劉召君 李代兵
(①同濟(jì)大學(xué)機(jī)械與能源工程學(xué)院,上海 201804;②貴州省勞動(dòng)保護(hù)科學(xué)技術(shù)研究院,貴州遵義 563000)
殘留面積高度會(huì)直接影響工件表面質(zhì)量,目前已存在計(jì)算車削殘留面積高度的公式,然而對(duì)多齒圓周銑削殘留面積高度方面的研究甚少。在經(jīng)典的周銑幾何模型中,由于銑刀每齒進(jìn)給量fz遠(yuǎn)小于切削速度vc和銑刀盤直徑D,所以把銑刀切削運(yùn)動(dòng)與進(jìn)給運(yùn)動(dòng)合成后的運(yùn)動(dòng)軌跡近似為圓弧[1-4],如圖1所示。這種經(jīng)典簡(jiǎn)化模型比較簡(jiǎn)單,很容易用于生產(chǎn)實(shí)踐。然而在實(shí)際銑削過(guò)程中,雖然每齒進(jìn)給量fz對(duì)刀具的運(yùn)動(dòng)軌跡影響甚微,但由于它的存在,將會(huì)在工件加工表面上留下小塊殘留面積,如圖2中的AD′M′A所圍面積所示。本文通過(guò)建立非簡(jiǎn)化幾何運(yùn)動(dòng)模型,來(lái)推導(dǎo)計(jì)算周銑殘留面積高度的公式,并開(kāi)發(fā)出計(jì)算和輔助分析軟件來(lái)指導(dǎo)生產(chǎn)實(shí)踐。
圓周銑削的經(jīng)典幾何運(yùn)動(dòng)模型如圖1所示,在二維平面中,工件以vf(mm/s)作直線進(jìn)給運(yùn)動(dòng)。圓盤銑刀的轉(zhuǎn)速為n(r/min),旋轉(zhuǎn)方向如圖中所示。銑刀半徑為r(mm),刀齒數(shù)為z,徑向切深為ae(mm)。
假設(shè)齒a和齒b為圓盤銑刀上的相鄰兩齒,齒a在前,齒b在后,如果齒a齒尖的切削軌跡為弧AFC,則齒b齒尖的切削軌跡為弧AEB,那么齒b在任意角度的切削層厚度h(mm)為[5]
但由于存在進(jìn)給運(yùn)動(dòng),刀盤中心在進(jìn)給運(yùn)動(dòng)方向不斷移動(dòng),刀尖運(yùn)動(dòng)軌跡近似為圓弧,式(1)并不嚴(yán)格成立。
下面將考慮進(jìn)給運(yùn)動(dòng)的影響來(lái)建立非簡(jiǎn)化的周銑幾何運(yùn)動(dòng)模型。在圖2中,齒a和齒b為圓盤銑刀上的相鄰兩齒,齒a在前,齒b在后。首先以點(diǎn)A為中心,建立笛卡爾坐標(biāo)系,假設(shè)在t=0時(shí)刻,O點(diǎn)為銑刀中心所在位置,OA為齒a所處位置,OE為齒b所處位置;運(yùn)動(dòng)t時(shí)刻后,銑刀中心運(yùn)動(dòng)到O′點(diǎn),a、b兩齒也相應(yīng)地轉(zhuǎn)動(dòng)一定的角度,O′A′與O′E′分別表示在t時(shí)刻a、b兩齒所處的位置。
則齒a齒尖(A點(diǎn))的運(yùn)動(dòng)參數(shù)方程為
而齒b齒尖(E點(diǎn))的運(yùn)動(dòng)參數(shù)方程為
根據(jù)上面兩組參數(shù)方程可以證明:前后兩刀齒齒尖的切削軌跡在x方向相平行,而且還可證明兩條切削軌跡對(duì)應(yīng)點(diǎn)之間在x方向的距離恒為fz。另外,前后兩刀齒齒尖的切削軌跡的交點(diǎn)不會(huì)處在全切深ae線(即圖2中的x軸線)上,所以兩條軌跡與x軸之間將會(huì)有一小塊區(qū)域存在,如圖2中AD′M′A所圍區(qū)域,該區(qū)域就是切削留下的殘留面積。
在t時(shí)刻,設(shè)齒b與y的負(fù)方向所成夾角為θ,并設(shè)齒b所處位置的斜率為k,即直線OE′的斜率為k,則k與θ的關(guān)系為
又設(shè)OO′的距離為x0,則x0與θ的關(guān)系為
根據(jù)O′點(diǎn)的坐標(biāo)值和斜率k建立直線O′E′的方程,而直線OE′與齒 a 齒尖的軌跡A′M′F′C′相交于F′點(diǎn)。根據(jù)這兩個(gè)軌跡的方程可求出F′點(diǎn)的坐標(biāo),接著利用F′點(diǎn)和O′點(diǎn)的坐標(biāo)值可求出兩點(diǎn)間的距離|O′F′|。由圖2可知,齒b在t時(shí)刻(θ角度)的切削層厚度h為
綜上計(jì)算出切削層厚度h為式(7)和式(8):
但當(dāng)點(diǎn)F′運(yùn)動(dòng)到點(diǎn)C′后,式(8)不再成立,此時(shí)切削層厚度h與切削角度θ之間的關(guān)系為
因此由式(4)、(5)、(7)、(8)和式(9)就可以確定切削層厚度h與切削角度θ之間關(guān)系。
最后分別計(jì)算分段點(diǎn) θ1、θ2、θ3,如圖 3 所示。當(dāng)齒b運(yùn)動(dòng)到M′點(diǎn),其接觸材料開(kāi)始切削,而此時(shí)的切削層厚度為0,把h=0代入式(7),并聯(lián)合式(4)、(5)可計(jì)算出θ1為
又因 θ1為非常小的負(fù)值,所以 sinθ1≈θ1,式(10)可化簡(jiǎn)為
當(dāng)齒b運(yùn)動(dòng)到C′點(diǎn),根據(jù)B′C′=60vf/zn和切削深度ae可以得出 θ2為
當(dāng)齒b運(yùn)動(dòng)到B′點(diǎn),根據(jù)簡(jiǎn)單的幾何關(guān)系,可以得出 θ3為
由圖3可知,M′點(diǎn)為殘留面積的最高點(diǎn),且此時(shí)齒b的切削角度正好等于θ1,則殘留面積高度Rz(單位:μm)為
把式(11)代入式(14)得:
由式(15)可得出:對(duì)多齒圓周銑削來(lái)說(shuō),影響殘留面積高度的主要因素有主軸轉(zhuǎn)速n、刀具半徑r、刀具齒數(shù)z和進(jìn)給速度vf,其隨n、r和z的增大而減小,而隨vf增大而增大,但與切削深度ae無(wú)關(guān)。又因每齒進(jìn)給量fz=60vf/zn,代入式(15),得Rz為
由式(16)可得出:殘留面積高度與每齒進(jìn)給量fz、刀具圓盤半徑r和刀具齒數(shù)z有關(guān),這與車削的情況類似,其隨fz的增大而增大,隨r和z的增大而減小。
為了能更加準(zhǔn)確和方便地分析周銑殘留面積高度,筆者利用Visual C++開(kāi)發(fā)了一款計(jì)算和輔助分析軟件。同時(shí)為了滿足不同的參數(shù)輸入情況,編程公式分別采用式(15)和式(16),圖4為該輔助軟件的功能模塊圖,其中進(jìn)給速度模式表示利用式(15)來(lái)計(jì)算和輔助分析,而每齒進(jìn)給模式表示利用式(16)來(lái)計(jì)算和輔助分析。
計(jì)算模塊的功能是實(shí)現(xiàn)周銑殘留面積高度的計(jì)算,以便能快速獲得結(jié)果。其操作方法是:首先選擇【計(jì)算】菜單,進(jìn)入計(jì)算模塊,程序會(huì)彈出參數(shù)輸入對(duì)話框,在對(duì)話框內(nèi)的下拉菜單里選擇計(jì)算模式,程序會(huì)根據(jù)不同的計(jì)算模式,相應(yīng)地改變參數(shù)輸入編輯框。輸入?yún)?shù)后,單擊【計(jì)算】按鈕,在文檔視圖里會(huì)顯示出輸入的參數(shù)值和計(jì)算結(jié)果。
輔助分析模塊的功能是選擇一個(gè)參數(shù)為變量,其他參數(shù)為定量,繪制出變量參數(shù)與殘留面積高度之間的關(guān)系曲線,如表1和圖5所示。加工工藝師以這些曲線為參考,選擇合理的變量參數(shù)點(diǎn),便能獲得好的表面質(zhì)量。
為了驗(yàn)證非簡(jiǎn)化模型的合理性以及在多齒圓周銑削中存在殘留面積的現(xiàn)象,本文借助Matlab仿真軟件來(lái)繪制切削層厚度h和刀齒旋轉(zhuǎn)角度θ之間的關(guān)系曲線。對(duì)于經(jīng)典模型,采用式(1)即可;而對(duì)于非簡(jiǎn)化模型,采用式(4)~(5)和式(7)~(13),切削層厚度h和θ2的求解采用牛頓迭代法。當(dāng)取r=6 mm、z=5齒、m=1 500 r/min、ae=3 mm 和vf=30 mm/s時(shí),得到了如圖6所示的h-θ曲線。從圖中可知,非簡(jiǎn)化幾何模型的h-θ曲線與經(jīng)典幾何模型的h-θ曲線幾乎重合,即證明了非簡(jiǎn)化幾何模型的合理性。但從圖6(圖7為圖6的局部放大圖)中可看出,在非簡(jiǎn)化幾何模型中,當(dāng)h=0時(shí),刀齒角度θ為一個(gè)很小的負(fù)值。由上文知,這個(gè)很小的負(fù)角即是影響殘留面積高度的θ1因素,這從側(cè)面證明了在多齒圓周銑削中存在殘留面積的現(xiàn)象。
表1 殘留面積高度輔助分析
(1)在多齒圓周銑削中,每齒進(jìn)給量對(duì)刀齒運(yùn)動(dòng)軌跡影響甚微,但在加工表面上會(huì)因其而留下殘留面積。
(2)通過(guò)公式推導(dǎo),發(fā)現(xiàn)影響殘留面積高度的主要因素是刀具半徑、每齒進(jìn)給量和齒數(shù)。
(3)利用殘留面積高度與齒數(shù)、主軸轉(zhuǎn)速、刀具半徑、進(jìn)給速度和每齒進(jìn)給量之間的關(guān)系曲線,來(lái)合理地選擇這些參數(shù),不僅可以滿足實(shí)際的加工要求,還可獲得好的表面質(zhì)量。
[1]李滬曾,Spur G.平面端銑非線性切削過(guò)程模型[J].同濟(jì)大學(xué)學(xué)報(bào),1995,23(2):186 -191.
[2]Dammer L J.Ein beitrag zur prozessanalyse und schnittwertvorgabe beim messerkopfstirnfraesen[D].Aacher:TH Aachen,1982.
[3]李滬曾,張國(guó)紅,魏衡.多齒端銑切削振動(dòng)的計(jì)算機(jī)仿真[J].同濟(jì)大學(xué)學(xué)報(bào),2000,28(1):55 -59.
[4]李滬曾,于信匯,張國(guó)紅,等.銑削振動(dòng)的計(jì)算機(jī)仿真[J].振動(dòng)工程學(xué)報(bào),2001,14(13):292 -297.
[5]徐宏海.數(shù)控機(jī)床刀具及其應(yīng)用[M].北京:化學(xué)工業(yè)出版社,2005.