272066);教育部新世紀(jì)優(yōu)秀人才支持計劃項目(NCET-12-0644);廣東省自然科學(xué)基金項目(S2012030006242,10151063101000031)

    1000-5463(2013)06-0042-14

    TP301

    A

    10.6054/j.jscnun.2013.09.006

    面向語義Web的直覺模糊粗描述邏輯

    蔣運承*

    (華南師范大學(xué)計算機(jī)學(xué)院,廣東廣州 510631)

    分析了面向語義Web的直覺模糊粗描述邏輯的研究現(xiàn)狀和存在的問題,基于(L,T)-直覺模糊粗集理論將直覺模糊描述邏輯和粗描述邏輯進(jìn)行了集成,即提出了一種新的直覺模糊粗描述邏輯.針對與本體語言O(shè)WL 2等價的描述邏輯SROIQ(D),對SROIQ(D)進(jìn)行了擴(kuò)充,提出了直覺模糊粗描述邏輯IFRSROIQ(D),給出了IFRSROIQ(D)的語法、語義和性質(zhì),證明了IFRSROIQ(D)的推理問題(包括知識庫可滿足性、概念可滿足性、概念包含、邏輯推導(dǎo)、ABox一致性推理等)可以歸約到基于完備格的描述邏輯L*-SROIQ(D)上對應(yīng)的推理.

    描述邏輯; 模糊描述邏輯; 粗描述邏輯;(L,T)-直覺模糊粗集; 語義Web

    *通訊作者:蔣運承,教授,Email: ycjiang@scnu.edu.cn, yunchengjiang@gmail.com.

    【中文責(zé)編:莊曉瓊 英文責(zé)編:肖菁】

    猜你喜歡
    國家自然科學(xué)基金直覺責(zé)編
    “好一個裝不下”直覺引起的創(chuàng)新解法
    常見基金項目的英文名稱(一)
    林文月 “人生是一場直覺”
    海峽姐妹(2020年7期)2020-08-13 07:49:22
    一個“數(shù)學(xué)直覺”結(jié)論的思考
    我校喜獲五項2018年度國家自然科學(xué)基金項目立項
    2017 年新項目
    數(shù)學(xué)直覺謅議
    Optimization and application of protein C-terminal labeling by carboxypeptidase Y
    國家自然科學(xué)基金項目簡介
    Graphene Based Electrochemical Sensor for the Detection of Volatile Organic Compounds
    亚洲经典国产精华液单| 看非洲黑人一级黄片| 别揉我奶头 嗯啊视频| 美女cb高潮喷水在线观看| av又黄又爽大尺度在线免费看| 国产有黄有色有爽视频| 观看免费一级毛片| 免费观看的影片在线观看| 精品一区在线观看国产| 91aial.com中文字幕在线观看| 国产探花极品一区二区| av黄色大香蕉| 亚洲成人久久爱视频| a级毛片免费高清观看在线播放| 免费播放大片免费观看视频在线观看| av在线蜜桃| 人妻一区二区av| 欧美极品一区二区三区四区| 久久韩国三级中文字幕| 亚洲av成人av| 婷婷色综合大香蕉| 人人妻人人澡人人爽人人夜夜 | 日韩 亚洲 欧美在线| 免费观看无遮挡的男女| 亚洲精品乱久久久久久| 国产午夜福利久久久久久| 午夜视频国产福利| 精品久久久久久成人av| 18禁在线无遮挡免费观看视频| 26uuu在线亚洲综合色| 大话2 男鬼变身卡| 小蜜桃在线观看免费完整版高清| 狠狠精品人妻久久久久久综合| 精品久久久久久久末码| 少妇的逼好多水| 久久久久精品久久久久真实原创| 国内少妇人妻偷人精品xxx网站| 99久久九九国产精品国产免费| 美女被艹到高潮喷水动态| 熟妇人妻不卡中文字幕| 国产中年淑女户外野战色| 国产精品久久视频播放| 免费观看无遮挡的男女| 久久精品国产鲁丝片午夜精品| 国产精品国产三级国产专区5o| 51国产日韩欧美| 国产精品久久久久久精品电影小说 | 2021少妇久久久久久久久久久| 久久久国产一区二区| 最近中文字幕2019免费版| 中文字幕亚洲精品专区| 国产综合精华液| 男女边摸边吃奶| 国产极品天堂在线| 精品国产露脸久久av麻豆 | 亚洲成人av在线免费| 亚洲在线观看片| 又爽又黄无遮挡网站| 久久久久九九精品影院| 91久久精品国产一区二区三区| 亚洲精品成人久久久久久| 欧美xxⅹ黑人| 久久鲁丝午夜福利片| 亚洲三级黄色毛片| 嘟嘟电影网在线观看| 97精品久久久久久久久久精品| 丝袜美腿在线中文| 有码 亚洲区| 高清日韩中文字幕在线| 国产午夜精品久久久久久一区二区三区| 大陆偷拍与自拍| 精品国产露脸久久av麻豆 | 中文天堂在线官网| 三级男女做爰猛烈吃奶摸视频| 午夜免费男女啪啪视频观看| 国产日韩欧美在线精品| 成人一区二区视频在线观看| 午夜精品国产一区二区电影 | 久久久久久国产a免费观看| 青春草亚洲视频在线观看| 亚州av有码| 少妇丰满av| 美女大奶头视频| 亚洲精品aⅴ在线观看| 国产高清不卡午夜福利| 国产探花极品一区二区| 国产成人a区在线观看| 97超碰精品成人国产| 又爽又黄a免费视频| 又爽又黄无遮挡网站| 国产精品一区www在线观看| 欧美日韩国产mv在线观看视频 | 内射极品少妇av片p| 午夜精品一区二区三区免费看| 女的被弄到高潮叫床怎么办| 亚洲欧美一区二区三区国产| 日韩欧美精品免费久久| 两个人视频免费观看高清| 嫩草影院精品99| 日韩大片免费观看网站| 99热网站在线观看| 亚洲av成人精品一二三区| 日本色播在线视频| 国产免费一级a男人的天堂| 精品不卡国产一区二区三区| 看免费成人av毛片| 亚洲精品一二三| 欧美变态另类bdsm刘玥| 国产淫语在线视频| 亚洲不卡免费看| 极品少妇高潮喷水抽搐| 直男gayav资源| 直男gayav资源| 观看免费一级毛片| av黄色大香蕉| 国产久久久一区二区三区| 亚洲av电影不卡..在线观看| 精品久久久久久成人av| 国产精品蜜桃在线观看| 中文字幕亚洲精品专区| 欧美日韩亚洲高清精品| 亚洲精品一区蜜桃| 高清在线视频一区二区三区| 国产在视频线在精品| 老师上课跳d突然被开到最大视频| 老师上课跳d突然被开到最大视频| 又黄又爽又刺激的免费视频.| 青春草视频在线免费观看| 欧美97在线视频| 欧美人与善性xxx| 欧美激情久久久久久爽电影| 人妻制服诱惑在线中文字幕| 国产中年淑女户外野战色| 春色校园在线视频观看| 亚洲av免费高清在线观看| 国产老妇伦熟女老妇高清| 成年人午夜在线观看视频 | 欧美成人精品欧美一级黄| 99久国产av精品| 国产在线一区二区三区精| 99re6热这里在线精品视频| 欧美变态另类bdsm刘玥| 日韩成人伦理影院| 国产伦一二天堂av在线观看| 亚洲,欧美,日韩| 亚洲成人av在线免费| 永久免费av网站大全| 男的添女的下面高潮视频| 街头女战士在线观看网站| 在线免费观看的www视频| 国产黄a三级三级三级人| 七月丁香在线播放| 国产精品人妻久久久影院| 国产欧美另类精品又又久久亚洲欧美| 一级毛片 在线播放| 日本猛色少妇xxxxx猛交久久| 成人特级av手机在线观看| 噜噜噜噜噜久久久久久91| 国产黄色小视频在线观看| 天天躁日日操中文字幕| 亚洲国产最新在线播放| 午夜精品在线福利| 国产成人aa在线观看| 亚洲国产成人一精品久久久| av线在线观看网站| 久久久a久久爽久久v久久| 免费少妇av软件| 国产精品不卡视频一区二区| 不卡视频在线观看欧美| 夜夜看夜夜爽夜夜摸| 男的添女的下面高潮视频| 午夜日本视频在线| 日本与韩国留学比较| 97人妻精品一区二区三区麻豆| 日韩中字成人| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产视频内射| 成人性生交大片免费视频hd| 18禁在线无遮挡免费观看视频| 好男人视频免费观看在线| 日韩亚洲欧美综合| 亚洲av电影不卡..在线观看| 国产乱人偷精品视频| 欧美一级a爱片免费观看看| 欧美高清成人免费视频www| 日韩国内少妇激情av| 午夜福利网站1000一区二区三区| 国产午夜精品久久久久久一区二区三区| 26uuu在线亚洲综合色| 久久久久久久久久黄片| 国产精品日韩av在线免费观看| 好男人视频免费观看在线| 男人狂女人下面高潮的视频| 尤物成人国产欧美一区二区三区| 看黄色毛片网站| 色综合色国产| 91久久精品电影网| 日本与韩国留学比较| 国产伦精品一区二区三区视频9| 国产成人精品婷婷| 日韩三级伦理在线观看| 丰满乱子伦码专区| 久久韩国三级中文字幕| 在现免费观看毛片| 麻豆av噜噜一区二区三区| 久久精品国产鲁丝片午夜精品| 久久久久久久久中文| 成年版毛片免费区| 亚洲av日韩在线播放| 日韩av在线免费看完整版不卡| 3wmmmm亚洲av在线观看| 日韩三级伦理在线观看| 欧美性感艳星| 一本久久精品| 水蜜桃什么品种好| 久久草成人影院| 99久久精品一区二区三区| 精品酒店卫生间| 日韩av不卡免费在线播放| 黄片wwwwww| 又粗又硬又长又爽又黄的视频| 观看美女的网站| 午夜免费激情av| 秋霞在线观看毛片| 观看免费一级毛片| 国产伦在线观看视频一区| 国产精品久久久久久久电影| 日韩av在线免费看完整版不卡| av国产免费在线观看| 色吧在线观看| 噜噜噜噜噜久久久久久91| 午夜福利在线观看吧| 久久精品夜色国产| 国产精品一二三区在线看| 成年av动漫网址| 国产大屁股一区二区在线视频| 高清视频免费观看一区二区 | 亚洲性久久影院| 亚洲欧美一区二区三区黑人 | 中文字幕制服av| 真实男女啪啪啪动态图| 白带黄色成豆腐渣| 国产乱人视频| 国产成人免费观看mmmm| 美女xxoo啪啪120秒动态图| 97热精品久久久久久| 一级黄片播放器| 欧美一级a爱片免费观看看| 欧美激情久久久久久爽电影| 国产高潮美女av| 欧美日韩精品成人综合77777| 久久人人爽人人爽人人片va| 国产av国产精品国产| 免费在线观看成人毛片| 国产在线一区二区三区精| 91狼人影院| 1000部很黄的大片| 26uuu在线亚洲综合色| av一本久久久久| 18禁在线无遮挡免费观看视频| 久久精品久久久久久久性| 国产淫语在线视频| 久久久久久久久久久免费av| 亚洲av中文av极速乱| 日韩大片免费观看网站| 一区二区三区四区激情视频| 一级黄片播放器| 青春草视频在线免费观看| 夜夜看夜夜爽夜夜摸| 草草在线视频免费看| 一个人免费在线观看电影| 国产麻豆成人av免费视频| 十八禁国产超污无遮挡网站| 色综合色国产| 少妇被粗大猛烈的视频| 观看美女的网站| 韩国高清视频一区二区三区| 亚洲av中文字字幕乱码综合| 1000部很黄的大片| 亚洲怡红院男人天堂| 综合色丁香网| 久久精品夜色国产| 国产高清三级在线| h日本视频在线播放| 少妇人妻一区二区三区视频| 精华霜和精华液先用哪个| 精品午夜福利在线看| 国国产精品蜜臀av免费| 欧美日韩视频高清一区二区三区二| 国内精品宾馆在线| 久久久久久久久久久丰满| 99re6热这里在线精品视频| 男人舔奶头视频| 五月玫瑰六月丁香| 国模一区二区三区四区视频| 国产综合懂色| 久久久久久九九精品二区国产| 亚州av有码| 国语对白做爰xxxⅹ性视频网站| 亚洲不卡免费看| 欧美不卡视频在线免费观看| 婷婷色综合大香蕉| 美女xxoo啪啪120秒动态图| 乱系列少妇在线播放| 中文字幕久久专区| 国产熟女欧美一区二区| 九九久久精品国产亚洲av麻豆| 啦啦啦中文免费视频观看日本| a级毛色黄片| 看黄色毛片网站| 男的添女的下面高潮视频| 久久综合国产亚洲精品| 成年av动漫网址| 亚洲国产高清在线一区二区三| 一级毛片 在线播放| 一二三四中文在线观看免费高清| 国产亚洲一区二区精品| 亚洲精华国产精华液的使用体验| 亚洲成人中文字幕在线播放| 国产精品久久久久久av不卡| 蜜桃久久精品国产亚洲av| 国产精品.久久久| 看非洲黑人一级黄片| 日本爱情动作片www.在线观看| 99久久人妻综合| 国产av码专区亚洲av| av免费在线看不卡| 国模一区二区三区四区视频| 国产久久久一区二区三区| 成人亚洲精品一区在线观看 | 成人特级av手机在线观看| 成年人午夜在线观看视频 | 99久久九九国产精品国产免费| 97人妻精品一区二区三区麻豆| 激情 狠狠 欧美| 国产成人aa在线观看| 成人欧美大片| 一区二区三区高清视频在线| 亚洲熟妇中文字幕五十中出| 2021少妇久久久久久久久久久| 尤物成人国产欧美一区二区三区| 亚洲色图av天堂| 国内揄拍国产精品人妻在线| 校园人妻丝袜中文字幕| 好男人在线观看高清免费视频| 国产日韩欧美在线精品| 99视频精品全部免费 在线| 婷婷六月久久综合丁香| 午夜福利视频精品| 免费看av在线观看网站| 欧美日本视频| 日产精品乱码卡一卡2卡三| 激情五月婷婷亚洲| 久久精品夜色国产| 久久人人爽人人片av| 免费人成在线观看视频色| 国产高潮美女av| 一级a做视频免费观看| 国产麻豆成人av免费视频| 看黄色毛片网站| 国产乱人视频| 国产一区二区亚洲精品在线观看| 熟女人妻精品中文字幕| 秋霞伦理黄片| 一区二区三区高清视频在线| 国产亚洲午夜精品一区二区久久 | 两个人视频免费观看高清| 午夜福利成人在线免费观看| 国产成人freesex在线| 亚洲乱码一区二区免费版| 乱人视频在线观看| 男人狂女人下面高潮的视频| 久久精品国产亚洲av涩爱| 久久99蜜桃精品久久| 日韩成人av中文字幕在线观看| 91精品国产九色| 三级经典国产精品| 99久久中文字幕三级久久日本| 美女cb高潮喷水在线观看| 99热这里只有是精品50| 国产高潮美女av| 激情 狠狠 欧美| 亚洲av不卡在线观看| 国产av码专区亚洲av| 国产精品三级大全| 久久久久性生活片| 内射极品少妇av片p| 久久这里只有精品中国| videossex国产| 欧美潮喷喷水| 国产真实伦视频高清在线观看| 91久久精品国产一区二区成人| 国产大屁股一区二区在线视频| 91久久精品电影网| 嫩草影院新地址| 中文在线观看免费www的网站| 精品一区二区三区人妻视频| 激情五月婷婷亚洲| 亚洲不卡免费看| 成人毛片60女人毛片免费| av在线天堂中文字幕| av线在线观看网站| 中文天堂在线官网| 天美传媒精品一区二区| av在线老鸭窝| 汤姆久久久久久久影院中文字幕 | 亚洲一区高清亚洲精品| 看十八女毛片水多多多| 国产精品一及| 精品人妻熟女av久视频| 久久久久久久久久成人| 国产精品一及| 非洲黑人性xxxx精品又粗又长| 一个人看的www免费观看视频| 亚洲熟女精品中文字幕| 黑人高潮一二区| 欧美xxxx性猛交bbbb| 高清在线视频一区二区三区| 国产女主播在线喷水免费视频网站 | 高清欧美精品videossex| 99re6热这里在线精品视频| 一边亲一边摸免费视频| 国产精品久久久久久久久免| 精品不卡国产一区二区三区| 久久久久久国产a免费观看| 晚上一个人看的免费电影| 美女脱内裤让男人舔精品视频| 精品久久国产蜜桃| 午夜福利成人在线免费观看| 国产一级毛片七仙女欲春2| 青春草亚洲视频在线观看| 亚洲精品乱码久久久v下载方式| 午夜日本视频在线| 插阴视频在线观看视频| 免费av观看视频| 九九久久精品国产亚洲av麻豆| 97精品久久久久久久久久精品| 99久久九九国产精品国产免费| 高清av免费在线| 国产精品伦人一区二区| 欧美日韩一区二区视频在线观看视频在线 | videos熟女内射| 2022亚洲国产成人精品| 毛片女人毛片| av在线亚洲专区| 男女国产视频网站| 一级爰片在线观看| 亚洲怡红院男人天堂| 免费在线观看成人毛片| 欧美区成人在线视频| 亚洲最大成人av| 中文字幕人妻熟人妻熟丝袜美| 日韩av在线免费看完整版不卡| 亚洲欧美日韩卡通动漫| 久久这里有精品视频免费| 国产一区亚洲一区在线观看| 免费黄网站久久成人精品| 天天躁夜夜躁狠狠久久av| 91精品伊人久久大香线蕉| 成人午夜精彩视频在线观看| 亚洲美女视频黄频| 亚洲成人一二三区av| 蜜桃亚洲精品一区二区三区| 久久久久久久亚洲中文字幕| 亚洲熟女精品中文字幕| 麻豆成人午夜福利视频| 国产白丝娇喘喷水9色精品| av一本久久久久| 中文在线观看免费www的网站| 日本与韩国留学比较| 99久国产av精品国产电影| 免费看光身美女| 狂野欧美激情性xxxx在线观看| 日韩电影二区| 草草在线视频免费看| 久久人人爽人人片av| 最近中文字幕2019免费版| 欧美性猛交╳xxx乱大交人| 久久久久久久久大av| 久久久久网色| 成年版毛片免费区| 激情五月婷婷亚洲| 日韩欧美国产在线观看| 久久99蜜桃精品久久| 国产黄色视频一区二区在线观看| 白带黄色成豆腐渣| 综合色av麻豆| 国产大屁股一区二区在线视频| 久久国产乱子免费精品| 午夜爱爱视频在线播放| 亚洲成人av在线免费| 18禁在线播放成人免费| 亚洲av成人精品一区久久| 精品人妻视频免费看| 中文乱码字字幕精品一区二区三区 | 人妻一区二区av| 亚洲自偷自拍三级| 亚洲av电影不卡..在线观看| 日韩av不卡免费在线播放| 欧美xxxx黑人xx丫x性爽| 人妻一区二区av| 中文精品一卡2卡3卡4更新| 久久久久久久国产电影| 亚洲精品视频女| 男人和女人高潮做爰伦理| 人人妻人人澡人人爽人人夜夜 | 午夜爱爱视频在线播放| 黄色日韩在线| 嫩草影院精品99| 天堂网av新在线| 成人国产麻豆网| 国产69精品久久久久777片| 人妻夜夜爽99麻豆av| 亚洲高清免费不卡视频| 亚洲欧美成人精品一区二区| 亚洲内射少妇av| 乱码一卡2卡4卡精品| 美女主播在线视频| 免费在线观看成人毛片| 成人毛片60女人毛片免费| 国产精品久久视频播放| 国产伦在线观看视频一区| 国产成人福利小说| 在线观看人妻少妇| 欧美bdsm另类| 国产精品一二三区在线看| 我的老师免费观看完整版| 六月丁香七月| 特级一级黄色大片| 97在线视频观看| 又黄又爽又刺激的免费视频.| 少妇被粗大猛烈的视频| 麻豆精品久久久久久蜜桃| 精品一区二区三区人妻视频| 18禁在线无遮挡免费观看视频| 亚洲,欧美,日韩| 国产精品日韩av在线免费观看| 真实男女啪啪啪动态图| 最近最新中文字幕免费大全7| 欧美一级a爱片免费观看看| 亚洲av.av天堂| 国产91av在线免费观看| 亚洲自拍偷在线| 51国产日韩欧美| 寂寞人妻少妇视频99o| 午夜福利在线观看吧| 看免费成人av毛片| 免费看美女性在线毛片视频| 国产激情偷乱视频一区二区| 我的女老师完整版在线观看| 亚洲久久久久久中文字幕| 日韩欧美精品v在线| 99热6这里只有精品| ponron亚洲| 五月天丁香电影| 一级毛片黄色毛片免费观看视频| 成人午夜高清在线视频| 色5月婷婷丁香| 成人漫画全彩无遮挡| 国产在线男女| 一边亲一边摸免费视频| 亚洲人成网站高清观看| 亚洲伊人久久精品综合| 亚洲精品国产av蜜桃| 日本午夜av视频| 精品久久久久久成人av| av免费在线看不卡| 伊人久久国产一区二区| 九九久久精品国产亚洲av麻豆| 亚洲国产成人一精品久久久| 中文欧美无线码| 亚洲久久久久久中文字幕| 亚洲美女视频黄频| 熟妇人妻不卡中文字幕| 国产一区二区在线观看日韩| 婷婷色av中文字幕| 国产精品无大码| 国产69精品久久久久777片| 日韩av不卡免费在线播放| 人妻少妇偷人精品九色| 永久免费av网站大全| 在线 av 中文字幕| 两个人的视频大全免费| 大香蕉97超碰在线| 天堂中文最新版在线下载 | 日韩精品有码人妻一区| 欧美极品一区二区三区四区| 亚洲成人中文字幕在线播放| 久久草成人影院| 3wmmmm亚洲av在线观看| 晚上一个人看的免费电影| 五月伊人婷婷丁香| 欧美 日韩 精品 国产| 亚洲伊人久久精品综合| 99热这里只有是精品50| 九色成人免费人妻av| 国产成人一区二区在线| 天美传媒精品一区二区| 特级一级黄色大片| 最近中文字幕高清免费大全6| 久久精品国产亚洲av涩爱| 视频中文字幕在线观看| 一个人看视频在线观看www免费| 观看美女的网站| 天天一区二区日本电影三级| 嫩草影院新地址| 大香蕉久久网| 美女内射精品一级片tv| 国产老妇女一区| 男插女下体视频免费在线播放| 欧美区成人在线视频| 亚洲va在线va天堂va国产| 国产男女超爽视频在线观看| 亚洲综合精品二区| 国产免费福利视频在线观看|