• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Method of Constructing Upper-Lower Solutions for Wave Profile Systems with Quasi-Monotonicity

    2013-10-28 03:53:30WENGPeixuan
    關(guān)鍵詞:博士點(diǎn)國家自然科學(xué)基金基金項(xiàng)目

    WENG Peixuan

    (School of Mathematical Sciences, South China Normal University, Guangzhou 510631,China)

    MethodofConstructingUpper-LowerSolutionsforWaveProfileSystemswithQuasi-Monotonicity

    WENG Peixuan*

    (School of Mathematical Sciences, South China Normal University, Guangzhou 510631,China)

    The wave profile systems corresponding to a reaction-diffusion system and an integro-partial differential system withn(>1) equations and quasi-monotonicity are considered. By analyzing the principal eigen-value and eigen-vector, a constructing method of upper-lower solutions for the wave profile systems is given. Some examples to illustrate the applications of our method are given.

    Keywords: reaction-diffusion system; integro-partial differential system; quasi-monotonicity; wave profile system; upper-lower solutions

    A classic system of reaction-diffusion equations is the following system called KPP type

    (1)

    and a typical system of integro-partial differential equations is of the form

    (2)

    Let [0,K] be an vector interval inn.fsatisfies so call quasi-monotonicity on [0,K] if

    (QM1) there exists a matrixβ=diag(β1,β2,…,βn) withβi≥0 such that

    f(u)-f(v)+β(u-v)≥0(0≤v≤u≤K).

    One can also define thatFsatisfies so call quasi-monotonicity on [0,K] if

    (QM2)F(u,w) is nondecreasing inw, and there exists a matrixβ=diag(β1,β2,…,βn) withβi≥0 such that

    F(u,w)-F(v,w)+β(u-v)≥0(0≤v≤u≤K).

    As we know, that systems like (1)~(2) are models arising from many real problems with temporal-spatial variation, such as those in epidemiology, ecology, biology, chemistry and physics[1-7]. System (2) is referred as nonlocal systems, and correspondingly (1) a local diffusion system. The main reason for the name of “nonlocal system” is that the variance radio ?u/?tat the locationxand timetdepend on the whole space(see, e.g. [8-14]). For these systems, one key element to the developmental process and dynamical study seems to be the appearance of traveling wave solutions. A traveling wave solution is a special solution traveling without change of shape, which has been widely studied for reaction-diffusion equations[6,15-20], integral and integro-partial differential equations[9-10,14,21].

    Consider the existence of traveling wavefrontu(x,t)=φ(s) (s=x+ct) for (1) and (2). It is already known that the quasi-monotonicity off(orF) leads to a conclusion that the existence of a pair of admissible upper-lower solutions for the wave profile system guarantees the existence of traveling wavefront, the proof of which is proceeded by using the monotonic iteration method accompanied with the upper-lower solutions[6,14,18-19]. Therefore, the existence of a pair of admissible upper-lower solutions is really very important for the study of traveling wavefront. However, the construction and verification of upper-lower solutions are very challenging, some time maybe said to be extremely difficult. By our best knowledge, most works in the literature concerned on the casen=1, and the works on the construction for the upper-lower solutions forn>1 is few. The first work which constructed upper-lower solutions on integro-differential systems is from Weng & Zhao[14], and the method in which is used for reaction-diffusion systems (even in the degenerate case) by Fang & Zhao[22]. Encouraged by the works of [14,19,22-24], we try to rule out the techniques on constructing the upper-lower solutions of (1) and (2) forn>1. In this article, accompanied with the analysis of constructing method, we also give a formula for the computation of minimal wave speed of traveling wavefronts.

    The organization of this paper is as follows. In Section 1, we consider the system (1), and in Section 2, we study the system (2).

    1 Reaction-diffusion System

    Assume that (1) has two equilibria0=(0,0,…,0)TandK=(k1,k2,…,kn)Tsuch thatf(0)=0,f(K)=0andf(u)≠0with0

    (GQM1) there exists a matrixβ=diag(β1,β2,…,βn) withβi≥0 such that

    f(u)-f(v)+β(u-v)≥0(-ω≤v≤u≤K),

    whereω=(ω1,…,ωn)T?0.

    By substitutingu(x,t)=φ(s) (s=x+ct) into the equation (1), we obtain the wave profile system of (1):

    cφ′(s)=dφ″(s)+f(φ(s)).

    (3)

    A traveling wavefront of (1) is a solution of (3) with monotonicity ons, satisfying

    Define a wave profile set:

    We now give a definition of upper-lower solutions for (3).

    Definition1A continuous vector functionφ=(φ1,φ2,…,φn)Tis called an upper solution of (3) ifφis twice continuously differentiable onSand satisfies

    dφ″(s)-cφ′(s)+f(φ(s))≤0

    (4)

    In the above definition, we do not demand that the upper-lower solutions are insideD, but we in fact construct the upper-lower solutions insideDin what follows.

    1.1ConstructingMethodofUpper-lowerSolutions

    In what follows, we shall mainly concern on the construction of upper-lower solutions of (3).

    Note the linearized system of (1) atu=0is

    (5)

    whereDf(0) is the Jacobi matrix offat0. Letu(x,t)=e-νxv(t), whereν≥0 is a parameter, andv(t)=(v1(t),v2(t),…,vn(t)). Substitutingu(x,t)=e-νx×v(t) into (5), we obtain

    v′(t)=ν2dv(t)+Df(0)v(t).

    (6)

    Consider the following matrix

    γ(ν)=(γ1(ν),γ2(ν),…,γn(ν))T

    express the principal eigenvector with regard toλ(ν). Thenγ(ν)>0forν≥0. In addition, in view of [25,Corollary 4.3.2], ifCνis irreducible, thenγ(ν)?0forν≥0.

    In view of the definitions of eigen-value and eigen-function, we obtain the following relation

    (i=1,2,…,n,ν≥0).

    (7)

    Note that if λ(0)>0, then it will yieldλ(ν)>0 forν≥0.

    Lemma1Assume λ(0)>0. Then the following statements are valid:

    The conclusion (2) is a direct corollary from the conclusion (1) andλ(ν)>0 forν≥0.

    In the following arguments, we always assume that the hypothesis (H) holds.

    (1)Df(0) is irreducible;

    Remark1We may in fact need ?fi(u)/?uj≥0 (i,j=1,2,…,n,i≠j) and -ω≤u≤Kfor some nonnegative vectorωin the practical applications.

    Now we begin to state our idea of constructing upper-lower solutions of (3). For anyc>c*, in view of Lemma 1, there existν1>0 such thatΦ(ν1)=c. Here, if there exist more than oneν>0 such thatΦ(ν)=c, we always choose the smallest one, denoted asν1. Letε>0 be small andνε:=ν1+ε, such thatν1<νε<ν*and 2ν1>νε. Thus, there exists acε=Φ(νε) such thatc*

    Φ(ν1)=c,Φ(νε)=cε,Φ(ν*)=c*.

    (i=1,2,…,n).

    (8)

    ξ(s):=(ξ1(s),ξ2(s),…,ξn(s))T,

    ξi(s):=γi(ν1)eν1s-δγi(νε)eνεs=

    i:=ln<0 ifδ>0 is large.

    We then have

    ξi(i)=0,ξi(s)>0 (si).

    That is, we can haveMi>0 being very small withε>0 small enough.

    (9)

    fi(γ1(ν1)eν1s,γ2(ν1)eν1s,…,γn(ν1)eν1s)=

    fi(γ1(ν1)eν1s,γ2(ν1)eν1s,…,γn(ν1)eν1s)=

    γ2(ν1)eν1s,…,γn(ν1)eν1s).

    γ2(ν1)eν1s,…,γn(ν1)eν1s)≤0(s

    (10)

    We begin to verify the lower solution. Note the following facts:

    (11)

    Fors≥i, we haveφi(s)=0,φj(s)≥0 (j=1,2,…,n,j≠i) and then

    (12)

    Fors

    δθνεγi(νε)eνεs+fi(ξ(s))=

    fi(ξ(s))+δθνεγi(νε)eνεs,

    whereθ=c-cε. Here we used the factφj(s)≥ξj(s) (j≠i) in (11) and Remark 1. If we use another fact in (11) thatφj(s)≥0 (j=1,2,…,n,j≠i), then we obtain

    fi(0,…, 0,ξi(s),0,…,0)+δθνεγi(νε)eνεs.

    Therefore, in order thatφ(s) is a lower solution of (3), we need either

    fi(ξ(s))+δθνεγi(νε)eνεs≥0 (s

    (13)

    or

    fi(0,…, 0,ξi(s),0,…,0)+δενεγi(νε)eνεs≥0

    (s

    (14)

    Summarizing the above arguments, we obtain a conclusion as follows:

    Remark2λ(0)>0 is an obvious assumptions in order to guarantee the instability of zero equilibrium, which leads to the wave propagation from zero to the positive equilibrium. Consider the cooperative system

    (15)

    where all constants are nonnegative. Thenλ(0)>0 is equivalent to max{r1,r2}>0.

    Note that we need to substituteφn(s)≡0 into other formulas (i=1,2,…,n-1) in (13).

    1.2Applications

    In this subsection, we shall give two reaction-diffusion systems to illustrate the applications of conclusion (C). One system is irreducible, and another is reducible.

    Example1Consider a system generalized in biochemical control circuit[25]:

    (16)

    wheredi>0,αi>0 andgis a bounded continuously differentiable function satisfying

    M>g(v)>0,g′(v)>0 (v>0).

    Typical choices ofgin the applications are

    For simplicity and certainty, we consider the situation ofg(u)=u/(1+u), and thus if we assume thatα<1, then there are two equilibria of (16) as follows:

    0:=(0,…,0),K:=(k1,…,kn), wherekn=1/α-1.

    The corresponding form ofCνand (7) are as follows:

    [λ(ν)-(d1ν2+α1)]γ1(ν)-g′(0)γn(ν)=0,

    -γi-1(ν)+[λ(ν)-(diν2+αi)]γi(ν)=0

    (i=2,3,…,n).

    (17)

    Forg(u)=u/(1+u), we haveg′(0)=1, and thusCνis irreducible.

    We want to show thatλ:=λ(0)>0, and therefore, (1) in (H) is satisfied. In fact, note

    detC0=(-1)nα+(-1)n+1g′(0)=(-1)n(α-1)

    and det[λI-C0]=0 is equivalent to the algebra equation

    p(λ):=λn+a1λn-1+a2λn-2+…+an-1λ+an=0,

    wherean=p(0)=(-1)ndetC0=(-1)2n(α-1)<0. Sincep(+∞)=+∞, we know thatp(λ)=0 has positive real root, that isλ(0)>0.

    Now we have

    …,γn(ν1)eν1s)=eν1s[α1γ1(ν1)-g′(0)γn(ν1)]+

    g(eν1sγn(ν1))-α1eν1sγ1(ν1)≤0(s

    …,γn(ν1)eν1s)=eν1s[αiγi(ν1)-γi-1(ν1)]+

    eν1sγi-1(ν1)-αieν1sγi(ν1)=0(s

    That is, (10) is true.

    We verify (13) in the following.

    f1(ξ(s))+δθνεγ1(νε)eνεs=eν1s[α1γ1(ν1)-

    g′(0)γn(ν1)]-δeνεs[α1γ1(νε)-

    g′(0)γn(νε)]+g(eν1sγn(ν1)-δeνεsγn(νε))-

    α1[eν1sγ1(ν1)-δeνεsγ1(νε)]+δθνεγi(νε)eνεs=

    -g′(0)[eν1sγn(ν1)-δeνεsγn(νε)]+

    g(eν1sγn(ν1)-δeνεsγn(νε))+δθνεγ1(νε)eνεs=

    δθνεγ1(νε)eνεs=-e2ν1s{γn(ν1)-

    δe(νε-ν1)sγn(νε)}2+δθνεγ1(νε)eνεs.

    Since 2ν1>νε, we can chooseδ>0 large enough such that

    -e2ν1s{γn(ν1)-δe(νε-ν1)sγn(νε)}2+

    δθνεγ1(νε)eνεs≥0(s

    As fori=2,…,n, we have

    fi(ξ(s))+δθνεγi(νε)eνεs=eν1s[αiγi(ν1)-

    γi-1(ν1)]-δeνεs[αiγi(νε)-γi-1(νε)]+

    [eν1sγi-1(ν1)-δeνεsγi-1(νε)]-αi[eν1sγi(ν1)-

    δeνεsγi(νε)]+δθνεγi(νε)eνεs=

    δθνεγi(νε)eνεs≥0(s

    The above example is the irreducible case (1) in (H). In what follows, we shall give another example which is of the reducible case (2) in (H).

    Example2Consider a reaction diffusion model for competing pioneer and climax species[19]:

    (18)

    Assume

    then we can derive thatc11c22>1 and there are two equilibria of (18) as follows:

    Give another assumption for technical reason:

    (P2)w*≤u*.

    Letp=z0/c11-uandq=v. Then, (18) is transformed to the following system

    (19)

    andE1andE*are transformed to

    with0andKbeing ordered and no other equilibrium between0andK, under (P1) and (P2). Notez0/c11-u*>0, thusKis a positive equilibrium.

    The system (19) is a cooperative but reducible system in [0,K]. The corresponding form ofCνand (7) are as follows:

    and

    (20)

    The two eigenvalues ofCνare

    whereλ1(ν)=λ(ν) is the principal eigenvalue. Noteλ(0)>0, and the principal eigenvector corresponding toλ(ν) is (γ1(ν),γ2(ν))T, where

    γ1(ν)=λ1(ν)-λ2(ν)=

    Assume that there holds

    (P3)d1/d2≤2.

    Then we obtain by calculation that

    Noting that

    the assumption (P3) leads to

    Summarizing the above discussion, we know that the system (19) satisfies (2) in (H).

    We begin to verify (10). Fori=1 ands

    e2ν1sγ1(ν1)G′(ζ(s))[c22γ1(ν1)-γ2(ν1)],

    whereζ(s) is betweenz0/c11andz0/c11-γ2(ν1)eν1s+c22γ1(ν1)eν1s. Sincew*1, and we have

    andc22γ1(0)-γ2(0)>0, which leads to

    (21)

    ?G′(ζ(s))≤ 0,

    and thus

    e2ν1sγ1(ν1)G′(ζ(s))[c22γ1(ν1)-γ2(ν1)]≤0 (s

    Fori=2 ands

    [γ1(ν1)-c11γ2(ν1)],

    we have

    Therefore,

    z0-c11γ2(ν1)eν1s+γ1(ν1)eν1s=

    z0+[γ1(ν1)-c11γ2(ν1)]eν1s≥z0.

    In view of the convexity ofF, we know thatF′(z0)

    This leads to

    (s

    For this system, we takeφ2(s)≡0 (see Remark 3). Now, fori=1,s<1, we verify (14):

    f1(ξ1(s),0)+δθνεγ1(νε)eνεs=

    δθνεγ1(νε)eνεs+f1(γ1(ν1)eν1s-δeνεsγ1(νε),0)=

    δθνεγ1(νε)eνεs,

    whereζ(s) is betweenz0/c11andz0/c11+c22ξ1(s), which is bounded. Since |G′(ζ(s))| is bounded, and

    we have from 2ν1>νεthat

    ifδ>0 large enough.

    In view of conclusion (C) and Remark 3, we complete the verification of upper-lower solutions for the wave profile system of (18).

    2 Integro-partial Differential System

    (22)

    LetF(0,0)=0,F(K,K)=0, andF(u,u)≠0with0

    (23)

    Thus we know thatFsatisfies (QM2). In fact, for mostFwith (QM2), they may satisfies a more strong condition:

    (GQM2)F(u,w) is nondecreasing inw, and there exists a matrixβ=diag(β1,β2,…,βn) withβi≥0 such that

    F(u,w)-F(v,w)+β(u-v)≥0

    (-ω≤v≤u≤K,ω>0).

    By substitutingu(x,t)=φ(s) (s=x+ct) into the equation (2), we obtain the wave profile system of (2):

    (24)

    A traveling wavefront of (2) is a solution of (24) with monotonicity ons, satisfying

    We also give a definition of upper-lower solutions for (24).

    Definition2A continuous vector functionφ=(φ1,φ2,…,φn)Tis called an upper solution of (24) ifφis continuously differentiable onSand satisfies

    (25)

    2.1ConstructingMethodofUpper-lowerSolutions

    Note the linearized system of (3) atu=0is

    (26)

    whereD1F(0,0) is the Jacobi matrix ofF(u,w) onuatu=0,w=0, andD2F(0,0) is the Jacobi matrix ofF(u,w) onwatu=0,w=0.Letu(x,t)=e-νxv(t),whereν≥0 is a parameter, andv(t)=(v1(t),v2(t),…,vn(t)). Substitutingu(x,t)=e-νxv(t) into (26), we obtain

    (27)

    Consider the following quasi-positive matrix

    (cij(ν))n×n,

    where

    aij+bij(ν),

    Then (27) is equivalent to the vector equation

    (28)

    which is a cooperative system.

    (29)

    Lemma2Assume that λ(0)>0 and one of the following conditions holds:

    (ii)bii(0)>0 (i=1,2,…,n).

    Then the following statements are valid:

    (1)λ(ν)>0 (ν≥0);

    ProofSinceCν≥C0, we have λ(ν)≥λ(0)>0 forν≥0 (see [25, Corollary 4.3.2]). Therefore, the conclusion (1) holds.

    and hence

    (30)

    For fixed indexi, from the above discussion about (i) and (ii), we further know thatcij(ν)>0 for at least somej. It then follows from (29) that

    By using (1) and (2), we obtain (3) directly.

    (1)D1F(0,0) is irreducible, andbii(0)>0 (i=1,2,…,n);

    Remark5Either (1) or (2) yields a conclusion thatCνis irreducible, and thusγ(ν)?0forν≥0.

    The following idea is similar to what in Section 2. For anyc>c*, letΦ(ν1)=c,Φ(νε)=cε,Φ(ν*)=c*,whereε>0 is small andνε:=ν1+ε, such thatc*νε.

    F(K,K)=0.

    -cν1γi(ν1)eν1s+Fi(γ1(ν1)eν1s,…,γn(ν1)eν1s,

    (31)

    We begin to verify the lower solution. Fors≥i, we haveφi(s)=0,φj(s)≥0 (j=1,2,…,n,j≠i) and then

    F(0,0)=0.

    Fors

    -c[ν1eν1sγi(ν1)-δνεeνεsγi(νε)]+Fi(ξ1(s),

    δθeνεsγi(νε)+Fi(ξ1(s),…,ξn(s),

    Here we use the factφj(s)≥ξj(s) (j≠i) in (11). If we use another fact in (11) thatφj(s)≥0, then we obtain

    δθeνεsγi(νε)+Fi(0,…,0,ξi(s),0,…,0,

    Therefore, in order thatφ(s) is a lower solution of (24), we need either

    δθeνεsγi(νε)+Fi(ξ1(s),…,ξn(s),

    (32)

    or

    δθeνεsγi(νε)+Fi(0,…,0,ξi(s),0,…,0,

    (33)

    Summarizing the above arguments, we obtain a conclusion as follows.

    2.2Applications

    Example3Consider the following multi-type SIS epidemic model:

    μiui(x,t)(1≤i≤n).

    (34)

    Here

    F(u,w)=-μu+g(u)w,

    g(u)=diag(1-u1,1-u2,…,1-un),

    μ=diag(μ1,μ2,…,μn).

    (H2)σj≥0,λij≥0, and the matrixΛ:=(σjλij)n×nis irreducible.

    (H3) Eitherμi=0 for somei, orμ? 0 andρ(Γ)>1, whereρ(Γ)==max{|λ|: det(λI-Γ)=0}.

    Example4In (2), if we take

    F(u,w)=-u+f(u)+w,

    P(y)=J(y)=diag(J1(y),J2(y),…,Jn(y)),

    (35)

    (1)Df(0,0) is irreducible;

    Concretely, let us consider the biochemical control circuit in Example 1 withg(u)=u/(1+u):

    f1(u1,…,un)=g(un)-α1u1,

    fi(u1,…,un)=ui-1-αiui(i=2,…,n).

    By calculation, we obtain

    λ(ν)γi(ν)=ci(i-1)(ν)γi-1(ν)+cii(ν)γi(ν)=

    (i=2,…,n).

    (36)

    Now we have

    -eν1s[c11(ν1)γ1(ν1)+c1n(ν1)γn(ν1)]-

    (1+α1)γ1(ν1)eν1s+g(γn(ν1)eν1s)+

    g′(0)eν1sγn(ν1)≤0,

    -eν1s[ci(i-1)(ν1)γi-1(ν1)+cii(ν1)γi(ν1)]-

    (1+αi)γi(ν1)eν1s+γi-1(ν1)eν1s+

    eν1sγi-1(ν1)=0 (i=2,…,n).

    That is, (31) is true.

    We verify (32) in the following. Ifi=1, we have

    δθeνεsγ1(νε)+F1(ξ1(s),…,ξn(s),

    -eν1s[c11(ν1)γ1(ν1)+c1n(ν1)γn(ν1)]+

    δeνεs[c11(νε)γ1(νε)+c1n(νε)γn(νε)]+

    δθeνεsγ1(νε)-(1+α1)[γ1(ν1)eν1s-

    δeνεsγn(νε)]+g(eν1sγn(ν1)-δeνεsγn(νε))+

    g(eν1sγn(ν1)-δeνεsγn(νε))-

    g′(0)[eν1sγn(ν1)-δeνεsγn(νε)]+δθeνεsγ1(νε)=

    (s<1)

    by using the fact: 2ν1>νεandδ>0 large enough. As fori=2,…,n, we have

    δθeνεsγi(νε)+Fi(ξ1(s),…,ξn(s),

    -eν1s[ci(i-1)(ν1)γi-1(ν1)+cii(ν1)γi(ν1)]+

    δeνεs[ci(i-1)(νε)γi-1(νε)+cii(νε)γi(νε)]+

    δθeνεsγi(νε)-(1+αi)[γi(ν1)eν1s-

    δeνεsγi(νε)]+[eν1sγi-1(ν1)-δeνεsγi-1(νε)]+

    δeνεsγi-1(νε)≥0(s

    Therefore, (32) holds.

    Acknowledgments: I want to express my thanks to Professor Xiaoqiang Zhao in Memorial University of Newfoundland for his valuable discussions on the upper and lower solutions for higher dimensional (vector) systems.

    [1] ARONSON D G,WEINBERGER H F. Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation[M]∥GOLDSTEIN J A. Partial differential equations and related topics. Lecture notes in mathematics. New York:Springer-Verlag, 1975,446:5-49.

    [2] ARONSON D G,WEINBERGER H F. Multidimensional nonlinear diffusion arising in population dynamics[J]. Adv Math,1978,30:33-76.

    [3] WEINBERGER H F. Asymptotic behavior of a model in population genetics[M]∥CHADAM J. Nonlinear partial differential equations and applications. Lecture notes in mathematics. New York:Springer-Verlag, 1978,648:47-97.

    [4] MURRAY J D. Mathematical biology:I & II[M]. New York:Springer-Verlag,2002.

    [5] RASS L,RADCLIFFE J. Spatial deterministic epidemics[M]∥Mathematical surveys and monographs.Providence, RI:American Mathematical Society,2003.

    [6] VOLPERT A I,VOLPERT Vitaly A,VOLPERT Vladimir A.Traveling wave solutions of parabolic systems[M]∥Translation of mathematical monographs. Providence, RI:American Mathematical Society,1994.

    [7] WEINBERGER H F. Some deterministic models for the spread of genetic and other alterations[M]∥JGER W,ROST H,TAUTU P. Biological growth and spread. Lecture notes in biomathematics. New York:Springer-Verlag, 1981,38:320-333.

    [8] AL-OMARI J F M,GOURLEY S A. A nonlocal reaction-diffusion model for a single species with stage structure and distributed maturation delay[J]. Eur J Appl Math,2005,16:37-51.

    [9] BRITTON N F. Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model[J]. SIAM J Appl Math, 1990,50:1663-1688.

    [10] DIEKMANN O. Thresholds and traveling waves for the geographical spread of infection[J]. J Math Biol,1978,6:109-130.

    [11] GOURLEY S A,WU J. Delayed nonlocal diffusive systems in biological invasion and disease spread[M]∥BRUNNER H,ZHAO X Q,ZOU X. Nonlinear dynamic and evolution equations, Fields Inst Commun.Providence,RI:American Mathematical Society,2006,48:137-200.

    [12] SO Joseph W H,WU J H, ZOU X F. A reaction-diffusion model for a single species with age structure, I. Travelling wavefronts on the unbounded domains[J].Proc R Soc Lond A,2001,457:1841-1853.

    [13] WENG P,HUANG H,WU J. Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction[J].IMA J Appl Math,2003,68:409-439.

    [14] WENG P,ZHAO X Q. Spreading speed and traveling waves for a multi-type SIS epidemic model[J].J Differ Equations,2006,229:270-296.

    [15] SMITH H L,ZHAO X Q. Global asymptotic stability of traveling waves in delayed reaction-diffusion equations[J].SIAM J Math Anal,2000,31:514-534.

    [16] WEINBERGER H F. On spreading speeds and traveling waves for growth and migration models in a periodic habitat[J].J Math Biol,2002,45:511-548.

    [17] WEINBERGER H F,LEWIS M A,LI B T. Analysis of linear determinacy for spread in cooperative models[J].J Math Biol,2002,45:183-218.

    [18] WU J,ZOU X. Traveling wave fronts of reaction-diffusion systems with delay[J].J Dyn Differ Equ,2001,13:651-687.

    [19] YUAN Z H,ZOU X F. Co-invasion waves in a reaction diffusion model for competing pioneer and climax species[J]. Nonlinear Anal-RWA,2010,11:232-245.

    [20] ZHAO X Q, WANG W D.Fisher waves in an epidemic model[J].Discrete Cont Dyn S:Ser B,2004,4:1117-1128.

    [21] DIEKMANN O. Run for your life. A note on the asymptotic speed of an epidemic[J]. J Differ Equations,1979,33:58-73.

    [22] FANG J,ZHAO X Q. Monotone wavefronts for partially degenerate reaction-diffusion systems[J]. J Dyn Diff Equat,2009,21:663-680.

    [23] LI B T,WEINBERGER H F,LEWIS M A. Spreading speeds as slowest wave speeds for cooperative systems[J].Math Biosci,2005,196:82-98.

    [24] LIANG X,ZHAO X Q. Asymptotic speeds of spread and traveling waves for monotone semiflows with applications[J].Comm Pure Appl Math,2007,60:1-40. Erratum: Comm Pure Appl Math,2008,61:137-138.

    [25] SMITH H L. Monotone dynamical systems: An introduction to the theory of competitive and cooperative systems[M]∥Mathematical surveys and monographs. Providence, RI:American Mathematical Society,1995.

    [26] BROWN J,CARR J. Deterministic epidemic waves of critical velocity[J]. Math Proc Cambridge Philos Soc,1977,81:431-433.

    2013-03-11

    國家自然科學(xué)基金項(xiàng)目(11171120);教育部博士點(diǎn)基金項(xiàng)目(20094407110001);廣東省自然科學(xué)基金項(xiàng)目(10151063101000003)

    1000-5463(2013)06-0006-13

    O175.2; O175.6; O175.1

    A

    10.6054/j.jscnun.2013.09.002

    擬單調(diào)波輪廓方程組構(gòu)造上下解的方法

    翁佩萱*

    (華南師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院, 廣東廣州 510631)

    研究了空間維數(shù)n>1情形下對(duì)應(yīng)于擬單調(diào)反應(yīng)擴(kuò)散系統(tǒng)和積分-偏微分系統(tǒng)的波輪廓方程組. 通過分析主特征值和主特征向量,給出了構(gòu)造上下解的方法和一些應(yīng)用例子.

    反應(yīng)擴(kuò)散方程組; 積分-偏微分方程組; 擬單調(diào); 波輪廓方程組; 上下解

    *通訊作者:翁佩萱,教授,Email: wengpx@scnu.edu.cn.

    【中文責(zé)編:莊曉瓊 英文責(zé)編:肖菁】

    猜你喜歡
    博士點(diǎn)國家自然科學(xué)基金基金項(xiàng)目
    常見基金項(xiàng)目的英文名稱(一)
    常見基金項(xiàng)目的英文名稱(二)
    常見基金項(xiàng)目的英文名稱(一)
    我校喜獲五項(xiàng)2018年度國家自然科學(xué)基金項(xiàng)目立項(xiàng)
    淺談當(dāng)前形勢下創(chuàng)新創(chuàng)業(yè)博士點(diǎn)建設(shè)的意義
    考試周刊(2018年65期)2018-09-13 11:05:50
    教育部:全國完全新增博士點(diǎn)372個(gè)復(fù)審?fù)ㄟ^率為45.8%
    2017 年新項(xiàng)目
    這個(gè)世界需要博士點(diǎn)嗎?
    國家自然科學(xué)基金項(xiàng)目簡介
    從我國教育技術(shù)學(xué)博士點(diǎn)建設(shè)看其學(xué)科發(fā)展
    久久久久久久久久久免费av| 99热这里只有是精品50| 超碰97精品在线观看| 九九爱精品视频在线观看| 中文字幕久久专区| 伦精品一区二区三区| 免费av不卡在线播放| 男女啪啪激烈高潮av片| 美女主播在线视频| 日本vs欧美在线观看视频 | 亚洲国产色片| 麻豆精品久久久久久蜜桃| 伊人久久国产一区二区| 亚洲三级黄色毛片| 涩涩av久久男人的天堂| 日韩视频在线欧美| av网站免费在线观看视频| 女人精品久久久久毛片| 我要看黄色一级片免费的| 亚洲精品一区蜜桃| 国产av码专区亚洲av| 精品国产一区二区久久| 国产免费视频播放在线视频| 欧美日韩亚洲高清精品| 免费看光身美女| 国产午夜精品久久久久久一区二区三区| 精品久久国产蜜桃| 国产视频内射| 久久亚洲国产成人精品v| 日韩一本色道免费dvd| 日韩av免费高清视频| 99久国产av精品国产电影| av在线老鸭窝| 中文天堂在线官网| 亚洲欧洲精品一区二区精品久久久 | 国产亚洲最大av| 大香蕉97超碰在线| h视频一区二区三区| 国产精品一区二区性色av| 久久久久视频综合| 国产精品99久久99久久久不卡 | 久久久亚洲精品成人影院| 国产男人的电影天堂91| 欧美精品亚洲一区二区| 尾随美女入室| 看非洲黑人一级黄片| 国产黄片视频在线免费观看| 亚洲精品乱码久久久v下载方式| av有码第一页| 丰满人妻一区二区三区视频av| 精品卡一卡二卡四卡免费| 高清毛片免费看| 欧美日本中文国产一区发布| 女人久久www免费人成看片| 国产精品国产三级国产av玫瑰| 国产成人精品无人区| av免费观看日本| 亚洲熟女精品中文字幕| 国产精品人妻久久久影院| 国产精品女同一区二区软件| 在线观看国产h片| av在线播放精品| 一区二区三区四区激情视频| 国产欧美日韩一区二区三区在线 | 九九在线视频观看精品| 亚洲精品色激情综合| 99久国产av精品国产电影| 日韩视频在线欧美| 久久热精品热| 国产精品女同一区二区软件| 久久精品国产亚洲av天美| 亚洲成色77777| 九九久久精品国产亚洲av麻豆| videossex国产| 新久久久久国产一级毛片| 国产av精品麻豆| 亚洲伊人久久精品综合| av女优亚洲男人天堂| 久久这里有精品视频免费| 在线观看av片永久免费下载| 日本爱情动作片www.在线观看| 99热国产这里只有精品6| 成人特级av手机在线观看| 亚洲欧美一区二区三区国产| 国产成人freesex在线| 成人黄色视频免费在线看| 久久青草综合色| 特大巨黑吊av在线直播| 国产熟女欧美一区二区| 91久久精品国产一区二区三区| 午夜激情福利司机影院| 亚洲中文av在线| 99久久精品热视频| 人妻少妇偷人精品九色| 亚洲在久久综合| 日韩不卡一区二区三区视频在线| 能在线免费看毛片的网站| 精品人妻一区二区三区麻豆| 精品熟女少妇av免费看| 多毛熟女@视频| 99热这里只有是精品在线观看| 亚洲性久久影院| 最黄视频免费看| 午夜福利视频精品| 老女人水多毛片| 制服丝袜香蕉在线| 国产综合精华液| 女的被弄到高潮叫床怎么办| 大香蕉久久网| 中文精品一卡2卡3卡4更新| 亚洲国产精品成人久久小说| 亚洲国产精品999| 一区在线观看完整版| 国产成人a∨麻豆精品| 久久久久久久久久久丰满| 人体艺术视频欧美日本| 欧美少妇被猛烈插入视频| 国产日韩欧美视频二区| 欧美激情极品国产一区二区三区 | 国产黄频视频在线观看| 91精品伊人久久大香线蕉| 涩涩av久久男人的天堂| 日日啪夜夜撸| 国产成人免费无遮挡视频| 伊人久久国产一区二区| 中文天堂在线官网| 欧美3d第一页| 欧美老熟妇乱子伦牲交| 日韩中字成人| 老司机影院成人| 亚洲人成网站在线观看播放| 日韩精品有码人妻一区| 亚洲国产色片| 五月开心婷婷网| av免费在线看不卡| 99热这里只有是精品在线观看| 岛国毛片在线播放| 国产精品国产三级国产av玫瑰| a 毛片基地| 熟女av电影| 最黄视频免费看| 国产在视频线精品| a级一级毛片免费在线观看| 男人舔奶头视频| 91在线精品国自产拍蜜月| 国产乱人偷精品视频| 国产成人精品久久久久久| 黑人猛操日本美女一级片| 国产亚洲一区二区精品| 夜夜看夜夜爽夜夜摸| 免费av中文字幕在线| 欧美3d第一页| 成人毛片60女人毛片免费| 狂野欧美激情性xxxx在线观看| 一级av片app| 99视频精品全部免费 在线| 日韩av免费高清视频| 啦啦啦啦在线视频资源| 欧美三级亚洲精品| av在线播放精品| 一个人免费看片子| av播播在线观看一区| 国产成人a∨麻豆精品| 国产免费又黄又爽又色| 国产欧美日韩综合在线一区二区 | 国产在线免费精品| 男女边吃奶边做爰视频| 久久精品国产a三级三级三级| 成人毛片a级毛片在线播放| 中国国产av一级| 国产欧美日韩一区二区三区在线 | 2018国产大陆天天弄谢| 国产69精品久久久久777片| av天堂中文字幕网| 我要看日韩黄色一级片| 在线观看人妻少妇| 街头女战士在线观看网站| 大片免费播放器 马上看| 久久狼人影院| 久久精品久久久久久噜噜老黄| 老司机影院成人| 99re6热这里在线精品视频| 一级毛片 在线播放| 狂野欧美白嫩少妇大欣赏| 成年人免费黄色播放视频 | 亚洲美女搞黄在线观看| 久久久亚洲精品成人影院| 高清不卡的av网站| 亚洲人成网站在线观看播放| 亚洲精品乱久久久久久| 久久精品国产亚洲网站| 国产免费福利视频在线观看| 免费观看无遮挡的男女| 另类亚洲欧美激情| 亚洲精品乱久久久久久| 国产爽快片一区二区三区| 国产精品一区二区性色av| 一级a做视频免费观看| 欧美日韩av久久| 久久久国产欧美日韩av| 久久久欧美国产精品| 亚洲av日韩在线播放| 在线观看三级黄色| 狂野欧美激情性bbbbbb| 蜜桃在线观看..| 精品熟女少妇av免费看| 最黄视频免费看| 亚洲情色 制服丝袜| 在现免费观看毛片| 中文字幕亚洲精品专区| 一个人看视频在线观看www免费| 日本-黄色视频高清免费观看| 99久久精品热视频| 9色porny在线观看| 三级国产精品片| a级一级毛片免费在线观看| 中文字幕人妻丝袜制服| 街头女战士在线观看网站| 在线观看国产h片| 国产精品99久久99久久久不卡 | 啦啦啦啦在线视频资源| 我的老师免费观看完整版| 精品少妇久久久久久888优播| 观看免费一级毛片| 最新中文字幕久久久久| 精品人妻熟女av久视频| 国产有黄有色有爽视频| 国精品久久久久久国模美| 青春草视频在线免费观看| 69精品国产乱码久久久| 久久精品国产亚洲网站| 亚洲av欧美aⅴ国产| 国产精品久久久久久av不卡| 内射极品少妇av片p| 日韩中文字幕视频在线看片| 亚洲精品国产av蜜桃| a级毛片在线看网站| 国模一区二区三区四区视频| 岛国毛片在线播放| 国产综合精华液| 大又大粗又爽又黄少妇毛片口| 国产熟女午夜一区二区三区 | 99久久精品一区二区三区| 久久精品久久久久久噜噜老黄| 最近2019中文字幕mv第一页| 天堂中文最新版在线下载| 亚洲色图综合在线观看| 中文资源天堂在线| a级毛片免费高清观看在线播放| 亚洲图色成人| 69精品国产乱码久久久| 国产亚洲一区二区精品| 国产女主播在线喷水免费视频网站| 啦啦啦视频在线资源免费观看| 午夜免费观看性视频| 精品国产一区二区久久| 中文字幕制服av| 国产黄色免费在线视频| 亚洲国产精品成人久久小说| 永久网站在线| 午夜福利影视在线免费观看| 日韩熟女老妇一区二区性免费视频| 搡老乐熟女国产| 少妇精品久久久久久久| 国产一区二区在线观看av| 久久精品久久久久久久性| 人妻夜夜爽99麻豆av| 91精品伊人久久大香线蕉| 色5月婷婷丁香| 中文精品一卡2卡3卡4更新| 九九爱精品视频在线观看| 国产精品偷伦视频观看了| 欧美 亚洲 国产 日韩一| 女人久久www免费人成看片| 在线观看国产h片| 青春草视频在线免费观看| 九九久久精品国产亚洲av麻豆| 热re99久久精品国产66热6| 人妻夜夜爽99麻豆av| 国产免费一区二区三区四区乱码| 精品酒店卫生间| 99九九线精品视频在线观看视频| 精品视频人人做人人爽| 丰满人妻一区二区三区视频av| 三上悠亚av全集在线观看 | 如何舔出高潮| 亚洲电影在线观看av| 欧美少妇被猛烈插入视频| 国产 精品1| 欧美变态另类bdsm刘玥| 高清av免费在线| 欧美成人精品欧美一级黄| 波野结衣二区三区在线| 亚洲一级一片aⅴ在线观看| 在线亚洲精品国产二区图片欧美 | 久久久久人妻精品一区果冻| 久热这里只有精品99| av又黄又爽大尺度在线免费看| 蜜桃久久精品国产亚洲av| 久久99蜜桃精品久久| 欧美日韩av久久| 高清午夜精品一区二区三区| 国产免费一区二区三区四区乱码| 欧美最新免费一区二区三区| 精品少妇久久久久久888优播| 人人妻人人看人人澡| 国产国拍精品亚洲av在线观看| 久久精品国产亚洲av天美| 免费观看a级毛片全部| 秋霞在线观看毛片| 亚洲精品久久久久久婷婷小说| 老司机亚洲免费影院| 国产男女超爽视频在线观看| 亚洲成人手机| 久久久国产精品麻豆| 天堂8中文在线网| 午夜视频国产福利| 欧美少妇被猛烈插入视频| 青春草视频在线免费观看| 各种免费的搞黄视频| 欧美成人午夜免费资源| 一区二区av电影网| 99热这里只有精品一区| av福利片在线| 成人二区视频| 深夜a级毛片| 色视频www国产| 2022亚洲国产成人精品| 99热全是精品| 久久99蜜桃精品久久| 亚洲精品成人av观看孕妇| 交换朋友夫妻互换小说| 国产美女午夜福利| 亚洲精品日韩在线中文字幕| 久久久久国产精品人妻一区二区| 久久99一区二区三区| 最后的刺客免费高清国语| 久久久精品免费免费高清| 观看av在线不卡| 啦啦啦啦在线视频资源| 两个人的视频大全免费| 日日爽夜夜爽网站| 国产精品一区二区三区四区免费观看| 午夜福利视频精品| 成人亚洲欧美一区二区av| 啦啦啦视频在线资源免费观看| 精品少妇黑人巨大在线播放| 久久综合国产亚洲精品| 伦精品一区二区三区| 一级二级三级毛片免费看| 久久毛片免费看一区二区三区| 国国产精品蜜臀av免费| 国产精品国产av在线观看| 国产精品欧美亚洲77777| 乱码一卡2卡4卡精品| 亚洲怡红院男人天堂| 亚洲av不卡在线观看| 婷婷色综合大香蕉| 欧美成人午夜免费资源| 日日撸夜夜添| 99热这里只有是精品50| 九色成人免费人妻av| 在线观看一区二区三区激情| 免费久久久久久久精品成人欧美视频 | 国产亚洲91精品色在线| 中文字幕久久专区| 黑人猛操日本美女一级片| 99久久精品一区二区三区| 国产精品欧美亚洲77777| 久热这里只有精品99| 国产精品欧美亚洲77777| 午夜视频国产福利| 美女xxoo啪啪120秒动态图| 在线观看一区二区三区激情| 久久精品国产自在天天线| 91精品国产国语对白视频| 精品一区二区三卡| 成人黄色视频免费在线看| 一区二区三区免费毛片| 欧美老熟妇乱子伦牲交| 七月丁香在线播放| 亚洲精品国产av蜜桃| 亚洲真实伦在线观看| 国产免费视频播放在线视频| 国产av一区二区精品久久| 精品久久久久久电影网| 狂野欧美激情性bbbbbb| 免费av不卡在线播放| 美女福利国产在线| 精品国产一区二区三区久久久樱花| 日韩视频在线欧美| 国产精品免费大片| 人人妻人人看人人澡| 中国国产av一级| 人人妻人人爽人人添夜夜欢视频 | 日韩欧美一区视频在线观看 | 国产成人精品福利久久| 能在线免费看毛片的网站| 欧美日韩一区二区视频在线观看视频在线| 一本一本综合久久| 在线观看av片永久免费下载| 99热全是精品| 3wmmmm亚洲av在线观看| 99久久人妻综合| 十分钟在线观看高清视频www | 极品人妻少妇av视频| 十八禁高潮呻吟视频 | 国产精品人妻久久久久久| av天堂久久9| 亚洲在久久综合| 中文字幕av电影在线播放| 人人妻人人澡人人爽人人夜夜| 六月丁香七月| 亚洲av日韩在线播放| 黄色视频在线播放观看不卡| 日韩av在线免费看完整版不卡| 国产视频内射| 国内揄拍国产精品人妻在线| av黄色大香蕉| 国产成人精品婷婷| 91精品一卡2卡3卡4卡| 亚洲自偷自拍三级| 乱人伦中国视频| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕免费在线视频6| av在线观看视频网站免费| 男人爽女人下面视频在线观看| 在线观看av片永久免费下载| 亚洲av综合色区一区| 3wmmmm亚洲av在线观看| 日本91视频免费播放| 亚洲国产欧美在线一区| 国产精品不卡视频一区二区| 高清不卡的av网站| 免费观看av网站的网址| 亚洲欧美日韩另类电影网站| 国产 一区精品| 国产91av在线免费观看| 国产欧美另类精品又又久久亚洲欧美| 精品视频人人做人人爽| 一级毛片久久久久久久久女| 亚洲成色77777| 大香蕉97超碰在线| 汤姆久久久久久久影院中文字幕| 如何舔出高潮| 18禁裸乳无遮挡动漫免费视频| 在线观看免费视频网站a站| 日韩强制内射视频| 成年人免费黄色播放视频 | 伊人久久精品亚洲午夜| 一级毛片我不卡| 在线看a的网站| 狂野欧美激情性bbbbbb| 3wmmmm亚洲av在线观看| 又黄又爽又刺激的免费视频.| 一边亲一边摸免费视频| 午夜福利,免费看| 91精品伊人久久大香线蕉| 免费观看在线日韩| 久久人人爽人人片av| 婷婷色综合大香蕉| 久久久久久久亚洲中文字幕| 久久鲁丝午夜福利片| 久久6这里有精品| 最近中文字幕2019免费版| 亚洲精品日本国产第一区| 亚洲一区二区三区欧美精品| 久久久久久久大尺度免费视频| 国产一区二区在线观看av| 中文字幕久久专区| 人人妻人人添人人爽欧美一区卜| 美女脱内裤让男人舔精品视频| 国产精品久久久久久精品电影小说| 日本与韩国留学比较| 午夜精品国产一区二区电影| 爱豆传媒免费全集在线观看| 国产av一区二区精品久久| 日本爱情动作片www.在线观看| 99精国产麻豆久久婷婷| 最近的中文字幕免费完整| 欧美日韩视频精品一区| av在线app专区| 九色成人免费人妻av| 久久毛片免费看一区二区三区| 成人影院久久| 人人妻人人看人人澡| 少妇的逼好多水| 丝袜喷水一区| 26uuu在线亚洲综合色| 中文乱码字字幕精品一区二区三区| 国产高清不卡午夜福利| 国产免费一区二区三区四区乱码| 免费大片黄手机在线观看| 美女xxoo啪啪120秒动态图| 久久毛片免费看一区二区三区| 色哟哟·www| 久久这里有精品视频免费| 亚洲内射少妇av| 精品一品国产午夜福利视频| 九色成人免费人妻av| 久久精品熟女亚洲av麻豆精品| 国产欧美另类精品又又久久亚洲欧美| 国产色爽女视频免费观看| 亚州av有码| 国产高清三级在线| 黑人高潮一二区| 99热这里只有是精品50| 亚洲国产欧美在线一区| 欧美一级a爱片免费观看看| 国产亚洲91精品色在线| 美女中出高潮动态图| 少妇的逼好多水| 人妻 亚洲 视频| 91在线精品国自产拍蜜月| 制服丝袜香蕉在线| 亚洲精品456在线播放app| 亚州av有码| 亚洲性久久影院| 最近手机中文字幕大全| 日本与韩国留学比较| 中文在线观看免费www的网站| 成人影院久久| 九九在线视频观看精品| 建设人人有责人人尽责人人享有的| 草草在线视频免费看| 日韩精品免费视频一区二区三区 | 精品国产乱码久久久久久小说| 亚洲三级黄色毛片| 中文字幕av电影在线播放| 纵有疾风起免费观看全集完整版| 中文字幕制服av| 国产精品免费大片| 看十八女毛片水多多多| 水蜜桃什么品种好| 国产精品秋霞免费鲁丝片| 亚洲人成网站在线观看播放| 精品国产国语对白av| 男女边摸边吃奶| 国产在线一区二区三区精| 亚洲精品国产色婷婷电影| 老司机影院毛片| 韩国av在线不卡| av免费在线看不卡| 亚洲久久久国产精品| 美女cb高潮喷水在线观看| 亚洲精品,欧美精品| 极品少妇高潮喷水抽搐| 在线观看国产h片| 国产精品久久久久久久电影| 婷婷色av中文字幕| 五月玫瑰六月丁香| 看免费成人av毛片| 国产美女午夜福利| 少妇人妻久久综合中文| 日韩成人伦理影院| 夜夜骑夜夜射夜夜干| 国产 一区精品| 精品视频人人做人人爽| av卡一久久| 亚洲精品自拍成人| 乱码一卡2卡4卡精品| 青青草视频在线视频观看| 免费观看av网站的网址| 晚上一个人看的免费电影| 一级a做视频免费观看| 色94色欧美一区二区| 韩国av在线不卡| 97超视频在线观看视频| 成年人免费黄色播放视频 | 天堂中文最新版在线下载| 国产精品久久久久久久久免| 国产精品免费大片| 内射极品少妇av片p| 精品卡一卡二卡四卡免费| 国产在线一区二区三区精| 高清午夜精品一区二区三区| 国产成人a∨麻豆精品| 日韩大片免费观看网站| 精品视频人人做人人爽| 丰满迷人的少妇在线观看| 成人免费观看视频高清| 美女cb高潮喷水在线观看| 成人毛片60女人毛片免费| 午夜激情福利司机影院| www.色视频.com| 国产精品99久久久久久久久| 国产精品嫩草影院av在线观看| 最新中文字幕久久久久| 91精品一卡2卡3卡4卡| 热99国产精品久久久久久7| 日韩伦理黄色片| 欧美高清成人免费视频www| 亚洲天堂av无毛| 日韩电影二区| 精品少妇内射三级| 中文欧美无线码| 亚洲丝袜综合中文字幕| 美女内射精品一级片tv| 亚洲精品,欧美精品| 美女中出高潮动态图| 99九九在线精品视频 | 精品一区二区三区视频在线| 亚洲怡红院男人天堂| 欧美+日韩+精品| 中文乱码字字幕精品一区二区三区| 九九久久精品国产亚洲av麻豆| 伦精品一区二区三区| 精品人妻熟女av久视频| 最近最新中文字幕免费大全7| 国产欧美亚洲国产| 日韩一区二区三区影片| 大片电影免费在线观看免费| 夫妻性生交免费视频一级片| 亚洲精品456在线播放app| 精品一区在线观看国产|