• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Pb-Doping on Phase Structural and Optical Properties of CdZnS Nano-Powders

    2013-06-19 16:16:43MahdiGhasemifardSomayehTohidiandRoholahKarimzadeh

    Mahdi Ghasemifard, Somayeh Tohidi, and Roholah Karimzadeh

    Effects of Pb-Doping on Phase Structural and Optical Properties of CdZnS Nano-Powders

    Mahdi Ghasemifard, Somayeh Tohidi, and Roholah Karimzadeh

    —Cadmiumzincleadsulfide [Cd0.8(Zn1-x,Pbx)0.2S] nano-powders were prepared by an improved coprecipitation method. The effect of Pb2+concentration at 500°C on the phase and crystalline structure of the Cd0.8(Zn1-x,Pbx)0.2S powders were investigated by X-ray diffraction (XRD). According to the transmission electron microscopy (TEM) images, the particles size are in the range of 58nm to 72nm. In addition, optical band gap energy and optical constants of nano-powders were determined using the ultraviolet (UV)spectrum,Fourniertransforminfrared spectroscopy (FTIR), and Kramers-Kronig analysis, respectively. We calculate the refractive indexn, extinction coefficientk, and dielectric functionεas a function of the wavenumber. The experiment results demonstrate that the amount of Pb+2has been playing an increasingly important role on optical properties of CZPS nanocrystals.

    Index Terms—Coprecipitation, Kramers-Kronig analysis, optical constants, X-ray diffraction.

    1. Introduction

    Cadmium Sulfide (CdS) nano-powders are especially attractive because of their applications in some novel electronic and optoelectronic devices. Cadmium zinc sulfide (CdZnS) has great potential applications, especially in solar cells and photo voltaic devices which are based on the structure of CdZnS[1]?[3]. The replacement of cadmium telluride (CdTe) with the lower band gap alloys in solar cell systems, leading to an increase in window absorption and an increase in the short circuit current[4].

    Up to now, the Kramers-Kronig (KK) method has been used to analyze the reflection spectra to calculate optical constants of materials[5]?[8]. In fact, with this method we can analyze the optical properties of a wide variety of materials. However, its complexity of the integration limits the application of the KK method[9]?[13]. In the literature, there are few related works reporting optical constants using infrared spectroscopy. In the last years, there were only some works related written by our team published. Recently, the great interest on material characterization especially semiconductor was illustrated by Fourier transforms infrared (FTIR) spectroscopy. The transmission spectra and FTIR technique used to determine the refractive index (n) and extinction coefficient (k) as a function of the wavenumber. The wide-band gap, high refractive index (n), and low extinction coefficient (k) are important characteristics for electro-optical devices[14]. Hence, the measurement of these parameters is helpful in determining the relevance of the particle size to possible device applications. The optical properties were studied in the wavenumber range of 1000 cm?1to 2400 cm?1.

    The present study focuses on optical properties of Cd0.8(Zn1-x, Pbx)0.2S nano-powders withx=0.1, 0.2, and 0.3 compositions. This procedure is a simple way to synthesis CZPS nano-powders with inexpensive materials. However, in this paper, the optical constants of CZPS have been presented and discussed in detail.

    2. Experimental

    Raw materials used in this experiment consist of cadmium acetate [Cd(CH3COO)2.2H2O], zinc acetate [Zn(CH3COO)2.2H2O], lead acetate [Pb(CH3COO)2.3H2O], and thiourea [SC(NH2)2] as a source of sulfide. The aqueous solution of each single cation and anion (i.e. Cd+2, Zn+2, Pb+2and S-2) was prepared by dissolving all of them in distilled water. The solutions of zinc, lead, and sulfide were added dropwise to the aqueous solution of cadmium under continuous stirring at room temperature. The ammonium hydroxide solution is added to sol to form the cadmium tetraamine ions [Cd(NH3)4], zinc tetraamine ions [Zn(NH3)4], and lead tetraamine ions [Pb(NH3)4]. The flow

    3.2 TEM Analysis

    The typical transmission electron microscopy (TEM) image of the CZPS nano-powder calcinated at 500°C prepared by the coprecipitation method is shown in Fig. 3. From TEM analysis, the primary particle size of the nano-powders can be determined. The primary particles size of the nano powder is approximately 58 nm to 72 nm in diameter. According to Fig. 3, it can be observed that at 500°C the effects of Pb-doping lead to the particle size increase.

    3.3 Band Gap Energy

    In order to calculate the optical band gap of samples, the Uv-Vis (Ultraviolet and Visible) absorption spectrum was analyzed. The Uv-Vis of the Cd0.8(Zn1-x,Pbx)0.2S nano-powders is shown in Fig. 4. From Fig. 4, the absorption coefficient increases with the increase of the Pb concentrations. The absorption coefficient of nano-powder is calculated by

    whereAis the amount of optical absorption of nano-powders andDis the crystallite size with the unit nanometer (the Sherer relationship). The optical band gap,Eg, is obtained by fitting the optical absorption coefficientαto Tauc’s relation[21]:

    whereα,hν,α0, andEgare absorption coefficient, photon energy, a constant, and optical band gap energy, respectively. Thenrefers to these categorizes, ifn=2 then it relates to the direct optical transitions and forn=0.5 it relates to the indirect optical transitions. The results of the fi rst-principle calculation show that the ZnCdTe has a indirect energy band gap[22]. Therefore, by plotting, we evaluatedEgfrom the extrapolated linear portion of the graph. The graphs of (αhv)2versus the photon energy (hv) for CZPS are shown in Fig. 5.

    As a result from Fig. 5, for the obtained optical band gap for Cd0.8(Zn1-x,Pbx)0.2S at 500°C for different Pb concentrations, as increasing the Pb concentration fromx=0.0 tox=0.3, the optical band gap energy (Eg) of the nanoparticle decreases significantly. In other words, it is notable when the Pb concentration rises to 0.3, itsEgwill be reduced about 1.52 eV.

    Fig. 3. TEM micrograph of Cd0.8(Zn1-x,Pbx)0.2S: (a)x=0.0 and (b)x=0.2.

    Fig. 4. Uv-Vis absorption spectrum of Cd0.8(Zn1-x,Pbx)0.2S annealed at 500°C.

    Fig. 5. Dependence of the absorption coefficients (αhν)2on the photon energy for Cd0.8(Zn1-x,Pbx)0.2S nano-powders.

    3.4 Evaluation of the Optical Constants

    A. FTIR Spectroscopy

    FTIR spectroscopy was used in order to monitor the transformation of precursor solutions during the change of Pb concentration. By making the pallet of CZPS nano-powders in potassium bromide (KBr) the FTIR was prepared. The FTIR spectra of the CZPS powders in the range of 4000 cm?1to 250 cm?1treated at 500°C for a period of 2 h are shown in Fig. 6. In this frequency interval, a broad band was observed for each spectrum from 1257 cm?1to 986 cm?1with a maximum absorbance in thevicinities of 1115 cm?1. This peak has been associated with the vibration of M–O (M=Zn and Pb) bonds in the systems. Bands associated with Pb ions were not clearly observed in the mid-infrared spectra because of their heavy masses.

    Fig. 6. FTIR spectra of CZPS powders treated at 500°C.

    The FTIR spectrum for CZPS is similar to the most other CdZnS compounds that present four distinct vibration modes[23]. As can be seen from Fig. 6, clearly the transmittance bands’ intensities decrease with the increase of the molar ratios of the lead.

    Fig. 7. Reflectance spectrum for Cd0.8(Zn1-x,Pbx)0.2S powder: (a)x=0.0, (b)x=0.1, (c)x=0.2, and (d)x=0.3.

    B. Reflectance

    The reflectance (R) spectrum from 750 cm?1to 1800 cm?1for CZPS powder calcinated at 500°C is shown in Fig. 7. From Fig. 7 the peak values and the peak width ofRincrease slowly when the Pb concentration increases.

    Fig. 8. Plot of the refractive index (n) and extinction coefficient (k) as a function of the wavenumber: (a)x=0.0, (b)x=0.1, (c)x=0.2, and (d)x=0.3.

    C. Refractive Index and Extinction Coefficient

    At the next step of the present study, we used the transmission spectrum to determine the complex refractive index (n~) as a function of the wavenumber (K) using the KK analysis as stated previously. The complex refractive index can be calculated by[24]?[27]

    wherenis the real andkis the imaginary parts of the complex refractive index. The refractive index and extinction coefficient can be calculated by

    whereRis the reflectance andφis the phase change at a particular wavenumber between the incidences and the reflected signal, which is obtained by

    For calculatingφ(K), several extrapolation approaches have been evaluated and reported[28],[29]. We have calculatedφ(K) by Maclaurin’s method[31]as (7). This method is rather accurate, but it needs double Fourier transform and the calculation takes a relatively longer time.

    whereh=Ki+1–Kiand if data intervalgis an odd number theni=2, 4, 6, ???,g?1,g+1, ???, while ifgis an even number theni=1, 3, 5, ???,g?1,g+1, ???.

    D. Dielectric Function

    With the knowledge aboutnandk, the real (ε') and imaginary (ε") parts of the complex dielectric functioncan be calculated by

    With regard to (8) and (9) and havingnandk, the real and imaginary parts of the complex dielectric function can be easily calculated and plotted as a function of the wavenumber. The real and the imaginary parts of the frequency dependent dielectric function for the CZPS powder calcinated at 500°C and those for different Pb concentration are shown in Fig. 9.

    Based on data presented in Figs. 6, 7, 8, and 9, it is easy to find that a few meaningful differences inε'andε"take place. The curves are flat in the long wavenumber region and rapidly increase towards the shorter wavenumber at 1360 cm?1. This characteristic is related to the near electronic inter band transition. The rise that is rapid in the refractive index is associated with the fundamental absorption[30],[31].

    Fig. 9. Plot of the extinction coeffitiont as a function of the wavenumber at 500°C for: (a)x=0.0, (b)x=0.1, (c)x=0.2, and (d)x=0.3.

    4. Conclusions

    The Cd0.8(Zn1-x,Pbx)0.2S (x=0.0, 0.1, 0.2, and 0.3) nano-powder has been synthesized by the coprecipitation method using salt and metal precursor. The XRD patterns indicate the presentation of hexagonal and cubic phases forx=0.2 at 500°C. On the other hand, by increasing the annealing temperature from 400°C to 500°C, the percent of hexagonal phase is decreased. According to TEM images, the average particles size was estimated to be 65 nm. The optical properties of the CZPS have been investigated by transmittance measurements in the range of 250 cm?1to 4000 cm?1. We have presented a detailed description of using the KK method to analyze the normal incidence infrared reflectance spectra. From the achieved optical data, it can be drawn that the growth of Pb concentration and the alteration of the structure have an increasingly important role on the optical constant.

    [1] R. Bhattacharya, T. K. Das, and S. Saha, “Synthesis and characterization of CdS nanoparticles,”Journal of Materials Science: Materials in Electronics, vol. 22, pp. 1761?1765, Dec. 2011.

    [2] M. A. Haase, J. Qiu, J. M. De Puydt, and H. Cheng,“Blue-green laser diodes,”Applied Physics Letters, vol. 59, pp. 1272?1275, Jun. 1991.

    [3] T. P. Kumar and K. Sankaranarayanan, “Growth and characterization of Cdzns thin films by short duration micro wave assisted-chemical bath deposition technique,”Chalcogenide Letters, vol. 6, no. 10, pp. 555?562, Oct. 2009.

    [4] L. A. Kosyachenko, V. V. Kulchinsky, S. Yu. Paranchych, and V. M. Sklyarchuk, “Potential of using the Cd0.8Hg0.2Te alloy in solar cells,”Physics of Semiconductor Devices, vol. 41, no. 1, pp. 94?102, 2007.

    [5] H. R. Philipp and E. A. Taft, “Optical constants of germanium in the region 1 to 10 eV,”Physical Review, vol. 113, no. 4, pp. 1002?1005, 1959.

    [6] F. Stern, “Optical properties of lead-salt and III-V semiconductors,”Journal of Applied Physics, vol. 32, no. 10, pp. 2166?2173, 1961.

    [7] D. M. Roessler, “Kramers-Kronig analysis of reflection data: III. approximations, with reference to sodium iodide,”British Journal of Applied Physics, vol. 17, pp. 1313?1317, Feb. 1966.

    [8] A. Hadni, J. Claudel, D. Chanal, P. Strimer, and P. Vergnat,“Optical constants of potassium bromide in the far infrared,”Physical Review, vol. 163, no. 15, pp. 836?843, 1967.

    [9] A. S. Barker and M. Ilegems, “Infrared lattice vibrations and free-electron dispersion in GaN,”Physical Review B, vol. 7, no. 2, pp. 743?750, 1973.

    [10] R. S. Bauer, W. E. Spicer, and J. J. White, “Investigation of the Kramer-Kronig analysis: revised optical constants of AgCl,”The Journal of the Optical Society of America, vol. 64, no. 6, pp. 830?833, 1974.

    [11] K. A. Maslin, C. Patel, and T. J. Parker. “Far-infrared optical constants of a selection of Zincblende structure crystals at 300 K,”Infrared Physics, doi: 10.1016/0020-0891(91) 90119-Z.

    [12] K. K. Kamaras, L. Barth, F. Keilmann, R. Henn, M. Reedyk, C. Thomsen, M. Cardona, J. Kircher, P. L.Richards, and J. L. Stehle. “The low-temperature infrared optical functions of SrTiO3 determined by reflectance spectroscopy and spectroscopic ellipsometry,”Journal of Applied Physics, vol. 78, no. 1, pp. 1235?1240, 1995.

    [13] D. M. Roessler, “Kramers-Kronig analysis of reflection data,”British Journal of Applied Physics, vol. 16, no 8, pp. 1119?1123, 1965.

    [14] C. A. Barrios and M. Lipson, “Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration,”Journal of Applied Physics, vol. 96, no. 11, pp. 6008?6015, 2004.

    [15] N. Okada, K. Ishikawa, K. Murakami, T. Nomura, M. Hagino, N. Nishino, and U. Kihara, “Microstructure of alkoxide-prepared lead zirconate titanate actuator,”Japanese Journal of Applied Physics, vol. 31, pp. 3041?3044, Jul. 1992.

    [16] S. K. Pradhan, S. Sain, and H. Dutta, “Microstructure characterization of nanocrystalline magnesium ferrite annealed at elevated temperatures by Rietveld method,”Journal of Alloys and Compounds, vol. 509, pp. 4176?4182, Sep. 2011.

    [17] V. B. Sanap and B. H. Pawar, “Study of chemical bath deposited nanocrystalline CdZnS thin films,”Journal of Optoelectronics and Biomedical Materials, vol. 3, no. 2, pp. 39?43, 2011.

    [18] V. B. Sanap and B. H. Pawar, “Optical study of effect of cadmium sources on nanocrystalline Cds thin films,”Chalcogenide Letters, vol. 7, no. 3, pp. 227?231, 2010.

    [19] A. Khare, D. Kshatri, and S. Sharma, “Characterization and optical properties of Eu and Dy doped SrAl2O4phosphors,”Journal of International Academy of Physical Sciences, vol. 15, no. SP2, pp. 297?304, 2011.

    [20] S. C. Ray, M. K. Karanjai, and D. DasGupta, “Structure and photoconductive properties of dip-deposited SnS and SnS2 thin films and their conversion to tin dioxide by annealing in air,”Thin Solid Films, vol. 350, pp. 72?78, Apr. 1999.

    [21] J. C. Tauc, “Optical and electro-optic anisotropy of epitaxial Ba0.7Sr0.3TiO3 thin films,”Applied Physics Letter, vol. 96, pp. 061905?061908, Feb. 2010.

    [22] R. T. Graf, J. L. Koenig, and H. Ishida, “Optical constant determination of thin polymer films in the infrared,”Applied Spectroscopy, vol. 39, pp. 405?408, May 1985.

    [23] T. Ouahrani, A. H. Reshak, R. Khenata, H. Baltache, B. Amrani, and A. Bouhemadou, “Structural, electronic, linear, and nonlinear optical properties of ZnCdTe2chalcopyrite,”Physica Status Solidi (b), vol. 248, pp. 712?718, Mar. 2011.

    [24] S. S. Kawar and B. H. Pawar, “Synthesis and characterization of CdS n-Type of semiconductor thin filmshaving nanometer grain size,”Chalcogenide Letters, vol. 6, no. 5, pp. 219?225, May 2009.

    [25] R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,”Journal of Physics E: Scientific Instruments, vol. 16, no. 12, pp. 1214?1222, 1983.

    [26] R. H. Bube,Electronic Properties of Crystalline Solids, New York: Academic Press, 1974, ch. 11.

    [27] F. Stern, “Elementary theory of the optical properties of solids,”Solid State Physics, doi: 10.1016/S0081-1947(08) 60594-9.

    [28] H. R. Philipp and E. A. Taft. “Optical constants of germanium in the region 1 to 10eV,”Physical Review, vol. 113, no. 4, pp. 1002?1005, 1959.

    [29] M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions, United States Department of Commerce, New York, 1965.

    [30] R. G. Greenler, “Reflection absorption infrared spectroscopy and the structure of molecular adsorbents on metal surfaces,”Journal of Chemical Physics, vol. 51, pp. 381?403, Mar. 2000.

    [31] S. A. Francis, and A. H. Ellison, “Infrared spectra of monolayers on metal mirrors,”The Journal of the Optical Society of America, vol. 49, no. 2, pp. 131?137, 1959.

    Mahdi Ghasemifardwas born in Esfarayen, Iran in 1980. He received the B.S., M.S., and Ph.D. degrees from the Ferdowsi University of Mashhad, Iran in 2004, 2006, and 2009, respectively, all in solid state physics. Now, He works with the Nano Technology Lab, Esfarayen University, Esfarayen, Iran as a faculty member. His research interests include nano-electroceramic and thin film.

    Somayeh Tohidiwas born in Maragheh, Iran in 1987. She received the B.S. degree from the Urmiyeh University, Iran in 2009, the M.S. degree from the Shahide Beheshti University of Tehran, Iran in 2012, both in solid state physics. Her research interests include solar cell.

    Roholah Karimzadeh’s photograph and biography are not available at the time of publication

    t

    November 15, 2012; revised January 25, 2013.

    M. Ghasemifard is with the Nano Technology Lab, Esfarayen University, Esfarayen +98-585, Iran (Corresponding author e-mail: mahdi.ghasemifard@gmail.com).

    S. Tohidi and R. Karimzadeh are with the Department of physics, Shahid Beheshti University, Tehran +98-21, Iran (e-mail: somayeh_tohidi@yahoo.com; r_karimzadeh@sbu.ac.ir).

    Color versions of one or more of the figures in this paper are available online at http://www.intl-jest.com/

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2013.03.016

    久久久国产欧美日韩av| 伊人亚洲综合成人网| 精品人妻一区二区三区麻豆| 久久国产亚洲av麻豆专区| 日韩制服骚丝袜av| 九九在线视频观看精品| 日日啪夜夜爽| 啦啦啦视频在线资源免费观看| 成人手机av| 久久人妻熟女aⅴ| 80岁老熟妇乱子伦牲交| 在现免费观看毛片| 男女高潮啪啪啪动态图| 91午夜精品亚洲一区二区三区| 国产午夜精品一二区理论片| 建设人人有责人人尽责人人享有的| 美女福利国产在线| 国产国拍精品亚洲av在线观看| 国产极品天堂在线| 精品酒店卫生间| 精品亚洲成a人片在线观看| 国产精品久久久久成人av| 成人国语在线视频| 欧美xxⅹ黑人| 国产在线视频一区二区| 新久久久久国产一级毛片| 午夜91福利影院| 三级国产精品欧美在线观看| 91精品三级在线观看| 2021少妇久久久久久久久久久| 精品国产乱码久久久久久小说| 国产亚洲精品第一综合不卡 | 一边亲一边摸免费视频| 欧美精品一区二区免费开放| 久久人妻熟女aⅴ| 亚洲久久久国产精品| av线在线观看网站| 欧美xxxx性猛交bbbb| 卡戴珊不雅视频在线播放| 亚洲内射少妇av| 在线观看免费日韩欧美大片 | 欧美性感艳星| 亚洲av福利一区| 国产欧美日韩综合在线一区二区| 女人久久www免费人成看片| 黑人欧美特级aaaaaa片| 26uuu在线亚洲综合色| 满18在线观看网站| 国产在线免费精品| 国产又色又爽无遮挡免| 国产日韩欧美亚洲二区| 国产精品99久久99久久久不卡 | 免费av中文字幕在线| 亚洲美女视频黄频| 亚洲精品自拍成人| 永久网站在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品国产三级专区第一集| 五月天丁香电影| 99久久中文字幕三级久久日本| 少妇熟女欧美另类| 18禁在线无遮挡免费观看视频| 午夜视频国产福利| 精品久久久精品久久久| 又粗又硬又长又爽又黄的视频| 91国产中文字幕| 97超碰精品成人国产| 精品亚洲成a人片在线观看| 国产精品一二三区在线看| 午夜老司机福利剧场| 一本色道久久久久久精品综合| 免费人妻精品一区二区三区视频| 欧美日韩综合久久久久久| 一级毛片aaaaaa免费看小| 熟妇人妻不卡中文字幕| 最近手机中文字幕大全| 99九九线精品视频在线观看视频| 一级毛片 在线播放| 街头女战士在线观看网站| 制服丝袜香蕉在线| 国产一区二区三区综合在线观看 | 精品一区二区三区视频在线| av在线播放精品| 又大又黄又爽视频免费| 99视频精品全部免费 在线| 亚洲国产精品999| 日本91视频免费播放| 成年av动漫网址| 日韩一区二区三区影片| 免费日韩欧美在线观看| 啦啦啦中文免费视频观看日本| 亚洲精品乱久久久久久| 久久精品久久久久久噜噜老黄| 久久久久久久久久久久大奶| 波野结衣二区三区在线| 99国产精品免费福利视频| 日韩一区二区视频免费看| 97在线人人人人妻| 嘟嘟电影网在线观看| 狂野欧美激情性bbbbbb| 欧美日韩国产mv在线观看视频| 久久人人爽av亚洲精品天堂| 午夜激情久久久久久久| 一本—道久久a久久精品蜜桃钙片| 国产精品无大码| 纵有疾风起免费观看全集完整版| 日本黄色日本黄色录像| 日韩欧美一区视频在线观看| 97在线人人人人妻| 国产69精品久久久久777片| 亚洲四区av| 99久久精品国产国产毛片| av国产精品久久久久影院| 日韩强制内射视频| 国产精品国产三级国产av玫瑰| 国产成人91sexporn| 草草在线视频免费看| 婷婷色综合大香蕉| 午夜av观看不卡| 欧美日韩视频精品一区| 国产午夜精品久久久久久一区二区三区| 免费人妻精品一区二区三区视频| 国产精品 国内视频| av.在线天堂| 永久网站在线| 国产女主播在线喷水免费视频网站| 午夜福利在线观看免费完整高清在| a级毛片黄视频| av一本久久久久| 精品久久蜜臀av无| 日韩三级伦理在线观看| 国产成人免费观看mmmm| 亚洲av.av天堂| 各种免费的搞黄视频| 亚洲精品乱久久久久久| 五月玫瑰六月丁香| 亚洲精品乱久久久久久| 中文精品一卡2卡3卡4更新| 一级毛片电影观看| 亚洲欧洲精品一区二区精品久久久 | 亚洲国产欧美在线一区| 欧美日韩视频精品一区| 大话2 男鬼变身卡| 国产高清不卡午夜福利| 黑丝袜美女国产一区| a级毛片在线看网站| 欧美精品人与动牲交sv欧美| 寂寞人妻少妇视频99o| 伊人久久精品亚洲午夜| 蜜桃在线观看..| 黄色欧美视频在线观看| 欧美亚洲日本最大视频资源| 成年人午夜在线观看视频| 日韩免费高清中文字幕av| 男男h啪啪无遮挡| 9色porny在线观看| 在线观看国产h片| 日韩大片免费观看网站| 日韩av在线免费看完整版不卡| 欧美三级亚洲精品| 夫妻性生交免费视频一级片| 欧美日韩综合久久久久久| 性高湖久久久久久久久免费观看| 成人午夜精彩视频在线观看| 日韩欧美一区视频在线观看| 日本欧美视频一区| 亚洲精品一区蜜桃| 涩涩av久久男人的天堂| 亚洲av在线观看美女高潮| 乱人伦中国视频| 18禁观看日本| 中文字幕亚洲精品专区| 亚洲av不卡在线观看| 欧美xxxx性猛交bbbb| 最近2019中文字幕mv第一页| 国产乱来视频区| 亚洲av综合色区一区| 日本黄色片子视频| 在线亚洲精品国产二区图片欧美 | 日韩人妻高清精品专区| 亚洲av欧美aⅴ国产| 亚洲精品乱码久久久久久按摩| 中文天堂在线官网| 日产精品乱码卡一卡2卡三| 亚洲精品视频女| 国产精品成人在线| 日本午夜av视频| 搡女人真爽免费视频火全软件| 日本vs欧美在线观看视频| 日本午夜av视频| 美女主播在线视频| 搡女人真爽免费视频火全软件| 免费不卡的大黄色大毛片视频在线观看| 一级片'在线观看视频| 亚洲国产精品一区三区| 热re99久久国产66热| 亚洲成人手机| 女性被躁到高潮视频| 少妇熟女欧美另类| 另类精品久久| 97在线人人人人妻| 国产精品麻豆人妻色哟哟久久| 亚洲丝袜综合中文字幕| 日韩在线高清观看一区二区三区| 在线精品无人区一区二区三| 十八禁网站网址无遮挡| 日日摸夜夜添夜夜添av毛片| 精品99又大又爽又粗少妇毛片| 亚洲精品乱码久久久v下载方式| 乱码一卡2卡4卡精品| 国产精品久久久久久精品电影小说| 成人无遮挡网站| 国产亚洲最大av| 啦啦啦中文免费视频观看日本| 美女内射精品一级片tv| av不卡在线播放| 精品人妻熟女av久视频| 在线观看www视频免费| 三上悠亚av全集在线观看| 国产一区有黄有色的免费视频| 午夜视频国产福利| 久久亚洲国产成人精品v| 国产精品一区二区三区四区免费观看| 国产免费福利视频在线观看| 波野结衣二区三区在线| 国产精品久久久久久久电影| 天天躁夜夜躁狠狠久久av| 午夜av观看不卡| 亚洲国产精品专区欧美| 亚洲精品色激情综合| 黑人猛操日本美女一级片| 观看美女的网站| 在现免费观看毛片| 蜜桃国产av成人99| 久久久a久久爽久久v久久| 国产成人一区二区在线| 99精国产麻豆久久婷婷| 日产精品乱码卡一卡2卡三| 亚洲av男天堂| 欧美日韩视频高清一区二区三区二| 一本大道久久a久久精品| 在线免费观看不下载黄p国产| 国产在线一区二区三区精| 国产不卡av网站在线观看| 日本免费在线观看一区| 观看av在线不卡| 国产国拍精品亚洲av在线观看| 大香蕉97超碰在线| tube8黄色片| 日韩在线高清观看一区二区三区| 99国产综合亚洲精品| 一区二区三区精品91| 亚洲一级一片aⅴ在线观看| 亚洲色图综合在线观看| 人妻少妇偷人精品九色| 亚洲精品乱码久久久v下载方式| a级片在线免费高清观看视频| 国产熟女欧美一区二区| 日本色播在线视频| 色哟哟·www| 99久久综合免费| 少妇熟女欧美另类| 色在线成人网| 啦啦啦 在线观看视频| 1024视频免费在线观看| 在线av久久热| 黄色怎么调成土黄色| 国产精品免费视频内射| 丁香六月天网| 女人久久www免费人成看片| 18在线观看网站| 精品午夜福利视频在线观看一区 | 国产精品1区2区在线观看. | 啦啦啦在线免费观看视频4| 免费在线观看视频国产中文字幕亚洲| av免费在线观看网站| 亚洲 国产 在线| 国产又色又爽无遮挡免费看| 国产亚洲欧美在线一区二区| 中亚洲国语对白在线视频| 欧美人与性动交α欧美精品济南到| svipshipincom国产片| 亚洲av成人一区二区三| 精品福利观看| 久久久久久人人人人人| 国产淫语在线视频| 精品人妻熟女毛片av久久网站| 极品教师在线免费播放| 国产黄色免费在线视频| 国产成人免费观看mmmm| av一本久久久久| 国产成人精品久久二区二区免费| 一二三四在线观看免费中文在| www.自偷自拍.com| 一本一本久久a久久精品综合妖精| 香蕉丝袜av| 国产欧美日韩一区二区精品| svipshipincom国产片| netflix在线观看网站| 国产精品久久久久久精品古装| 久久狼人影院| 欧美激情极品国产一区二区三区| 日韩人妻精品一区2区三区| 日本vs欧美在线观看视频| 大香蕉久久成人网| 麻豆国产av国片精品| 国产xxxxx性猛交| 欧美中文综合在线视频| 在线天堂中文资源库| 热re99久久精品国产66热6| 欧美久久黑人一区二区| 亚洲中文日韩欧美视频| 亚洲中文字幕日韩| 欧美黑人精品巨大| 亚洲七黄色美女视频| 夜夜夜夜夜久久久久| 美国免费a级毛片| 久久婷婷成人综合色麻豆| 99re6热这里在线精品视频| 色精品久久人妻99蜜桃| 国产精品久久电影中文字幕 | 露出奶头的视频| 麻豆国产av国片精品| 国产精品一区二区在线不卡| 亚洲五月色婷婷综合| 国产又色又爽无遮挡免费看| 国产有黄有色有爽视频| 日韩一卡2卡3卡4卡2021年| 窝窝影院91人妻| 久久久精品区二区三区| 国产91精品成人一区二区三区 | 超碰成人久久| 亚洲专区中文字幕在线| 午夜激情av网站| 丝袜在线中文字幕| 国产在线视频一区二区| 桃红色精品国产亚洲av| 成人18禁高潮啪啪吃奶动态图| 久久国产精品影院| 日本五十路高清| 精品久久久久久久毛片微露脸| 国产精品美女特级片免费视频播放器 | 男男h啪啪无遮挡| 亚洲专区中文字幕在线| 精品少妇黑人巨大在线播放| 后天国语完整版免费观看| 免费在线观看日本一区| 国产欧美日韩一区二区三区在线| 亚洲精品国产精品久久久不卡| 波多野结衣一区麻豆| 精品少妇久久久久久888优播| 久久久精品区二区三区| 99re6热这里在线精品视频| 99精品久久久久人妻精品| 精品一区二区三区av网在线观看 | 精品久久久久久久毛片微露脸| 免费不卡黄色视频| 欧美人与性动交α欧美软件| 国产xxxxx性猛交| 69av精品久久久久久 | 亚洲全国av大片| 久久国产精品大桥未久av| 十分钟在线观看高清视频www| 日韩免费高清中文字幕av| 色在线成人网| 精品国产乱码久久久久久男人| 日韩中文字幕视频在线看片| 欧美激情久久久久久爽电影 | kizo精华| 成年人黄色毛片网站| 精品一区二区三区av网在线观看 | 亚洲精品美女久久久久99蜜臀| 国产精品成人在线| 色视频在线一区二区三区| 国产亚洲一区二区精品| 一本一本久久a久久精品综合妖精| 91国产中文字幕| 脱女人内裤的视频| 亚洲国产成人一精品久久久| 亚洲中文av在线| 亚洲国产av影院在线观看| 亚洲中文日韩欧美视频| 天天躁夜夜躁狠狠躁躁| 五月开心婷婷网| 男人操女人黄网站| 久久 成人 亚洲| 亚洲av成人不卡在线观看播放网| 色94色欧美一区二区| 国产欧美日韩综合在线一区二区| 亚洲av成人一区二区三| 天天躁狠狠躁夜夜躁狠狠躁| 久久99一区二区三区| 国产精品欧美亚洲77777| 一二三四在线观看免费中文在| 18禁国产床啪视频网站| 中文欧美无线码| 亚洲精品av麻豆狂野| 乱人伦中国视频| 免费观看av网站的网址| 久久久国产一区二区| 黑人巨大精品欧美一区二区mp4| 热99久久久久精品小说推荐| 国产成人影院久久av| 国产一区二区 视频在线| 老汉色∧v一级毛片| 亚洲精品粉嫩美女一区| 99久久国产精品久久久| 国产成人免费无遮挡视频| 好男人电影高清在线观看| 狠狠狠狠99中文字幕| 欧美国产精品一级二级三级| 亚洲精品在线美女| 性高湖久久久久久久久免费观看| 老司机午夜十八禁免费视频| 搡老熟女国产l中国老女人| 老汉色∧v一级毛片| 他把我摸到了高潮在线观看 | 淫妇啪啪啪对白视频| 欧美日韩黄片免| 国产精品一区二区在线观看99| 成人国产av品久久久| 成年动漫av网址| 国产av又大| 亚洲中文日韩欧美视频| av天堂在线播放| 日韩人妻精品一区2区三区| 天堂8中文在线网| 午夜免费成人在线视频| 亚洲九九香蕉| 法律面前人人平等表现在哪些方面| 妹子高潮喷水视频| 国产免费现黄频在线看| 久久久水蜜桃国产精品网| 亚洲一码二码三码区别大吗| 丰满迷人的少妇在线观看| 国产男靠女视频免费网站| 电影成人av| 一级毛片精品| 国产在线观看jvid| 日韩人妻精品一区2区三区| 国产1区2区3区精品| 国产真人三级小视频在线观看| 国产精品自产拍在线观看55亚洲 | 久久久久久亚洲精品国产蜜桃av| 咕卡用的链子| 午夜免费成人在线视频| 久久久久久久久久久久大奶| 丁香六月欧美| 久久国产精品男人的天堂亚洲| 丝袜人妻中文字幕| 亚洲中文日韩欧美视频| 国产淫语在线视频| 久久久国产成人免费| 国产精品熟女久久久久浪| 欧美黄色片欧美黄色片| 亚洲免费av在线视频| 日本黄色视频三级网站网址 | 久久久国产精品麻豆| 婷婷丁香在线五月| 亚洲精品中文字幕在线视频| 中文字幕人妻丝袜制服| 制服人妻中文乱码| 国产精品影院久久| 在线观看免费日韩欧美大片| av电影中文网址| 国产91精品成人一区二区三区 | 黑人巨大精品欧美一区二区mp4| 久久中文字幕人妻熟女| 黄色丝袜av网址大全| 涩涩av久久男人的天堂| 青草久久国产| 夜夜骑夜夜射夜夜干| 高清视频免费观看一区二区| 成人三级做爰电影| 亚洲专区中文字幕在线| 久久久久久久久久久久大奶| 午夜91福利影院| 欧美日韩中文字幕国产精品一区二区三区 | 无遮挡黄片免费观看| 国产欧美日韩一区二区精品| 不卡av一区二区三区| 99国产精品免费福利视频| 久久久国产一区二区| 亚洲专区中文字幕在线| 久久久久久久久久久久大奶| 色播在线永久视频| 久久毛片免费看一区二区三区| 热99re8久久精品国产| 一级黄色大片毛片| 叶爱在线成人免费视频播放| 亚洲情色 制服丝袜| 亚洲美女黄片视频| 日本av免费视频播放| 又黄又粗又硬又大视频| 岛国毛片在线播放| 免费久久久久久久精品成人欧美视频| 大型黄色视频在线免费观看| 一级片免费观看大全| 91精品国产国语对白视频| 久久精品国产亚洲av香蕉五月 | 久久性视频一级片| 久久精品亚洲精品国产色婷小说| 亚洲视频免费观看视频| 日韩大片免费观看网站| 999精品在线视频| 天天操日日干夜夜撸| 丝袜美足系列| 国产av一区二区精品久久| 最新在线观看一区二区三区| 久久久久久免费高清国产稀缺| 日本a在线网址| 亚洲成人手机| 十八禁网站免费在线| av一本久久久久| 精品亚洲成国产av| 视频区图区小说| 不卡一级毛片| 最近最新免费中文字幕在线| 不卡av一区二区三区| 视频区欧美日本亚洲| 久久影院123| 亚洲国产看品久久| 亚洲国产av影院在线观看| 动漫黄色视频在线观看| 国产福利在线免费观看视频| 一级毛片精品| 深夜精品福利| 久久ye,这里只有精品| 99re在线观看精品视频| 日本vs欧美在线观看视频| 欧美日韩黄片免| 一边摸一边抽搐一进一小说 | 亚洲成人手机| 十八禁网站免费在线| 国产在线精品亚洲第一网站| 久久国产精品男人的天堂亚洲| 日本wwww免费看| 亚洲专区中文字幕在线| 成年人黄色毛片网站| 亚洲专区国产一区二区| 51午夜福利影视在线观看| 亚洲午夜理论影院| 日韩三级视频一区二区三区| 丰满迷人的少妇在线观看| 国产淫语在线视频| 日韩一卡2卡3卡4卡2021年| 欧美亚洲日本最大视频资源| 一边摸一边抽搐一进一小说 | 王馨瑶露胸无遮挡在线观看| 亚洲成av片中文字幕在线观看| 久久久久精品国产欧美久久久| videos熟女内射| 精品一区二区三区四区五区乱码| 亚洲精品在线美女| 男女下面插进去视频免费观看| 一本综合久久免费| 岛国毛片在线播放| 久久99热这里只频精品6学生| 国产欧美日韩一区二区三| 2018国产大陆天天弄谢| 91成人精品电影| 99久久国产精品久久久| 亚洲国产成人一精品久久久| 香蕉国产在线看| 一区二区三区激情视频| a级毛片在线看网站| 国产精品98久久久久久宅男小说| 亚洲精品中文字幕一二三四区 | 99在线人妻在线中文字幕 | 久久久久精品国产欧美久久久| 精品一区二区三卡| 自拍欧美九色日韩亚洲蝌蚪91| 精品亚洲乱码少妇综合久久| 久久这里只有精品19| 人人妻,人人澡人人爽秒播| 欧美人与性动交α欧美精品济南到| 亚洲中文字幕日韩| 丝袜人妻中文字幕| 亚洲欧美日韩另类电影网站| 电影成人av| av免费在线观看网站| av网站免费在线观看视频| 成年人午夜在线观看视频| 国产免费福利视频在线观看| 老司机深夜福利视频在线观看| 精品国产乱码久久久久久男人| 天天躁日日躁夜夜躁夜夜| 国产成人精品在线电影| 精品少妇内射三级| 日韩视频一区二区在线观看| 大片免费播放器 马上看| 日本黄色日本黄色录像| 国产精品电影一区二区三区 | 日韩欧美三级三区| 久久人人爽av亚洲精品天堂| 欧美黄色片欧美黄色片| 午夜免费鲁丝| 十八禁网站免费在线| 日日爽夜夜爽网站| 日韩熟女老妇一区二区性免费视频| 在线观看免费高清a一片| 免费高清在线观看日韩| 久久精品国产综合久久久| 国产精品一区二区在线观看99| 王馨瑶露胸无遮挡在线观看| 一边摸一边抽搐一进一出视频| 免费观看人在逋| 一二三四在线观看免费中文在| 两性夫妻黄色片| 国产在线一区二区三区精| 亚洲精品国产一区二区精华液| 免费在线观看完整版高清| 午夜日韩欧美国产| 天天操日日干夜夜撸| 超碰97精品在线观看|