• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultra-Low Power Pipeline Structure Exploiting Noncritical Stage with Circuit-Level Timing Speculation

    2013-11-26 10:48:08TaoLuoYaJuanHePingLuoYanMingHeandFengHu

    Tao Luo, Ya-Juan He, Ping Luo, Yan-Ming He, and Feng Hu

    1.Introduction

    With the development of electronic products, power,the first degree design constraint, is becoming more and more important[1],[2].With the increasing clock frequency,power aware computing becomes more and more crucial in the imbedded system design and system-on-chip (SoC)design.Dynamic voltage scaling (DVS) is an effective way to achieve large amount of power savings[3]-[7], for dynamic energy scales is quadratic with the supply voltage[8].In order to save energy as much as possible, it is significant to scale the supply voltage as low as possible.To achieve this goal, the traditional methods of adaptive design have used look-up tables[9],[10]or delay-chain[11]-[17].However,traditional DVS design is conservative because the voltage is chosen to ensure the processor operates correctly under the worst-case combined condition which is very rare[18].In order to ameliorate this situation and make use of the safe margin, several techniques, such as the Razor structure,have been put forward[19].However, the Razor structure is exclusively concerned with the critical stage and ignores the significant potential free slack time of the noncritical stages.

    In this paper, an ultra-low power pipeline structure is proposed.It combines the advantage of in-situ error detection and correction, namely the safety margin is cut off, and the advantage of using the free slack time of the noncritical stage.The main differences between the proposed pipeline structure and the traditional one are the stage register and the clock gating strategy.In order to detect and correct the timing error due to the decrease of the supply voltage, the stage register is equipped with a latch and some other accessories which allow the stage register to double lock the data.And the latch is high level enabled so the stage register can receive data during the high level of the clock.So even if the data fail to be ready at the rising edge of clock, namely the timing errors appear,the pipeline can still operate correctly without performance penalties.Besides, the time slack of the last stage can propagate to the next one, if the next stage is a noncritical stage which has extra time, then it can tolerate the time slack of the last stage, which allows the supply voltage to be scaled lower.

    The rest of the paper is organized as follows.In Section 2, the whole structure of this ultra-low power pipeline will be presented including the structure of stage register.In addition, the operating mechanism and tuning supply voltage according to the error condition would also be presented.Section 3 will show the simulation results of the whole pipeline.And the conclusion will be drawn in Section 4.

    2.Structure of Ultra-Low Power Pipeline

    The block diagram of the proposed ultra-low power pipeline structure is shown in Fig.1.

    As shown in Fig.1, the ultra-low power pipeline consists of five stages which is the class structure of the current pipeline.In order to control the critical paths precisely, the combinational blocks are replaced by delay chains which can well represent the delay of the critical path of each stage.The pipeline structure consists of five stages.The first one is the instruction fetch (IF), at which the processor fetches the instruction code from the instruction register.The second one is the instruction decode (ID), at which the instructions delivered from the IF stage is decoded.The third stage is execution (EX), at which the processor executes the instruction decoded by the ID stage, and the control signal from the ID stage can make arithmetic logic unit (ALU) do all kinds of action such as addition and subtraction.Then the processor stores data to memory or load data from memory at the fourth stage named the memory (MEM) stage.The last stage is the write back (WB) stage, at which the processor stores the result to the data register.According to the differences among these stages, each stage is replaced by different delay chains which have different delay time.In classic pipeline structure, the EX is the critical stage and the others are noncritical stages[19],[20].According to the design, the critical stage, namely the EX stage, has a delay of 4.45 ns with a period of 5 ns, the ID stage has a delay of 3.6 ns, and the other stages all have delays of 2.7 ns.The clock is gated by the err signal (see Fig.1) of the last stage register.This gating strategy working together with stage registers can fully exploit noncritical stages.

    Fig.1.Block diagram of the ultra-low power pipeline.

    Fig.2.Structure of stage register.

    2.1 Pipeline Error Detection/Correction

    As mentioned before, the pipeline achieves progressive energy saving by cutting off the safe margin and exploiting noncritical stages.Efficient timing error detection and correction are keys to reach this goal.The block diagram of the stage register is shown in Fig.2.It consists of a flip-flop,a latch, a XOR gate, and a multiplexer (MUX) module.

    As shown in Fig.2, the main flip-flop is augmented with a latch which is controlled by the clock, and the latch is high level enabled.The operating voltage is constrained such that the worst-case delay is guaranteed to meet the setup time of the latch.When the high level of clock is coming, the flip-flop latches the data at the rising edge and the latch receives the data during the high level of the clock.The data latched by them respectively are then compared.If they are different, it indicates that there is a timing error in the flip-flop, and the correct value latched in the latch is used to correct the timing error to ensure the data delivered to the next stage is correct.Utilizing the value in the latch directly to the next stage is an effective way to use the extra time of the noncritical stage to ameliorate the critical stage.The time slack of the last stage can propagate to the next stage, if the next stage is a noncritical stage which has extra time, then it can tolerate the time slack of the last stage,which allows the supply voltage to be scaled lower.According to this mechanism, the system operates correctly as long as the MEM stage register does not generate a valid error signal.And once the MEM stage register generates a valid error signal, the pipeline will be recovered by using global clock gating.

    The operation of a stage register is illustrated in Fig.3.In clock cycle1 and cycle2, the combination logic meets the setup time at the rising edge of the clock, and both the main flip-flop and the latch can latch the correct data.In this condition, the signal Error_h keeps low and the operation of the pipeline is normal.The condition of timing error appears in cycle3 as shown in Fig.3.The combinational logic exceeds the intended delay due to sub-critical voltage scaling.In this case, the main flip-flop fails to latch the data at the rising edge of the clock, but since the latch is high level enabled, the data is latched by the latch correctly in cycle4.As the data latched in the main flip-flop and the latch are different, the Error_h signal is set valid at the output of the comparator.Then, the MUX controlled by the Error_h signal chooses the output of latch as the output of the whole register.So the output of the register is correct.

    Fig.3.Operation of stage register.

    Fig.4.Critical stage borrow time from noncritical stage.

    2.2 Exploiting the Noncritical Stage

    Because the stage register is able to borrow time from the next stage, the pressure on critical stage is released by exploiting the next noncritical stage.Fig.4 shows the operation of a critical stage and the noncritical stage next to it.At the first and second rising edges of the clock signal,the critical stage and noncritical stage both satisfy the timing requirement and the Error_h signal remains low.The operation of pipeline is normal.At the third rising edge of the clock signal, the critical stage fails to satisfy the timing constraint namely that data4 does not arrive at the rising edge of the clock signal, and then the Error_h signal is set valid to indicate this timing error.However, since the error detection and correction mechanism which explained in Section 2.1 is applied, the correct data4 still delivers to the noncritical stage after the rising edge of the clock.

    2.3 Short Path Constraints and Duty Ratio of Clock

    The use of the high level enabling latch raises the possibility that a short path in the combinational logic will corrupt the data in the latch.Fig.5 shows the difference between the right path and the short path.

    Fig.5 shows how a short-path allows data launched at the start of a cycle to be latched into the latch, instead of the data being launched from the previous cycle.As we design,the latch should lock the data from the previous cycle as the main flip-flop does.However, if the delay of the stage is too short, the data will arrive at the latch before the lock window closes.As shown in Fig.5, the minimum-path constraint is equal to the sum of tdelayand the hold time tholdof the latch, which is typically a small value.The minimum path delay constraint can be expressed as

    where tdelayis the duration time of the high level of the clock and tholdis the hold time of the latch.

    Therefore, a minimum-path length constraint should be applied to the input of each register to avoid this corruption.These minimum-path constraints result in the addition of buffers to slow down the fast path and therefore introduce a certain overhead.However, the fast path of the pipeline stage is rare so the number of buffers is negligible, which makes the overhead negligible.

    Fig.5.Short path constraint.

    According to (1), the duty cycle of the clock determines how serious the minimum-path length constraint can be.A large duty ratio of a clock signal increases the severity of the short path constraint and therefore increases the power overhead due to the need for additional buffers.On the other hand, a small duty ratio of clock reduces the margin between the main flip-flop and the latch, and hence reduces the amount that the supply voltage can be dropped below the critical supply voltage.Thus the duty ratio represents a trade-off between the cost due to buffers added and the power saved by the dropped supply voltage.In this design,a duty ratio of 2/5 is adopted to balance the energy cost and saved.

    2.3 Supply Voltage Control Strategy

    The error condition of registers at each stage is the basis of how to adjust the supply voltage.There is no need to gate the clock when errors appear at IF, ID, and EX stages, because the errors at those stages will not affect the correctness of the pipeline.The errors that appear at the MEM stage really matter.If the error signal of the MEM stage is invalid, then it indicates the pipeline operates correctly and the voltage ought to be decreased, no matter whether other error signals valid or not.When the error signal of the MEM stage appears, it indicates the circuits are not meeting the clock period constraints and it is used in the clock gating to correct the output with right data, and the whole pipeline will be suspended for one cycle.The error signal is also used to indicate that the supply voltage should be increased.When the supply voltage increases, the delay of the combinational circuit will decrease at the same time, then the error signal will be set invalid to indicate that the pipeline operates correctly again.There are four errors index signals, which have different weights, for they indicate different stages of the pipeline.So a more complicated algorithm can be developed to generate the clock gating signal and to control the supply voltage.For simplicity, we take the simplest one, namely using the error signal of the MEM stage to control the supply voltage and clock gating.

    3.Simulation Result

    To prove the validity and robustness of this novel pipeline structure which exploits noncritical stage and uses the timing error detection and correction approach, the structure is designed and simulated.The only difference between the ultra-low power pipeline structure and regular pipeline structure is the stage register, but the stage register does not affect the delay of the circuit as well as the supply voltage, so the ultra-low power pipeline can show all the characteristics of the regular pipeline.Therefore, the critical comparisons are given among the ultra-low pipeline with different supply voltages.The pipeline is implemented in a 0.13 μm digital-analog mixed signal standard CMOS(complementary metal-oxide-semiconductor transistor)process, which is expected to operate at 200 MHz and the ratio cycle of clock is 2/5.Fig.6 shows the relation of the power and supply voltage.

    As shown in the Fig.6, the power cost of the design reduces when the supply voltage decreases.From the simulation result, when the supply voltage scales at 1.08 V,the first error occurs at the critical stage, namely the EX stage.This situation represents the traditional adaptive voltage scaling (AVS) with a safety margin.When the supply voltage scales at 0.97 V, the ID stage first fails to meet the clock constraint, and when the supply voltage scales at 0.95 V, the err signal is first to be set valid to indicate that the supply voltage should increase to avoid the corruption of the whole pipeline because of the over scaling.The key voltage point and the corresponding power and error condition are shown in Table 1.

    Fig.6.Relation of power and supply voltage.

    Table 1: Key voltage point

    According to Table 1, a large amount of energy can be saved by this structure.Compared with the fixed voltage case, 50% of the energy can be saved, and compared with the traditional adaptive voltage scaling design, 37.8% of the energy can be saved.

    4.Conclusions

    In this paper, an ultra-low power pipeline structure has been proposed.The key advantage of this pipeline structure over the traditional voltage scaling technologies is that it makes use of the stage registers, which are negligible compared with the whole microprocessor system, the power consumption of the overhead logic is negligible compared with the reduction of power consumption of the whole pipeline.

    Acknowledgment

    The authors would like to thank IPGoal Microelectronics(Sichuan) Co., Ltd for its support.

    [1]A.Wang, S.Naffziger, Adaptive Techniques for Dynamic Process Optimization, New York: Springer, 2008, pp.1-10.

    [2]Y.-Q.Huo, Q.-C.Shao, and Z.Huai, “Adaptive power and bit allocation in multicarrier systems,” Journal of Electronic Science and Technology of China, vol.5, no.1, pp.13-17,2007.

    [3]T.Pering, T.Burd, and R.Brodersen,“The simulation and evaluation of dynamic voltage scaling algorithms,” in Proc.of 1998 Int.Symposium on Low Power Electronics and Design, Monterey, 1998, pp.76-81.

    [4]T.Liu and S.Lu, “Performance improvement with circuit-level speculation,” in Proc.of the 33rd Annual Int.Symposium on Microarchitecture, Monterey, 2000, pp.348-355.

    [5]H.W.Lee, K.H.Kim, Y.K.Choi, J.H.Sohn, N.K.Park, K.W.Kim, C.Kim, Y.J.Choi, and B.T.Chung, “A 1.6V 1.4 Gbp/s/pin consumer DRAM with self-dynamic voltage scaling technique in 44 nm CMOS technology,” IEEE Journal of Solid-State Circuits, vol.47, no.1, pp.131-140,Jan.2012.

    [6]M.Elgebaly and M.Sachdev, “Variation-aware adaptive voltage scaling system,” IEEE Trans.on Very Large Scale Intergration Systems, vol.15, no.5, pp.560-570, May 2007.

    [7]A.Gupta, R.Chauhan, V.Menezes, V.Narang, and H.M.Roopashree, “A robust level-shifter design for adaptive voltage scaling,” in Proc.of the 21st Int.Conf.on VLSI Design, Hyderabad, 2008, pp.383-388.

    [8]T.Mudge, “Power: A first class design constraint,”Computer, vol.34, no.4, pp.52-57, Apr.2001.

    [9]J.Tschanz, N.S.Kim, S.Dighe, J.Howard, G.Ruhl, S.Vangal, S.Narendra, Y.Hoskote, H.Wilson, C.Lam, M.Shuman, C.Tokunaga, D.Somasekhar, S.Tang, D.Finan, T.Karnik, N.Borkar, N.Kurd, and V.De, “Adaptive frequency and biasing techniques for tolerance to dynamic temperature-voltage variations and aging,” in Digest of Technical Papers of IEEE Int.Solid-State Circuits Conf.,San Francisco, 2007, pp.292-293,

    [10]B.Stackhouse, B.Cherkauer, M.Gowan, P.Gronowski, and C.Lyles, “A 65nm 2-billion-transistor quad-core Itanium?? processor,” in Digest of Technical Papers of IEEE Int.Solid-State Circuits Conf., San Francisco, 2008,pp.92-93.

    [11]A.Drake, R.Senger, H.Deogun, G.Carpenter, S.Ghiasi, T.Ngyugen, N.James, and M.Floyd, “A distributed critical-path timing monitor for a 65nm high-performance microprocessor,” in Digest of Technical Papers of IEEE Int.Solid-State Circuits Conf., San Francisco, 2007, pp.398-399.

    [12]T.D.Burd, T.A.Pering, A.J.Stratakos, and R.W.Brodersen, “A dynamic voltage scaled microprocessor system,” IEEE Journal of Solid-State Circuits, vol.35, no.11, pp.1571-1580, 2000.

    [13]M.Nakai, S.Akui, K.Seno, T.Meguro, T.Seki, T.Kondo,A.Hashiguchi, H.Kawahara, K.Kumano, and M.Shimura,“Dynamic voltage and frequency management for a low power embedded micro-processor,” IEEE Journal of Solid-State Circuits, vol.40, no.1, pp.28-35, Jan.2005.

    [14]K.J.Nowka, G.D.Carpenter, E.W.MacDonald, H.C.Ngo,B.C.Brock, K.I.Ishii, T.Y.Nguyen, and J.L.Burns, “A 32-bit PowerPC system-on-a-chip with support for dynamic voltage scaling and dynamic frequency scaling,” IEEE Journal of Solid-State Circuits, vol.37, no.11, pp.1441-1447, Nov.2002.

    [15]S.Dhar, D.Maksimovic, and B.Kranzen, “Closed-loop adaptive voltage scaling controller for standard-cell ASICs,”in Proc.of 2002 Int.Symposium on Low Power Electronics and Design, Piscataway, 2002, pp.103-107.

    [16]A.K.Uht, “Uniprocessor performance enhancement through adaptive clock frequency control,” IEEE Trans.On Computers, vol.54, no.2, pp.132-140, 2005.

    [17]M.Miller, K.Janik, and S.L.Lu, “Non-stalling counterflow microarchitecture,” in Proc.of the 4th Int.Symposium on High Performance Computer Architecture, Las Vegas, 1988,pp.334-341.

    [18]S.Das, D.Roberts, S.Lee, S.Pant, D.Blaauw, T.Austin, K.Flautner, and T.Mudge, “A self-tuning DVS processor using delay-error detection and correction,” IEEE Journal of Solid-State Circuits, vol.41, no.4, pp.792-804, 2006.

    [19]D.Ernst, N.S.Kim, S.Das, S.Pant, T.Pham, R.Rao, C.Ziesler, D.Blaauw, T.Austin, T.Mudge, and K.Flautner,“Razor: A low-power pipeline based on circuit-level timing speculation,” in Proc.of the 36th Annual IEEE/ACM Int.Symposium on Microarchitecture, doi: 10.1109/MICRO.2003.1253179.

    [20]D.Blaauw, S.Kalaiselvan, K.Lai, W.-H.Ma, S.Pant, C.Tokunaga, S.Das, and D.Bull, “Razor II: In situ error detection and correction for PVT and SER tolerance,” in Digest of Technical Papers of IEEE Int.Solid-State Circuits Conf., San Francisco, doi: 10.1109/ISSCC.2008.4523226.

    亚洲久久久久久中文字幕| 白带黄色成豆腐渣| 午夜福利网站1000一区二区三区| 日韩制服骚丝袜av| 国产精品女同一区二区软件| 免费黄色在线免费观看| 国产免费又黄又爽又色| 全区人妻精品视频| 亚洲av免费在线观看| 免费观看人在逋| 男人和女人高潮做爰伦理| 精品久久久久久成人av| 欧美人与善性xxx| 麻豆久久精品国产亚洲av| 国内揄拍国产精品人妻在线| 少妇猛男粗大的猛烈进出视频 | 亚洲国产欧美人成| 亚洲国产色片| 成人综合一区亚洲| 麻豆久久精品国产亚洲av| 日日撸夜夜添| 日韩高清综合在线| 亚洲精品一区蜜桃| av天堂中文字幕网| 久久久久久久久大av| 国产高清有码在线观看视频| 人妻系列 视频| 久久精品熟女亚洲av麻豆精品 | 久久久亚洲精品成人影院| 国产精品国产三级国产av玫瑰| 岛国在线免费视频观看| 午夜精品国产一区二区电影 | 啦啦啦啦在线视频资源| 国产精品人妻久久久久久| 美女脱内裤让男人舔精品视频| 少妇被粗大猛烈的视频| 丝袜美腿在线中文| 高清毛片免费看| 日本熟妇午夜| 国产一区二区三区av在线| 日韩强制内射视频| a级毛色黄片| 中文字幕av在线有码专区| 亚洲av日韩在线播放| 亚洲综合色惰| 春色校园在线视频观看| 高清在线视频一区二区三区 | av在线天堂中文字幕| 最近2019中文字幕mv第一页| 国产午夜精品一二区理论片| 久久99蜜桃精品久久| a级毛片免费高清观看在线播放| 亚洲av免费高清在线观看| 久久人妻av系列| 成人亚洲欧美一区二区av| 亚洲精品成人久久久久久| 深爱激情五月婷婷| 青春草国产在线视频| 成人午夜精彩视频在线观看| 免费看a级黄色片| 一级毛片电影观看 | 国产老妇女一区| 亚洲伊人久久精品综合 | 久久久久久久久久成人| 精华霜和精华液先用哪个| 校园人妻丝袜中文字幕| 亚洲欧美精品综合久久99| 国产午夜精品论理片| 日产精品乱码卡一卡2卡三| 一级毛片电影观看 | 夜夜看夜夜爽夜夜摸| 亚洲欧洲国产日韩| 日日摸夜夜添夜夜爱| 蜜桃亚洲精品一区二区三区| 亚洲最大成人中文| 国产精品久久久久久精品电影| 一二三四中文在线观看免费高清| av线在线观看网站| 全区人妻精品视频| 国产一区二区在线av高清观看| 在现免费观看毛片| 久久精品熟女亚洲av麻豆精品 | 亚洲成人中文字幕在线播放| 一个人观看的视频www高清免费观看| 亚洲av不卡在线观看| 亚洲,欧美,日韩| 人人妻人人澡欧美一区二区| av在线播放精品| 精品99又大又爽又粗少妇毛片| 看免费成人av毛片| 亚洲av男天堂| 亚洲人与动物交配视频| 国产探花极品一区二区| 亚洲国产精品sss在线观看| 成人三级黄色视频| 97超视频在线观看视频| 亚洲av成人精品一二三区| 亚洲欧美日韩无卡精品| 成人国产麻豆网| 日韩三级伦理在线观看| 欧美一区二区国产精品久久精品| 视频中文字幕在线观看| 亚洲欧美日韩卡通动漫| 亚洲最大成人手机在线| 国产乱来视频区| 又爽又黄a免费视频| 免费人成在线观看视频色| 亚洲,欧美,日韩| 日本黄大片高清| 日韩av在线免费看完整版不卡| 国产伦精品一区二区三区视频9| 欧美性猛交黑人性爽| 久久午夜福利片| 99热6这里只有精品| 国产精品不卡视频一区二区| 欧美bdsm另类| 午夜老司机福利剧场| videos熟女内射| 亚洲国产高清在线一区二区三| 日韩欧美三级三区| 亚洲四区av| 中文字幕久久专区| 人妻夜夜爽99麻豆av| 国产黄a三级三级三级人| 水蜜桃什么品种好| 欧美+日韩+精品| 久久精品国产自在天天线| 亚洲aⅴ乱码一区二区在线播放| 成年av动漫网址| 欧美最新免费一区二区三区| 一边亲一边摸免费视频| 国产69精品久久久久777片| 少妇熟女aⅴ在线视频| 3wmmmm亚洲av在线观看| 在现免费观看毛片| 搞女人的毛片| 国产一区亚洲一区在线观看| 精品人妻熟女av久视频| 国产成人freesex在线| 精品国产三级普通话版| 亚洲欧美日韩高清专用| 国产激情偷乱视频一区二区| 亚洲欧美日韩无卡精品| videossex国产| 十八禁国产超污无遮挡网站| 久久精品人妻少妇| 综合色丁香网| 99久久人妻综合| 亚洲国产高清在线一区二区三| 少妇的逼好多水| 国产中年淑女户外野战色| 精品少妇黑人巨大在线播放 | 天堂影院成人在线观看| 日日啪夜夜撸| 亚洲五月天丁香| 十八禁国产超污无遮挡网站| 2021天堂中文幕一二区在线观| 搡老妇女老女人老熟妇| 别揉我奶头 嗯啊视频| 日本免费在线观看一区| 一夜夜www| av线在线观看网站| 午夜福利在线在线| 久久国内精品自在自线图片| 久久精品国产亚洲av涩爱| 菩萨蛮人人尽说江南好唐韦庄 | 一个人看的www免费观看视频| 美女国产视频在线观看| 三级毛片av免费| 亚洲最大成人中文| 日本猛色少妇xxxxx猛交久久| 精品无人区乱码1区二区| 看免费成人av毛片| 国产精品一区二区三区四区久久| 免费看av在线观看网站| 久久精品91蜜桃| 综合色av麻豆| videos熟女内射| 日韩一本色道免费dvd| 男女国产视频网站| 亚洲图色成人| 日韩av在线免费看完整版不卡| 69人妻影院| 99久久成人亚洲精品观看| 国内精品美女久久久久久| 91久久精品国产一区二区三区| 免费看av在线观看网站| 身体一侧抽搐| 久久韩国三级中文字幕| 亚洲av中文字字幕乱码综合| 国产成人91sexporn| 亚洲国产色片| 国产精品一区二区在线观看99 | 舔av片在线| 欧美成人午夜免费资源| 久久久亚洲精品成人影院| 91在线精品国自产拍蜜月| 久久久a久久爽久久v久久| 久久精品人妻少妇| 国语对白做爰xxxⅹ性视频网站| 可以在线观看毛片的网站| 2021天堂中文幕一二区在线观| av卡一久久| 精品国内亚洲2022精品成人| 五月伊人婷婷丁香| 亚洲欧美清纯卡通| 久久精品国产亚洲av涩爱| 99久久中文字幕三级久久日本| 简卡轻食公司| 一级黄色大片毛片| 欧美一区二区国产精品久久精品| av在线老鸭窝| 亚洲成人中文字幕在线播放| 国产黄色视频一区二区在线观看 | 毛片一级片免费看久久久久| 人人妻人人看人人澡| 欧美日韩精品成人综合77777| 丰满少妇做爰视频| 麻豆成人av视频| 色综合亚洲欧美另类图片| 亚洲欧美中文字幕日韩二区| 欧美激情久久久久久爽电影| 国产成年人精品一区二区| 午夜老司机福利剧场| 我的女老师完整版在线观看| 亚洲成色77777| 欧美97在线视频| 麻豆av噜噜一区二区三区| 中文字幕精品亚洲无线码一区| 亚洲精品乱久久久久久| 九色成人免费人妻av| 综合色丁香网| 麻豆精品久久久久久蜜桃| 91精品一卡2卡3卡4卡| 日日啪夜夜撸| 免费大片18禁| 国产美女午夜福利| 国产伦一二天堂av在线观看| 久久久久久九九精品二区国产| 亚洲av免费在线观看| 视频中文字幕在线观看| 三级男女做爰猛烈吃奶摸视频| 在线观看av片永久免费下载| 亚洲av男天堂| 亚洲aⅴ乱码一区二区在线播放| 国产69精品久久久久777片| 亚洲国产精品成人综合色| 国产高清有码在线观看视频| kizo精华| 国产精品人妻久久久久久| 亚洲av中文av极速乱| 精品午夜福利在线看| 老司机影院成人| av专区在线播放| 国产一级毛片七仙女欲春2| 亚洲怡红院男人天堂| 能在线免费看毛片的网站| videos熟女内射| 最近中文字幕2019免费版| 久久这里只有精品中国| 亚洲欧美日韩卡通动漫| 91精品国产九色| 日韩,欧美,国产一区二区三区 | 麻豆国产97在线/欧美| 国内精品宾馆在线| 久久精品久久久久久噜噜老黄 | 精品国产一区二区三区久久久樱花 | 97热精品久久久久久| 麻豆成人av视频| 天堂√8在线中文| 99热这里只有精品一区| 中文字幕av成人在线电影| 亚洲五月天丁香| 国产大屁股一区二区在线视频| 人体艺术视频欧美日本| 特级一级黄色大片| 99热精品在线国产| 你懂的网址亚洲精品在线观看 | 国产精品.久久久| 美女黄网站色视频| 国产精品嫩草影院av在线观看| 亚洲欧美精品综合久久99| 国产午夜精品论理片| 黄片无遮挡物在线观看| 岛国在线免费视频观看| 国产69精品久久久久777片| 大香蕉久久网| 亚洲精品自拍成人| 久久99热这里只频精品6学生 | 国内精品美女久久久久久| 国产一区二区在线av高清观看| 婷婷色av中文字幕| 人人妻人人澡人人爽人人夜夜 | 精品国产露脸久久av麻豆 | 欧美三级亚洲精品| 久久久精品欧美日韩精品| 亚洲最大成人手机在线| 精品一区二区三区视频在线| 乱码一卡2卡4卡精品| 精品无人区乱码1区二区| 啦啦啦韩国在线观看视频| 日韩一区二区视频免费看| 欧美人与善性xxx| 高清视频免费观看一区二区 | or卡值多少钱| 欧美zozozo另类| 国产亚洲精品久久久com| 国产精品美女特级片免费视频播放器| 国产69精品久久久久777片| 中文字幕人妻熟人妻熟丝袜美| 99热这里只有是精品50| 国产成人精品久久久久久| 国产精品人妻久久久影院| 熟女人妻精品中文字幕| 亚洲国产高清在线一区二区三| 淫秽高清视频在线观看| 桃色一区二区三区在线观看| 99久久九九国产精品国产免费| 九九热线精品视视频播放| 韩国高清视频一区二区三区| 亚洲第一区二区三区不卡| 性插视频无遮挡在线免费观看| 亚洲在线自拍视频| 国产三级在线视频| 最近2019中文字幕mv第一页| 久久鲁丝午夜福利片| av免费在线看不卡| 人妻少妇偷人精品九色| 黄色日韩在线| 色哟哟·www| 国产色爽女视频免费观看| 男女啪啪激烈高潮av片| 一区二区三区四区激情视频| 欧美一级a爱片免费观看看| 亚洲欧洲国产日韩| 男人和女人高潮做爰伦理| 国产又色又爽无遮挡免| 天堂√8在线中文| 熟女人妻精品中文字幕| 在线播放国产精品三级| 日本免费一区二区三区高清不卡| av女优亚洲男人天堂| 人人妻人人看人人澡| 精华霜和精华液先用哪个| 秋霞在线观看毛片| 91狼人影院| 欧美日韩在线观看h| 好男人视频免费观看在线| 蜜桃久久精品国产亚洲av| 成年女人看的毛片在线观看| 午夜亚洲福利在线播放| 国产色爽女视频免费观看| 波多野结衣高清无吗| 丝袜美腿在线中文| 看片在线看免费视频| 亚洲av福利一区| 人妻系列 视频| 日本熟妇午夜| 日日干狠狠操夜夜爽| 国产成人a区在线观看| 波多野结衣高清无吗| 18禁在线播放成人免费| 国产亚洲精品av在线| 精品国产三级普通话版| 人妻少妇偷人精品九色| 精品人妻偷拍中文字幕| av视频在线观看入口| 老师上课跳d突然被开到最大视频| 夜夜看夜夜爽夜夜摸| 最后的刺客免费高清国语| 人人妻人人看人人澡| 日本色播在线视频| 国产69精品久久久久777片| 波野结衣二区三区在线| 床上黄色一级片| 又黄又爽又刺激的免费视频.| 午夜日本视频在线| 欧美一区二区亚洲| 欧美高清成人免费视频www| 免费播放大片免费观看视频在线观看 | 日韩精品有码人妻一区| 国产精品一区www在线观看| 欧美激情国产日韩精品一区| 观看美女的网站| 国产 一区 欧美 日韩| 亚洲精品久久久久久婷婷小说 | 国产精品蜜桃在线观看| 亚洲乱码一区二区免费版| 最近的中文字幕免费完整| 少妇高潮的动态图| av卡一久久| 亚洲精华国产精华液的使用体验| 中文字幕熟女人妻在线| 亚洲在线自拍视频| 天堂√8在线中文| 亚洲国产成人一精品久久久| 亚洲欧美日韩无卡精品| 精品无人区乱码1区二区| 欧美不卡视频在线免费观看| 免费观看人在逋| 91狼人影院| 精品久久久久久久久av| 成人午夜精彩视频在线观看| 国产成人免费观看mmmm| 国产亚洲av片在线观看秒播厂 | 看十八女毛片水多多多| 淫秽高清视频在线观看| 日韩欧美在线乱码| 国产亚洲91精品色在线| 日韩一区二区视频免费看| 久久久成人免费电影| 亚洲天堂国产精品一区在线| 精华霜和精华液先用哪个| 成年av动漫网址| 久久欧美精品欧美久久欧美| 麻豆精品久久久久久蜜桃| 身体一侧抽搐| 简卡轻食公司| 中文亚洲av片在线观看爽| 午夜福利视频1000在线观看| 国产精品一区二区在线观看99 | 一区二区三区四区激情视频| 国产欧美日韩精品一区二区| 最近最新中文字幕免费大全7| 最近的中文字幕免费完整| av.在线天堂| 久久精品久久精品一区二区三区| 日韩视频在线欧美| 成年女人永久免费观看视频| 老女人水多毛片| 神马国产精品三级电影在线观看| 韩国高清视频一区二区三区| 亚洲精品乱码久久久久久按摩| 中文字幕熟女人妻在线| 亚洲最大成人中文| 乱人视频在线观看| 少妇熟女aⅴ在线视频| 久久草成人影院| 国产乱人视频| 女人被狂操c到高潮| 国产一级毛片七仙女欲春2| 国产精品美女特级片免费视频播放器| 亚洲av日韩在线播放| 久99久视频精品免费| 99视频精品全部免费 在线| 精品免费久久久久久久清纯| 伦理电影大哥的女人| 乱人视频在线观看| 国产淫语在线视频| 最近视频中文字幕2019在线8| 成人美女网站在线观看视频| 91久久精品电影网| 日本免费a在线| av专区在线播放| 在线观看一区二区三区| 尤物成人国产欧美一区二区三区| 国产午夜精品久久久久久一区二区三区| 亚洲国产色片| 汤姆久久久久久久影院中文字幕 | 99久久无色码亚洲精品果冻| 免费一级毛片在线播放高清视频| 久久久久久久久久黄片| 亚洲欧美精品综合久久99| 久久久久久伊人网av| 久久久国产成人精品二区| 边亲边吃奶的免费视频| 啦啦啦啦在线视频资源| 22中文网久久字幕| 一区二区三区乱码不卡18| 1000部很黄的大片| 国产免费视频播放在线视频 | 晚上一个人看的免费电影| 久久这里只有精品中国| 如何舔出高潮| 91aial.com中文字幕在线观看| 中文字幕制服av| 神马国产精品三级电影在线观看| 老司机福利观看| 亚洲精品亚洲一区二区| 美女cb高潮喷水在线观看| 特级一级黄色大片| 又粗又硬又长又爽又黄的视频| 中国美白少妇内射xxxbb| 国产高清视频在线观看网站| 日本黄色片子视频| 久久久久久久久大av| 在线免费观看不下载黄p国产| 插逼视频在线观看| 成人性生交大片免费视频hd| 网址你懂的国产日韩在线| 日韩三级伦理在线观看| 天堂影院成人在线观看| 精品久久久久久久久av| 久久久a久久爽久久v久久| 国产精品国产三级专区第一集| 国产精品久久电影中文字幕| 久久99精品国语久久久| 丰满少妇做爰视频| 久久精品人妻少妇| 久久精品夜色国产| 精品国产三级普通话版| 女人被狂操c到高潮| 在线天堂最新版资源| 99在线视频只有这里精品首页| 最近中文字幕2019免费版| 水蜜桃什么品种好| 纵有疾风起免费观看全集完整版 | 久久久色成人| 欧美又色又爽又黄视频| 欧美色视频一区免费| 2021天堂中文幕一二区在线观| 最近2019中文字幕mv第一页| 成人国产麻豆网| 麻豆av噜噜一区二区三区| 日韩制服骚丝袜av| 成年av动漫网址| 久久婷婷人人爽人人干人人爱| 亚洲av成人精品一区久久| 日韩欧美三级三区| 国产精品99久久久久久久久| 国国产精品蜜臀av免费| 国产精品一区二区三区四区免费观看| 亚洲精品国产成人久久av| 精品酒店卫生间| 简卡轻食公司| 久久久亚洲精品成人影院| 欧美成人免费av一区二区三区| 国产乱人视频| 色尼玛亚洲综合影院| 国产精品久久久久久久电影| 国产淫片久久久久久久久| 日韩欧美 国产精品| 嘟嘟电影网在线观看| 久久欧美精品欧美久久欧美| 精品人妻一区二区三区麻豆| 五月伊人婷婷丁香| 中文在线观看免费www的网站| 色综合站精品国产| 精品久久久久久久人妻蜜臀av| 丝袜美腿在线中文| 少妇高潮的动态图| 国产麻豆成人av免费视频| 久久精品国产自在天天线| 蜜桃久久精品国产亚洲av| 色综合站精品国产| 夜夜爽夜夜爽视频| 日日干狠狠操夜夜爽| 精品一区二区三区人妻视频| 国产精品嫩草影院av在线观看| av国产免费在线观看| 亚洲久久久久久中文字幕| 久久久精品94久久精品| 青春草视频在线免费观看| 久久精品综合一区二区三区| 三级男女做爰猛烈吃奶摸视频| 一区二区三区免费毛片| 国产亚洲5aaaaa淫片| 最后的刺客免费高清国语| 国产三级在线视频| 久久久精品大字幕| 床上黄色一级片| 黄色日韩在线| 久久韩国三级中文字幕| 91午夜精品亚洲一区二区三区| 亚洲国产精品国产精品| 亚洲av免费在线观看| 搞女人的毛片| 69av精品久久久久久| ponron亚洲| 亚洲av不卡在线观看| 草草在线视频免费看| 午夜视频国产福利| 欧美一区二区国产精品久久精品| 秋霞伦理黄片| 国产私拍福利视频在线观看| 亚洲国产精品国产精品| 亚洲自偷自拍三级| a级一级毛片免费在线观看| 亚洲精品国产成人久久av| 高清午夜精品一区二区三区| 久久综合国产亚洲精品| 亚洲欧美精品自产自拍| 久久久国产成人免费| 男女下面进入的视频免费午夜| a级一级毛片免费在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲色图av天堂| 男女视频在线观看网站免费| 亚洲真实伦在线观看| 又爽又黄无遮挡网站| 久久精品影院6| 看黄色毛片网站| 日韩欧美精品免费久久| 亚洲欧美精品自产自拍| 成年av动漫网址| 亚洲欧洲国产日韩| av在线亚洲专区| 最近中文字幕高清免费大全6| 国产精品乱码一区二三区的特点| 一二三四中文在线观看免费高清| 久久久久国产网址| 最近2019中文字幕mv第一页| 国产精品国产三级专区第一集| 午夜精品一区二区三区免费看| 99热网站在线观看| 欧美人与善性xxx| 日本免费a在线| 黄色日韩在线| 国产单亲对白刺激| 免费观看a级毛片全部| 美女被艹到高潮喷水动态| 久久精品综合一区二区三区| 日本免费在线观看一区| 亚洲综合精品二区| 亚洲精品久久久久久婷婷小说 |