• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Pb-Doping on Phase Structural and Optical Properties of CdZnS Nano-Powders

    2013-06-19 16:16:43MahdiGhasemifardSomayehTohidiandRoholahKarimzadeh

    Mahdi Ghasemifard, Somayeh Tohidi, and Roholah Karimzadeh

    Effects of Pb-Doping on Phase Structural and Optical Properties of CdZnS Nano-Powders

    Mahdi Ghasemifard, Somayeh Tohidi, and Roholah Karimzadeh

    —Cadmiumzincleadsulfide [Cd0.8(Zn1-x,Pbx)0.2S] nano-powders were prepared by an improved coprecipitation method. The effect of Pb2+concentration at 500°C on the phase and crystalline structure of the Cd0.8(Zn1-x,Pbx)0.2S powders were investigated by X-ray diffraction (XRD). According to the transmission electron microscopy (TEM) images, the particles size are in the range of 58nm to 72nm. In addition, optical band gap energy and optical constants of nano-powders were determined using the ultraviolet (UV)spectrum,Fourniertransforminfrared spectroscopy (FTIR), and Kramers-Kronig analysis, respectively. We calculate the refractive indexn, extinction coefficientk, and dielectric functionεas a function of the wavenumber. The experiment results demonstrate that the amount of Pb+2has been playing an increasingly important role on optical properties of CZPS nanocrystals.

    Index Terms—Coprecipitation, Kramers-Kronig analysis, optical constants, X-ray diffraction.

    1. Introduction

    Cadmium Sulfide (CdS) nano-powders are especially attractive because of their applications in some novel electronic and optoelectronic devices. Cadmium zinc sulfide (CdZnS) has great potential applications, especially in solar cells and photo voltaic devices which are based on the structure of CdZnS[1]?[3]. The replacement of cadmium telluride (CdTe) with the lower band gap alloys in solar cell systems, leading to an increase in window absorption and an increase in the short circuit current[4].

    Up to now, the Kramers-Kronig (KK) method has been used to analyze the reflection spectra to calculate optical constants of materials[5]?[8]. In fact, with this method we can analyze the optical properties of a wide variety of materials. However, its complexity of the integration limits the application of the KK method[9]?[13]. In the literature, there are few related works reporting optical constants using infrared spectroscopy. In the last years, there were only some works related written by our team published. Recently, the great interest on material characterization especially semiconductor was illustrated by Fourier transforms infrared (FTIR) spectroscopy. The transmission spectra and FTIR technique used to determine the refractive index (n) and extinction coefficient (k) as a function of the wavenumber. The wide-band gap, high refractive index (n), and low extinction coefficient (k) are important characteristics for electro-optical devices[14]. Hence, the measurement of these parameters is helpful in determining the relevance of the particle size to possible device applications. The optical properties were studied in the wavenumber range of 1000 cm?1to 2400 cm?1.

    The present study focuses on optical properties of Cd0.8(Zn1-x, Pbx)0.2S nano-powders withx=0.1, 0.2, and 0.3 compositions. This procedure is a simple way to synthesis CZPS nano-powders with inexpensive materials. However, in this paper, the optical constants of CZPS have been presented and discussed in detail.

    2. Experimental

    Raw materials used in this experiment consist of cadmium acetate [Cd(CH3COO)2.2H2O], zinc acetate [Zn(CH3COO)2.2H2O], lead acetate [Pb(CH3COO)2.3H2O], and thiourea [SC(NH2)2] as a source of sulfide. The aqueous solution of each single cation and anion (i.e. Cd+2, Zn+2, Pb+2and S-2) was prepared by dissolving all of them in distilled water. The solutions of zinc, lead, and sulfide were added dropwise to the aqueous solution of cadmium under continuous stirring at room temperature. The ammonium hydroxide solution is added to sol to form the cadmium tetraamine ions [Cd(NH3)4], zinc tetraamine ions [Zn(NH3)4], and lead tetraamine ions [Pb(NH3)4]. The flow

    3.2 TEM Analysis

    The typical transmission electron microscopy (TEM) image of the CZPS nano-powder calcinated at 500°C prepared by the coprecipitation method is shown in Fig. 3. From TEM analysis, the primary particle size of the nano-powders can be determined. The primary particles size of the nano powder is approximately 58 nm to 72 nm in diameter. According to Fig. 3, it can be observed that at 500°C the effects of Pb-doping lead to the particle size increase.

    3.3 Band Gap Energy

    In order to calculate the optical band gap of samples, the Uv-Vis (Ultraviolet and Visible) absorption spectrum was analyzed. The Uv-Vis of the Cd0.8(Zn1-x,Pbx)0.2S nano-powders is shown in Fig. 4. From Fig. 4, the absorption coefficient increases with the increase of the Pb concentrations. The absorption coefficient of nano-powder is calculated by

    whereAis the amount of optical absorption of nano-powders andDis the crystallite size with the unit nanometer (the Sherer relationship). The optical band gap,Eg, is obtained by fitting the optical absorption coefficientαto Tauc’s relation[21]:

    whereα,hν,α0, andEgare absorption coefficient, photon energy, a constant, and optical band gap energy, respectively. Thenrefers to these categorizes, ifn=2 then it relates to the direct optical transitions and forn=0.5 it relates to the indirect optical transitions. The results of the fi rst-principle calculation show that the ZnCdTe has a indirect energy band gap[22]. Therefore, by plotting, we evaluatedEgfrom the extrapolated linear portion of the graph. The graphs of (αhv)2versus the photon energy (hv) for CZPS are shown in Fig. 5.

    As a result from Fig. 5, for the obtained optical band gap for Cd0.8(Zn1-x,Pbx)0.2S at 500°C for different Pb concentrations, as increasing the Pb concentration fromx=0.0 tox=0.3, the optical band gap energy (Eg) of the nanoparticle decreases significantly. In other words, it is notable when the Pb concentration rises to 0.3, itsEgwill be reduced about 1.52 eV.

    Fig. 3. TEM micrograph of Cd0.8(Zn1-x,Pbx)0.2S: (a)x=0.0 and (b)x=0.2.

    Fig. 4. Uv-Vis absorption spectrum of Cd0.8(Zn1-x,Pbx)0.2S annealed at 500°C.

    Fig. 5. Dependence of the absorption coefficients (αhν)2on the photon energy for Cd0.8(Zn1-x,Pbx)0.2S nano-powders.

    3.4 Evaluation of the Optical Constants

    A. FTIR Spectroscopy

    FTIR spectroscopy was used in order to monitor the transformation of precursor solutions during the change of Pb concentration. By making the pallet of CZPS nano-powders in potassium bromide (KBr) the FTIR was prepared. The FTIR spectra of the CZPS powders in the range of 4000 cm?1to 250 cm?1treated at 500°C for a period of 2 h are shown in Fig. 6. In this frequency interval, a broad band was observed for each spectrum from 1257 cm?1to 986 cm?1with a maximum absorbance in thevicinities of 1115 cm?1. This peak has been associated with the vibration of M–O (M=Zn and Pb) bonds in the systems. Bands associated with Pb ions were not clearly observed in the mid-infrared spectra because of their heavy masses.

    Fig. 6. FTIR spectra of CZPS powders treated at 500°C.

    The FTIR spectrum for CZPS is similar to the most other CdZnS compounds that present four distinct vibration modes[23]. As can be seen from Fig. 6, clearly the transmittance bands’ intensities decrease with the increase of the molar ratios of the lead.

    Fig. 7. Reflectance spectrum for Cd0.8(Zn1-x,Pbx)0.2S powder: (a)x=0.0, (b)x=0.1, (c)x=0.2, and (d)x=0.3.

    B. Reflectance

    The reflectance (R) spectrum from 750 cm?1to 1800 cm?1for CZPS powder calcinated at 500°C is shown in Fig. 7. From Fig. 7 the peak values and the peak width ofRincrease slowly when the Pb concentration increases.

    Fig. 8. Plot of the refractive index (n) and extinction coefficient (k) as a function of the wavenumber: (a)x=0.0, (b)x=0.1, (c)x=0.2, and (d)x=0.3.

    C. Refractive Index and Extinction Coefficient

    At the next step of the present study, we used the transmission spectrum to determine the complex refractive index (n~) as a function of the wavenumber (K) using the KK analysis as stated previously. The complex refractive index can be calculated by[24]?[27]

    wherenis the real andkis the imaginary parts of the complex refractive index. The refractive index and extinction coefficient can be calculated by

    whereRis the reflectance andφis the phase change at a particular wavenumber between the incidences and the reflected signal, which is obtained by

    For calculatingφ(K), several extrapolation approaches have been evaluated and reported[28],[29]. We have calculatedφ(K) by Maclaurin’s method[31]as (7). This method is rather accurate, but it needs double Fourier transform and the calculation takes a relatively longer time.

    whereh=Ki+1–Kiand if data intervalgis an odd number theni=2, 4, 6, ???,g?1,g+1, ???, while ifgis an even number theni=1, 3, 5, ???,g?1,g+1, ???.

    D. Dielectric Function

    With the knowledge aboutnandk, the real (ε') and imaginary (ε") parts of the complex dielectric functioncan be calculated by

    With regard to (8) and (9) and havingnandk, the real and imaginary parts of the complex dielectric function can be easily calculated and plotted as a function of the wavenumber. The real and the imaginary parts of the frequency dependent dielectric function for the CZPS powder calcinated at 500°C and those for different Pb concentration are shown in Fig. 9.

    Based on data presented in Figs. 6, 7, 8, and 9, it is easy to find that a few meaningful differences inε'andε"take place. The curves are flat in the long wavenumber region and rapidly increase towards the shorter wavenumber at 1360 cm?1. This characteristic is related to the near electronic inter band transition. The rise that is rapid in the refractive index is associated with the fundamental absorption[30],[31].

    Fig. 9. Plot of the extinction coeffitiont as a function of the wavenumber at 500°C for: (a)x=0.0, (b)x=0.1, (c)x=0.2, and (d)x=0.3.

    4. Conclusions

    The Cd0.8(Zn1-x,Pbx)0.2S (x=0.0, 0.1, 0.2, and 0.3) nano-powder has been synthesized by the coprecipitation method using salt and metal precursor. The XRD patterns indicate the presentation of hexagonal and cubic phases forx=0.2 at 500°C. On the other hand, by increasing the annealing temperature from 400°C to 500°C, the percent of hexagonal phase is decreased. According to TEM images, the average particles size was estimated to be 65 nm. The optical properties of the CZPS have been investigated by transmittance measurements in the range of 250 cm?1to 4000 cm?1. We have presented a detailed description of using the KK method to analyze the normal incidence infrared reflectance spectra. From the achieved optical data, it can be drawn that the growth of Pb concentration and the alteration of the structure have an increasingly important role on the optical constant.

    [1] R. Bhattacharya, T. K. Das, and S. Saha, “Synthesis and characterization of CdS nanoparticles,”Journal of Materials Science: Materials in Electronics, vol. 22, pp. 1761?1765, Dec. 2011.

    [2] M. A. Haase, J. Qiu, J. M. De Puydt, and H. Cheng,“Blue-green laser diodes,”Applied Physics Letters, vol. 59, pp. 1272?1275, Jun. 1991.

    [3] T. P. Kumar and K. Sankaranarayanan, “Growth and characterization of Cdzns thin films by short duration micro wave assisted-chemical bath deposition technique,”Chalcogenide Letters, vol. 6, no. 10, pp. 555?562, Oct. 2009.

    [4] L. A. Kosyachenko, V. V. Kulchinsky, S. Yu. Paranchych, and V. M. Sklyarchuk, “Potential of using the Cd0.8Hg0.2Te alloy in solar cells,”Physics of Semiconductor Devices, vol. 41, no. 1, pp. 94?102, 2007.

    [5] H. R. Philipp and E. A. Taft, “Optical constants of germanium in the region 1 to 10 eV,”Physical Review, vol. 113, no. 4, pp. 1002?1005, 1959.

    [6] F. Stern, “Optical properties of lead-salt and III-V semiconductors,”Journal of Applied Physics, vol. 32, no. 10, pp. 2166?2173, 1961.

    [7] D. M. Roessler, “Kramers-Kronig analysis of reflection data: III. approximations, with reference to sodium iodide,”British Journal of Applied Physics, vol. 17, pp. 1313?1317, Feb. 1966.

    [8] A. Hadni, J. Claudel, D. Chanal, P. Strimer, and P. Vergnat,“Optical constants of potassium bromide in the far infrared,”Physical Review, vol. 163, no. 15, pp. 836?843, 1967.

    [9] A. S. Barker and M. Ilegems, “Infrared lattice vibrations and free-electron dispersion in GaN,”Physical Review B, vol. 7, no. 2, pp. 743?750, 1973.

    [10] R. S. Bauer, W. E. Spicer, and J. J. White, “Investigation of the Kramer-Kronig analysis: revised optical constants of AgCl,”The Journal of the Optical Society of America, vol. 64, no. 6, pp. 830?833, 1974.

    [11] K. A. Maslin, C. Patel, and T. J. Parker. “Far-infrared optical constants of a selection of Zincblende structure crystals at 300 K,”Infrared Physics, doi: 10.1016/0020-0891(91) 90119-Z.

    [12] K. K. Kamaras, L. Barth, F. Keilmann, R. Henn, M. Reedyk, C. Thomsen, M. Cardona, J. Kircher, P. L.Richards, and J. L. Stehle. “The low-temperature infrared optical functions of SrTiO3 determined by reflectance spectroscopy and spectroscopic ellipsometry,”Journal of Applied Physics, vol. 78, no. 1, pp. 1235?1240, 1995.

    [13] D. M. Roessler, “Kramers-Kronig analysis of reflection data,”British Journal of Applied Physics, vol. 16, no 8, pp. 1119?1123, 1965.

    [14] C. A. Barrios and M. Lipson, “Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration,”Journal of Applied Physics, vol. 96, no. 11, pp. 6008?6015, 2004.

    [15] N. Okada, K. Ishikawa, K. Murakami, T. Nomura, M. Hagino, N. Nishino, and U. Kihara, “Microstructure of alkoxide-prepared lead zirconate titanate actuator,”Japanese Journal of Applied Physics, vol. 31, pp. 3041?3044, Jul. 1992.

    [16] S. K. Pradhan, S. Sain, and H. Dutta, “Microstructure characterization of nanocrystalline magnesium ferrite annealed at elevated temperatures by Rietveld method,”Journal of Alloys and Compounds, vol. 509, pp. 4176?4182, Sep. 2011.

    [17] V. B. Sanap and B. H. Pawar, “Study of chemical bath deposited nanocrystalline CdZnS thin films,”Journal of Optoelectronics and Biomedical Materials, vol. 3, no. 2, pp. 39?43, 2011.

    [18] V. B. Sanap and B. H. Pawar, “Optical study of effect of cadmium sources on nanocrystalline Cds thin films,”Chalcogenide Letters, vol. 7, no. 3, pp. 227?231, 2010.

    [19] A. Khare, D. Kshatri, and S. Sharma, “Characterization and optical properties of Eu and Dy doped SrAl2O4phosphors,”Journal of International Academy of Physical Sciences, vol. 15, no. SP2, pp. 297?304, 2011.

    [20] S. C. Ray, M. K. Karanjai, and D. DasGupta, “Structure and photoconductive properties of dip-deposited SnS and SnS2 thin films and their conversion to tin dioxide by annealing in air,”Thin Solid Films, vol. 350, pp. 72?78, Apr. 1999.

    [21] J. C. Tauc, “Optical and electro-optic anisotropy of epitaxial Ba0.7Sr0.3TiO3 thin films,”Applied Physics Letter, vol. 96, pp. 061905?061908, Feb. 2010.

    [22] R. T. Graf, J. L. Koenig, and H. Ishida, “Optical constant determination of thin polymer films in the infrared,”Applied Spectroscopy, vol. 39, pp. 405?408, May 1985.

    [23] T. Ouahrani, A. H. Reshak, R. Khenata, H. Baltache, B. Amrani, and A. Bouhemadou, “Structural, electronic, linear, and nonlinear optical properties of ZnCdTe2chalcopyrite,”Physica Status Solidi (b), vol. 248, pp. 712?718, Mar. 2011.

    [24] S. S. Kawar and B. H. Pawar, “Synthesis and characterization of CdS n-Type of semiconductor thin filmshaving nanometer grain size,”Chalcogenide Letters, vol. 6, no. 5, pp. 219?225, May 2009.

    [25] R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,”Journal of Physics E: Scientific Instruments, vol. 16, no. 12, pp. 1214?1222, 1983.

    [26] R. H. Bube,Electronic Properties of Crystalline Solids, New York: Academic Press, 1974, ch. 11.

    [27] F. Stern, “Elementary theory of the optical properties of solids,”Solid State Physics, doi: 10.1016/S0081-1947(08) 60594-9.

    [28] H. R. Philipp and E. A. Taft. “Optical constants of germanium in the region 1 to 10eV,”Physical Review, vol. 113, no. 4, pp. 1002?1005, 1959.

    [29] M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions, United States Department of Commerce, New York, 1965.

    [30] R. G. Greenler, “Reflection absorption infrared spectroscopy and the structure of molecular adsorbents on metal surfaces,”Journal of Chemical Physics, vol. 51, pp. 381?403, Mar. 2000.

    [31] S. A. Francis, and A. H. Ellison, “Infrared spectra of monolayers on metal mirrors,”The Journal of the Optical Society of America, vol. 49, no. 2, pp. 131?137, 1959.

    Mahdi Ghasemifardwas born in Esfarayen, Iran in 1980. He received the B.S., M.S., and Ph.D. degrees from the Ferdowsi University of Mashhad, Iran in 2004, 2006, and 2009, respectively, all in solid state physics. Now, He works with the Nano Technology Lab, Esfarayen University, Esfarayen, Iran as a faculty member. His research interests include nano-electroceramic and thin film.

    Somayeh Tohidiwas born in Maragheh, Iran in 1987. She received the B.S. degree from the Urmiyeh University, Iran in 2009, the M.S. degree from the Shahide Beheshti University of Tehran, Iran in 2012, both in solid state physics. Her research interests include solar cell.

    Roholah Karimzadeh’s photograph and biography are not available at the time of publication

    t

    November 15, 2012; revised January 25, 2013.

    M. Ghasemifard is with the Nano Technology Lab, Esfarayen University, Esfarayen +98-585, Iran (Corresponding author e-mail: mahdi.ghasemifard@gmail.com).

    S. Tohidi and R. Karimzadeh are with the Department of physics, Shahid Beheshti University, Tehran +98-21, Iran (e-mail: somayeh_tohidi@yahoo.com; r_karimzadeh@sbu.ac.ir).

    Color versions of one or more of the figures in this paper are available online at http://www.intl-jest.com/

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2013.03.016

    一个人免费在线观看电影| 99riav亚洲国产免费| a级毛片免费高清观看在线播放| 高清日韩中文字幕在线| 亚洲成人中文字幕在线播放| 91久久精品国产一区二区三区| 色综合亚洲欧美另类图片| 日本免费一区二区三区高清不卡| 99视频精品全部免费 在线| 身体一侧抽搐| 国产精品福利在线免费观看| 村上凉子中文字幕在线| 日产精品乱码卡一卡2卡三| 国产不卡一卡二| 在线免费观看的www视频| 乱人视频在线观看| 一级毛片我不卡| 啦啦啦啦在线视频资源| 午夜激情福利司机影院| 少妇熟女欧美另类| 老司机福利观看| 精品久久久噜噜| 国内久久婷婷六月综合欲色啪| 亚洲第一电影网av| 观看免费一级毛片| 日韩欧美国产在线观看| 夜夜夜夜夜久久久久| 国产淫片久久久久久久久| 麻豆国产av国片精品| 久久久久网色| 1024手机看黄色片| 性插视频无遮挡在线免费观看| 91久久精品国产一区二区成人| 夜夜爽天天搞| 一级毛片我不卡| 亚洲欧美清纯卡通| 毛片一级片免费看久久久久| 亚洲精品影视一区二区三区av| 六月丁香七月| 午夜老司机福利剧场| 亚洲七黄色美女视频| 两个人视频免费观看高清| 99九九线精品视频在线观看视频| 一边亲一边摸免费视频| 国产精品三级大全| 一级毛片电影观看 | 国产综合懂色| 亚洲国产精品国产精品| 精品99又大又爽又粗少妇毛片| 欧美成人免费av一区二区三区| 成人亚洲精品av一区二区| 国产精品永久免费网站| av黄色大香蕉| 国产色爽女视频免费观看| 99热这里只有是精品50| 青春草视频在线免费观看| 美女被艹到高潮喷水动态| 日韩成人伦理影院| 国产精品不卡视频一区二区| 午夜免费男女啪啪视频观看| 伦精品一区二区三区| 久久久久久久久久久免费av| 国产精品久久久久久久电影| 欧美三级亚洲精品| 一区二区三区高清视频在线| 日日啪夜夜撸| 国产一区二区三区av在线 | 亚洲四区av| 简卡轻食公司| 午夜激情欧美在线| 非洲黑人性xxxx精品又粗又长| 美女cb高潮喷水在线观看| 男人和女人高潮做爰伦理| 国产老妇伦熟女老妇高清| 国产中年淑女户外野战色| 嘟嘟电影网在线观看| 婷婷色av中文字幕| 晚上一个人看的免费电影| 免费看日本二区| 一卡2卡三卡四卡精品乱码亚洲| 内地一区二区视频在线| 中文在线观看免费www的网站| 十八禁国产超污无遮挡网站| 在线播放国产精品三级| 最近最新中文字幕大全电影3| 中文字幕久久专区| 欧美最黄视频在线播放免费| 日韩一区二区视频免费看| 中文资源天堂在线| 色综合色国产| 三级经典国产精品| 永久网站在线| 三级国产精品欧美在线观看| 成人毛片a级毛片在线播放| 国产高潮美女av| 91午夜精品亚洲一区二区三区| 波多野结衣高清无吗| 人人妻人人澡欧美一区二区| 国产白丝娇喘喷水9色精品| 亚洲av二区三区四区| av.在线天堂| 亚洲精品乱码久久久久久按摩| 亚洲欧美日韩无卡精品| eeuss影院久久| 国产高清视频在线观看网站| 久久九九热精品免费| 最近视频中文字幕2019在线8| 天堂√8在线中文| 偷拍熟女少妇极品色| 岛国在线免费视频观看| 日韩亚洲欧美综合| 日韩一区二区三区影片| 精品99又大又爽又粗少妇毛片| 国产在视频线在精品| 免费观看精品视频网站| 亚洲精华国产精华液的使用体验 | 亚洲av免费在线观看| 亚洲无线在线观看| 丝袜美腿在线中文| 高清毛片免费观看视频网站| 人妻系列 视频| 99久久人妻综合| 日韩大尺度精品在线看网址| 国内久久婷婷六月综合欲色啪| 成人午夜精彩视频在线观看| 免费av观看视频| 看免费成人av毛片| 国内精品美女久久久久久| 两个人的视频大全免费| 成人三级黄色视频| 国产私拍福利视频在线观看| 波多野结衣高清作品| 一个人免费在线观看电影| 亚洲精品国产av成人精品| 国产中年淑女户外野战色| 精品久久久久久成人av| 欧美潮喷喷水| 天天一区二区日本电影三级| 一个人看的www免费观看视频| 成人毛片60女人毛片免费| 久久精品国产自在天天线| 国产一区亚洲一区在线观看| 免费大片18禁| 日产精品乱码卡一卡2卡三| 国产一区二区在线观看日韩| 热99在线观看视频| 此物有八面人人有两片| 日韩av不卡免费在线播放| 我的老师免费观看完整版| 97人妻精品一区二区三区麻豆| 在线免费观看的www视频| 亚洲av第一区精品v没综合| 毛片女人毛片| 日本黄色片子视频| 亚洲天堂国产精品一区在线| 亚洲人成网站在线观看播放| 国产毛片a区久久久久| 国产午夜福利久久久久久| 亚洲欧美日韩无卡精品| 国产亚洲91精品色在线| 成人漫画全彩无遮挡| 欧美xxxx黑人xx丫x性爽| 精品无人区乱码1区二区| 精品人妻一区二区三区麻豆| 久久久久久久久中文| 成年版毛片免费区| 亚洲中文字幕一区二区三区有码在线看| 国产精品综合久久久久久久免费| 最新中文字幕久久久久| 天堂√8在线中文| 午夜福利在线观看吧| 国产精品一二三区在线看| 国产大屁股一区二区在线视频| 亚洲,欧美,日韩| 精品一区二区三区人妻视频| www.色视频.com| 激情 狠狠 欧美| 亚洲高清免费不卡视频| 国产精品美女特级片免费视频播放器| 中文字幕免费在线视频6| 亚洲在线观看片| 欧美最新免费一区二区三区| 最好的美女福利视频网| av又黄又爽大尺度在线免费看 | 国产一区二区在线观看日韩| 欧美一区二区国产精品久久精品| 性插视频无遮挡在线免费观看| 国产精品久久久久久久久免| 国产成人精品一,二区 | 日本av手机在线免费观看| 六月丁香七月| 久久精品久久久久久久性| 国产伦精品一区二区三区四那| 精品不卡国产一区二区三区| 亚洲自拍偷在线| 国产一区二区在线av高清观看| 18禁在线无遮挡免费观看视频| 久久99热6这里只有精品| 亚洲在线自拍视频| 老熟妇乱子伦视频在线观看| 国产女主播在线喷水免费视频网站 | 欧美精品一区二区大全| av国产免费在线观看| 久久精品影院6| 天天躁日日操中文字幕| 久久久国产成人精品二区| 黑人高潮一二区| 精品久久久久久久久亚洲| 噜噜噜噜噜久久久久久91| 精品一区二区三区视频在线| 别揉我奶头 嗯啊视频| 国产精品乱码一区二三区的特点| 在线观看av片永久免费下载| 丰满人妻一区二区三区视频av| 欧美成人a在线观看| 一级av片app| 99久久精品一区二区三区| 插逼视频在线观看| 久久亚洲精品不卡| 亚洲无线在线观看| 人妻少妇偷人精品九色| 国产在线精品亚洲第一网站| 亚洲av二区三区四区| 免费观看a级毛片全部| 亚洲国产欧美人成| 午夜老司机福利剧场| 特大巨黑吊av在线直播| 日韩欧美国产在线观看| h日本视频在线播放| 亚洲成人中文字幕在线播放| 免费大片18禁| 日韩 亚洲 欧美在线| 日本三级黄在线观看| 三级男女做爰猛烈吃奶摸视频| 国产熟女欧美一区二区| 久久精品国产自在天天线| 免费看美女性在线毛片视频| 非洲黑人性xxxx精品又粗又长| 精品国内亚洲2022精品成人| 一区二区三区高清视频在线| 国产一区亚洲一区在线观看| 亚洲欧美日韩卡通动漫| 中出人妻视频一区二区| 看片在线看免费视频| 22中文网久久字幕| 一边亲一边摸免费视频| 春色校园在线视频观看| 最近最新中文字幕大全电影3| 99视频精品全部免费 在线| 久久这里只有精品中国| 一个人免费在线观看电影| 久久精品国产99精品国产亚洲性色| 国产成人一区二区在线| 久久99精品国语久久久| 精品久久国产蜜桃| 亚洲精品国产av成人精品| 午夜久久久久精精品| 国语自产精品视频在线第100页| 亚洲欧美日韩无卡精品| 日韩成人av中文字幕在线观看| 色视频www国产| 国产伦在线观看视频一区| 国产真实伦视频高清在线观看| 国产视频首页在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲人成网站在线观看播放| 91久久精品电影网| 亚洲熟妇中文字幕五十中出| 亚洲精品国产av成人精品| 老女人水多毛片| 三级男女做爰猛烈吃奶摸视频| 亚洲美女视频黄频| 日日干狠狠操夜夜爽| 欧洲精品卡2卡3卡4卡5卡区| 大香蕉久久网| 一区福利在线观看| 成人无遮挡网站| 国产乱人偷精品视频| 在线观看66精品国产| 高清日韩中文字幕在线| 国产亚洲av嫩草精品影院| 欧美一级a爱片免费观看看| 国产午夜福利久久久久久| 深夜精品福利| 男插女下体视频免费在线播放| 久久久a久久爽久久v久久| 一级黄色大片毛片| 97超视频在线观看视频| 中国美女看黄片| 精品人妻一区二区三区麻豆| 全区人妻精品视频| 日韩欧美一区二区三区在线观看| av视频在线观看入口| 中出人妻视频一区二区| 日本熟妇午夜| 18禁黄网站禁片免费观看直播| 色播亚洲综合网| 国产乱人偷精品视频| 成人特级黄色片久久久久久久| 久久久久久伊人网av| 美女内射精品一级片tv| 老女人水多毛片| 色哟哟哟哟哟哟| 又粗又硬又长又爽又黄的视频 | 亚洲天堂国产精品一区在线| 九九在线视频观看精品| 国产精品国产三级国产av玫瑰| 亚洲精品国产av成人精品| 特大巨黑吊av在线直播| 国产日韩欧美在线精品| 欧美精品一区二区大全| 变态另类丝袜制服| 最近2019中文字幕mv第一页| 国产精品人妻久久久久久| 神马国产精品三级电影在线观看| 国产视频首页在线观看| 久久精品国产99精品国产亚洲性色| 99国产精品一区二区蜜桃av| 亚洲最大成人手机在线| 精品久久久久久久久久免费视频| 日本黄大片高清| 精品午夜福利在线看| 给我免费播放毛片高清在线观看| 中文字幕久久专区| 国产高潮美女av| 美女xxoo啪啪120秒动态图| 女的被弄到高潮叫床怎么办| 日韩,欧美,国产一区二区三区 | 男人舔女人下体高潮全视频| 男女视频在线观看网站免费| 又爽又黄a免费视频| 一级黄色大片毛片| 有码 亚洲区| 成人二区视频| 婷婷精品国产亚洲av| 爱豆传媒免费全集在线观看| 午夜爱爱视频在线播放| 在线国产一区二区在线| 国产精品无大码| 夜夜爽天天搞| 亚洲av成人精品一区久久| 在线观看av片永久免费下载| 嫩草影院精品99| 性欧美人与动物交配| 亚洲经典国产精华液单| 亚洲18禁久久av| 亚洲成人久久爱视频| 成人永久免费在线观看视频| av国产免费在线观看| 国模一区二区三区四区视频| 国产av麻豆久久久久久久| 亚洲成人精品中文字幕电影| 国产精品久久视频播放| 可以在线观看毛片的网站| 亚洲真实伦在线观看| 免费搜索国产男女视频| 国产色婷婷99| 亚洲真实伦在线观看| 99久久无色码亚洲精品果冻| 久久久a久久爽久久v久久| 亚洲精品亚洲一区二区| 国产高清有码在线观看视频| 观看免费一级毛片| 日日啪夜夜撸| 亚洲国产精品成人综合色| 日韩大尺度精品在线看网址| 亚洲精品日韩av片在线观看| 日韩成人av中文字幕在线观看| 免费黄网站久久成人精品| 国产成人精品久久久久久| 国产精品日韩av在线免费观看| 韩国av在线不卡| 少妇高潮的动态图| 高清日韩中文字幕在线| 18禁在线播放成人免费| 日本黄色片子视频| 成人亚洲欧美一区二区av| 少妇的逼好多水| 能在线免费观看的黄片| 亚洲图色成人| 夜夜看夜夜爽夜夜摸| 成人国产麻豆网| 18禁在线无遮挡免费观看视频| 麻豆一二三区av精品| 亚洲精品成人久久久久久| 日韩高清综合在线| 麻豆一二三区av精品| 男女下面进入的视频免费午夜| 日本一二三区视频观看| 日韩成人伦理影院| avwww免费| 国产真实乱freesex| 日韩国内少妇激情av| 久久中文看片网| 国产日本99.免费观看| 亚洲经典国产精华液单| 久久久久久久午夜电影| 99久国产av精品| 美女脱内裤让男人舔精品视频 | 国产精品嫩草影院av在线观看| 尾随美女入室| 色吧在线观看| 青春草国产在线视频 | 丰满的人妻完整版| 国产精品美女特级片免费视频播放器| 久久久久国产网址| 在线免费观看的www视频| 国产亚洲欧美98| 国产熟女欧美一区二区| 亚洲最大成人av| 亚洲第一电影网av| 亚洲av中文av极速乱| 能在线免费看毛片的网站| 中文资源天堂在线| 亚洲18禁久久av| 国产精品久久久久久久久免| 国产成人精品久久久久久| 69av精品久久久久久| 国产午夜精品一二区理论片| 免费不卡的大黄色大毛片视频在线观看 | 国产一级毛片在线| 色哟哟哟哟哟哟| 最近中文字幕高清免费大全6| 免费人成在线观看视频色| 男女下面进入的视频免费午夜| 国产人妻一区二区三区在| 少妇高潮的动态图| 91久久精品国产一区二区三区| 国内久久婷婷六月综合欲色啪| 91午夜精品亚洲一区二区三区| 一边摸一边抽搐一进一小说| 亚洲精华国产精华液的使用体验 | 欧美成人免费av一区二区三区| 两个人的视频大全免费| av在线播放精品| 亚洲欧美日韩高清在线视频| 97人妻精品一区二区三区麻豆| 一本一本综合久久| 婷婷亚洲欧美| 中文字幕熟女人妻在线| 国产综合懂色| 亚洲乱码一区二区免费版| 亚洲欧美中文字幕日韩二区| 哪里可以看免费的av片| 日韩欧美一区二区三区在线观看| 少妇人妻精品综合一区二区 | 美女黄网站色视频| 久久精品国产99精品国产亚洲性色| 日韩欧美 国产精品| 国产一区二区在线av高清观看| 简卡轻食公司| 免费观看精品视频网站| 夫妻性生交免费视频一级片| 国产三级中文精品| 亚洲精品日韩av片在线观看| 日韩三级伦理在线观看| 97在线视频观看| 毛片一级片免费看久久久久| 亚洲欧美精品综合久久99| 久久鲁丝午夜福利片| 国国产精品蜜臀av免费| 国产 一区 欧美 日韩| 男人舔女人下体高潮全视频| 三级毛片av免费| 永久网站在线| videossex国产| 国产精品国产高清国产av| 黄色视频,在线免费观看| 亚洲在线观看片| 久久99热这里只有精品18| 91精品国产九色| 男女啪啪激烈高潮av片| 国产精华一区二区三区| 白带黄色成豆腐渣| 欧美性猛交╳xxx乱大交人| 欧美一级a爱片免费观看看| eeuss影院久久| 99热6这里只有精品| 欧美最新免费一区二区三区| 九九热线精品视视频播放| av黄色大香蕉| 成人国产麻豆网| 国产一级毛片在线| 2021天堂中文幕一二区在线观| 99久国产av精品国产电影| h日本视频在线播放| 亚洲欧美日韩卡通动漫| 不卡视频在线观看欧美| av在线天堂中文字幕| 久久这里有精品视频免费| 亚洲精品色激情综合| 乱码一卡2卡4卡精品| 99国产极品粉嫩在线观看| 欧美激情在线99| 不卡视频在线观看欧美| 九九热线精品视视频播放| 青春草视频在线免费观看| 久久久久久久久大av| 亚洲av不卡在线观看| 2021天堂中文幕一二区在线观| 精品人妻熟女av久视频| 熟女电影av网| 久久韩国三级中文字幕| 国产精品99久久久久久久久| 97在线视频观看| 中文字幕久久专区| 在线免费观看的www视频| 亚洲人成网站在线播| 国产不卡一卡二| 91精品国产九色| av天堂在线播放| 亚洲成人久久爱视频| 三级国产精品欧美在线观看| 能在线免费看毛片的网站| 少妇高潮的动态图| 午夜亚洲福利在线播放| kizo精华| 中国国产av一级| 国产成人午夜福利电影在线观看| av又黄又爽大尺度在线免费看 | 亚洲国产精品成人综合色| 91精品一卡2卡3卡4卡| 久久精品影院6| 亚洲在线自拍视频| 菩萨蛮人人尽说江南好唐韦庄 | 一个人观看的视频www高清免费观看| 国产伦一二天堂av在线观看| 久久久久久大精品| 少妇的逼水好多| 狂野欧美激情性xxxx在线观看| 成人综合一区亚洲| 免费电影在线观看免费观看| 久久久a久久爽久久v久久| 人人妻人人澡人人看| 亚洲人成网站在线播| 日韩精品有码人妻一区| 狠狠精品人妻久久久久久综合| 国产极品粉嫩免费观看在线 | 黄色配什么色好看| 视频中文字幕在线观看| 尾随美女入室| 黄色怎么调成土黄色| 亚洲无线观看免费| 亚洲av电影在线观看一区二区三区| 午夜视频国产福利| 久久久国产一区二区| 亚洲丝袜综合中文字幕| 亚洲欧洲日产国产| 男人添女人高潮全过程视频| 又粗又硬又长又爽又黄的视频| 欧美精品高潮呻吟av久久| 午夜激情久久久久久久| 久久久精品免费免费高清| 国产精品一区二区在线不卡| 国产精品国产av在线观看| 国产日韩一区二区三区精品不卡 | 亚洲精品久久久久久婷婷小说| 国产黄色视频一区二区在线观看| 日韩av在线免费看完整版不卡| a级毛片黄视频| 人妻夜夜爽99麻豆av| 亚洲av免费高清在线观看| 大话2 男鬼变身卡| 亚洲国产色片| 欧美精品一区二区大全| 国产 精品1| 亚洲精品自拍成人| 99热这里只有是精品在线观看| 街头女战士在线观看网站| 丰满饥渴人妻一区二区三| 欧美日韩在线观看h| 飞空精品影院首页| 国产一区二区在线观看日韩| 国产精品久久久久久久久免| av福利片在线| 新久久久久国产一级毛片| 国产精品国产三级国产av玫瑰| 免费少妇av软件| 黑人猛操日本美女一级片| 国产午夜精品一二区理论片| 久久久久人妻精品一区果冻| 99国产精品免费福利视频| 丰满迷人的少妇在线观看| 久久久久国产网址| 嫩草影院入口| 肉色欧美久久久久久久蜜桃| 久久久久网色| 亚洲精品视频女| 久久久精品区二区三区| 日本午夜av视频| 久久久久久久久久久丰满| 久久久久久伊人网av| 少妇精品久久久久久久| 中文精品一卡2卡3卡4更新| 一级毛片aaaaaa免费看小| 日韩强制内射视频| 精品人妻熟女毛片av久久网站| 在线观看免费高清a一片| 日本黄色日本黄色录像| 中文字幕最新亚洲高清| 国产精品人妻久久久久久| 在线观看美女被高潮喷水网站| 国产成人精品在线电影| av电影中文网址| 91久久精品电影网| 国产乱来视频区| 国产欧美日韩综合在线一区二区| 免费黄频网站在线观看国产| 一级a做视频免费观看| 日日摸夜夜添夜夜添av毛片| av在线播放精品| 在线天堂最新版资源| 午夜激情av网站| 久久久午夜欧美精品| 欧美日韩亚洲高清精品|