• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultra-Low Power Pipeline Structure Exploiting Noncritical Stage with Circuit-Level Timing Speculation

    2013-11-26 10:48:08TaoLuoYaJuanHePingLuoYanMingHeandFengHu

    Tao Luo, Ya-Juan He, Ping Luo, Yan-Ming He, and Feng Hu

    1.Introduction

    With the development of electronic products, power,the first degree design constraint, is becoming more and more important[1],[2].With the increasing clock frequency,power aware computing becomes more and more crucial in the imbedded system design and system-on-chip (SoC)design.Dynamic voltage scaling (DVS) is an effective way to achieve large amount of power savings[3]-[7], for dynamic energy scales is quadratic with the supply voltage[8].In order to save energy as much as possible, it is significant to scale the supply voltage as low as possible.To achieve this goal, the traditional methods of adaptive design have used look-up tables[9],[10]or delay-chain[11]-[17].However,traditional DVS design is conservative because the voltage is chosen to ensure the processor operates correctly under the worst-case combined condition which is very rare[18].In order to ameliorate this situation and make use of the safe margin, several techniques, such as the Razor structure,have been put forward[19].However, the Razor structure is exclusively concerned with the critical stage and ignores the significant potential free slack time of the noncritical stages.

    In this paper, an ultra-low power pipeline structure is proposed.It combines the advantage of in-situ error detection and correction, namely the safety margin is cut off, and the advantage of using the free slack time of the noncritical stage.The main differences between the proposed pipeline structure and the traditional one are the stage register and the clock gating strategy.In order to detect and correct the timing error due to the decrease of the supply voltage, the stage register is equipped with a latch and some other accessories which allow the stage register to double lock the data.And the latch is high level enabled so the stage register can receive data during the high level of the clock.So even if the data fail to be ready at the rising edge of clock, namely the timing errors appear,the pipeline can still operate correctly without performance penalties.Besides, the time slack of the last stage can propagate to the next one, if the next stage is a noncritical stage which has extra time, then it can tolerate the time slack of the last stage, which allows the supply voltage to be scaled lower.

    The rest of the paper is organized as follows.In Section 2, the whole structure of this ultra-low power pipeline will be presented including the structure of stage register.In addition, the operating mechanism and tuning supply voltage according to the error condition would also be presented.Section 3 will show the simulation results of the whole pipeline.And the conclusion will be drawn in Section 4.

    2.Structure of Ultra-Low Power Pipeline

    The block diagram of the proposed ultra-low power pipeline structure is shown in Fig.1.

    As shown in Fig.1, the ultra-low power pipeline consists of five stages which is the class structure of the current pipeline.In order to control the critical paths precisely, the combinational blocks are replaced by delay chains which can well represent the delay of the critical path of each stage.The pipeline structure consists of five stages.The first one is the instruction fetch (IF), at which the processor fetches the instruction code from the instruction register.The second one is the instruction decode (ID), at which the instructions delivered from the IF stage is decoded.The third stage is execution (EX), at which the processor executes the instruction decoded by the ID stage, and the control signal from the ID stage can make arithmetic logic unit (ALU) do all kinds of action such as addition and subtraction.Then the processor stores data to memory or load data from memory at the fourth stage named the memory (MEM) stage.The last stage is the write back (WB) stage, at which the processor stores the result to the data register.According to the differences among these stages, each stage is replaced by different delay chains which have different delay time.In classic pipeline structure, the EX is the critical stage and the others are noncritical stages[19],[20].According to the design, the critical stage, namely the EX stage, has a delay of 4.45 ns with a period of 5 ns, the ID stage has a delay of 3.6 ns, and the other stages all have delays of 2.7 ns.The clock is gated by the err signal (see Fig.1) of the last stage register.This gating strategy working together with stage registers can fully exploit noncritical stages.

    Fig.1.Block diagram of the ultra-low power pipeline.

    Fig.2.Structure of stage register.

    2.1 Pipeline Error Detection/Correction

    As mentioned before, the pipeline achieves progressive energy saving by cutting off the safe margin and exploiting noncritical stages.Efficient timing error detection and correction are keys to reach this goal.The block diagram of the stage register is shown in Fig.2.It consists of a flip-flop,a latch, a XOR gate, and a multiplexer (MUX) module.

    As shown in Fig.2, the main flip-flop is augmented with a latch which is controlled by the clock, and the latch is high level enabled.The operating voltage is constrained such that the worst-case delay is guaranteed to meet the setup time of the latch.When the high level of clock is coming, the flip-flop latches the data at the rising edge and the latch receives the data during the high level of the clock.The data latched by them respectively are then compared.If they are different, it indicates that there is a timing error in the flip-flop, and the correct value latched in the latch is used to correct the timing error to ensure the data delivered to the next stage is correct.Utilizing the value in the latch directly to the next stage is an effective way to use the extra time of the noncritical stage to ameliorate the critical stage.The time slack of the last stage can propagate to the next stage, if the next stage is a noncritical stage which has extra time, then it can tolerate the time slack of the last stage,which allows the supply voltage to be scaled lower.According to this mechanism, the system operates correctly as long as the MEM stage register does not generate a valid error signal.And once the MEM stage register generates a valid error signal, the pipeline will be recovered by using global clock gating.

    The operation of a stage register is illustrated in Fig.3.In clock cycle1 and cycle2, the combination logic meets the setup time at the rising edge of the clock, and both the main flip-flop and the latch can latch the correct data.In this condition, the signal Error_h keeps low and the operation of the pipeline is normal.The condition of timing error appears in cycle3 as shown in Fig.3.The combinational logic exceeds the intended delay due to sub-critical voltage scaling.In this case, the main flip-flop fails to latch the data at the rising edge of the clock, but since the latch is high level enabled, the data is latched by the latch correctly in cycle4.As the data latched in the main flip-flop and the latch are different, the Error_h signal is set valid at the output of the comparator.Then, the MUX controlled by the Error_h signal chooses the output of latch as the output of the whole register.So the output of the register is correct.

    Fig.3.Operation of stage register.

    Fig.4.Critical stage borrow time from noncritical stage.

    2.2 Exploiting the Noncritical Stage

    Because the stage register is able to borrow time from the next stage, the pressure on critical stage is released by exploiting the next noncritical stage.Fig.4 shows the operation of a critical stage and the noncritical stage next to it.At the first and second rising edges of the clock signal,the critical stage and noncritical stage both satisfy the timing requirement and the Error_h signal remains low.The operation of pipeline is normal.At the third rising edge of the clock signal, the critical stage fails to satisfy the timing constraint namely that data4 does not arrive at the rising edge of the clock signal, and then the Error_h signal is set valid to indicate this timing error.However, since the error detection and correction mechanism which explained in Section 2.1 is applied, the correct data4 still delivers to the noncritical stage after the rising edge of the clock.

    2.3 Short Path Constraints and Duty Ratio of Clock

    The use of the high level enabling latch raises the possibility that a short path in the combinational logic will corrupt the data in the latch.Fig.5 shows the difference between the right path and the short path.

    Fig.5 shows how a short-path allows data launched at the start of a cycle to be latched into the latch, instead of the data being launched from the previous cycle.As we design,the latch should lock the data from the previous cycle as the main flip-flop does.However, if the delay of the stage is too short, the data will arrive at the latch before the lock window closes.As shown in Fig.5, the minimum-path constraint is equal to the sum of tdelayand the hold time tholdof the latch, which is typically a small value.The minimum path delay constraint can be expressed as

    where tdelayis the duration time of the high level of the clock and tholdis the hold time of the latch.

    Therefore, a minimum-path length constraint should be applied to the input of each register to avoid this corruption.These minimum-path constraints result in the addition of buffers to slow down the fast path and therefore introduce a certain overhead.However, the fast path of the pipeline stage is rare so the number of buffers is negligible, which makes the overhead negligible.

    Fig.5.Short path constraint.

    According to (1), the duty cycle of the clock determines how serious the minimum-path length constraint can be.A large duty ratio of a clock signal increases the severity of the short path constraint and therefore increases the power overhead due to the need for additional buffers.On the other hand, a small duty ratio of clock reduces the margin between the main flip-flop and the latch, and hence reduces the amount that the supply voltage can be dropped below the critical supply voltage.Thus the duty ratio represents a trade-off between the cost due to buffers added and the power saved by the dropped supply voltage.In this design,a duty ratio of 2/5 is adopted to balance the energy cost and saved.

    2.3 Supply Voltage Control Strategy

    The error condition of registers at each stage is the basis of how to adjust the supply voltage.There is no need to gate the clock when errors appear at IF, ID, and EX stages, because the errors at those stages will not affect the correctness of the pipeline.The errors that appear at the MEM stage really matter.If the error signal of the MEM stage is invalid, then it indicates the pipeline operates correctly and the voltage ought to be decreased, no matter whether other error signals valid or not.When the error signal of the MEM stage appears, it indicates the circuits are not meeting the clock period constraints and it is used in the clock gating to correct the output with right data, and the whole pipeline will be suspended for one cycle.The error signal is also used to indicate that the supply voltage should be increased.When the supply voltage increases, the delay of the combinational circuit will decrease at the same time, then the error signal will be set invalid to indicate that the pipeline operates correctly again.There are four errors index signals, which have different weights, for they indicate different stages of the pipeline.So a more complicated algorithm can be developed to generate the clock gating signal and to control the supply voltage.For simplicity, we take the simplest one, namely using the error signal of the MEM stage to control the supply voltage and clock gating.

    3.Simulation Result

    To prove the validity and robustness of this novel pipeline structure which exploits noncritical stage and uses the timing error detection and correction approach, the structure is designed and simulated.The only difference between the ultra-low power pipeline structure and regular pipeline structure is the stage register, but the stage register does not affect the delay of the circuit as well as the supply voltage, so the ultra-low power pipeline can show all the characteristics of the regular pipeline.Therefore, the critical comparisons are given among the ultra-low pipeline with different supply voltages.The pipeline is implemented in a 0.13 μm digital-analog mixed signal standard CMOS(complementary metal-oxide-semiconductor transistor)process, which is expected to operate at 200 MHz and the ratio cycle of clock is 2/5.Fig.6 shows the relation of the power and supply voltage.

    As shown in the Fig.6, the power cost of the design reduces when the supply voltage decreases.From the simulation result, when the supply voltage scales at 1.08 V,the first error occurs at the critical stage, namely the EX stage.This situation represents the traditional adaptive voltage scaling (AVS) with a safety margin.When the supply voltage scales at 0.97 V, the ID stage first fails to meet the clock constraint, and when the supply voltage scales at 0.95 V, the err signal is first to be set valid to indicate that the supply voltage should increase to avoid the corruption of the whole pipeline because of the over scaling.The key voltage point and the corresponding power and error condition are shown in Table 1.

    Fig.6.Relation of power and supply voltage.

    Table 1: Key voltage point

    According to Table 1, a large amount of energy can be saved by this structure.Compared with the fixed voltage case, 50% of the energy can be saved, and compared with the traditional adaptive voltage scaling design, 37.8% of the energy can be saved.

    4.Conclusions

    In this paper, an ultra-low power pipeline structure has been proposed.The key advantage of this pipeline structure over the traditional voltage scaling technologies is that it makes use of the stage registers, which are negligible compared with the whole microprocessor system, the power consumption of the overhead logic is negligible compared with the reduction of power consumption of the whole pipeline.

    Acknowledgment

    The authors would like to thank IPGoal Microelectronics(Sichuan) Co., Ltd for its support.

    [1]A.Wang, S.Naffziger, Adaptive Techniques for Dynamic Process Optimization, New York: Springer, 2008, pp.1-10.

    [2]Y.-Q.Huo, Q.-C.Shao, and Z.Huai, “Adaptive power and bit allocation in multicarrier systems,” Journal of Electronic Science and Technology of China, vol.5, no.1, pp.13-17,2007.

    [3]T.Pering, T.Burd, and R.Brodersen,“The simulation and evaluation of dynamic voltage scaling algorithms,” in Proc.of 1998 Int.Symposium on Low Power Electronics and Design, Monterey, 1998, pp.76-81.

    [4]T.Liu and S.Lu, “Performance improvement with circuit-level speculation,” in Proc.of the 33rd Annual Int.Symposium on Microarchitecture, Monterey, 2000, pp.348-355.

    [5]H.W.Lee, K.H.Kim, Y.K.Choi, J.H.Sohn, N.K.Park, K.W.Kim, C.Kim, Y.J.Choi, and B.T.Chung, “A 1.6V 1.4 Gbp/s/pin consumer DRAM with self-dynamic voltage scaling technique in 44 nm CMOS technology,” IEEE Journal of Solid-State Circuits, vol.47, no.1, pp.131-140,Jan.2012.

    [6]M.Elgebaly and M.Sachdev, “Variation-aware adaptive voltage scaling system,” IEEE Trans.on Very Large Scale Intergration Systems, vol.15, no.5, pp.560-570, May 2007.

    [7]A.Gupta, R.Chauhan, V.Menezes, V.Narang, and H.M.Roopashree, “A robust level-shifter design for adaptive voltage scaling,” in Proc.of the 21st Int.Conf.on VLSI Design, Hyderabad, 2008, pp.383-388.

    [8]T.Mudge, “Power: A first class design constraint,”Computer, vol.34, no.4, pp.52-57, Apr.2001.

    [9]J.Tschanz, N.S.Kim, S.Dighe, J.Howard, G.Ruhl, S.Vangal, S.Narendra, Y.Hoskote, H.Wilson, C.Lam, M.Shuman, C.Tokunaga, D.Somasekhar, S.Tang, D.Finan, T.Karnik, N.Borkar, N.Kurd, and V.De, “Adaptive frequency and biasing techniques for tolerance to dynamic temperature-voltage variations and aging,” in Digest of Technical Papers of IEEE Int.Solid-State Circuits Conf.,San Francisco, 2007, pp.292-293,

    [10]B.Stackhouse, B.Cherkauer, M.Gowan, P.Gronowski, and C.Lyles, “A 65nm 2-billion-transistor quad-core Itanium?? processor,” in Digest of Technical Papers of IEEE Int.Solid-State Circuits Conf., San Francisco, 2008,pp.92-93.

    [11]A.Drake, R.Senger, H.Deogun, G.Carpenter, S.Ghiasi, T.Ngyugen, N.James, and M.Floyd, “A distributed critical-path timing monitor for a 65nm high-performance microprocessor,” in Digest of Technical Papers of IEEE Int.Solid-State Circuits Conf., San Francisco, 2007, pp.398-399.

    [12]T.D.Burd, T.A.Pering, A.J.Stratakos, and R.W.Brodersen, “A dynamic voltage scaled microprocessor system,” IEEE Journal of Solid-State Circuits, vol.35, no.11, pp.1571-1580, 2000.

    [13]M.Nakai, S.Akui, K.Seno, T.Meguro, T.Seki, T.Kondo,A.Hashiguchi, H.Kawahara, K.Kumano, and M.Shimura,“Dynamic voltage and frequency management for a low power embedded micro-processor,” IEEE Journal of Solid-State Circuits, vol.40, no.1, pp.28-35, Jan.2005.

    [14]K.J.Nowka, G.D.Carpenter, E.W.MacDonald, H.C.Ngo,B.C.Brock, K.I.Ishii, T.Y.Nguyen, and J.L.Burns, “A 32-bit PowerPC system-on-a-chip with support for dynamic voltage scaling and dynamic frequency scaling,” IEEE Journal of Solid-State Circuits, vol.37, no.11, pp.1441-1447, Nov.2002.

    [15]S.Dhar, D.Maksimovic, and B.Kranzen, “Closed-loop adaptive voltage scaling controller for standard-cell ASICs,”in Proc.of 2002 Int.Symposium on Low Power Electronics and Design, Piscataway, 2002, pp.103-107.

    [16]A.K.Uht, “Uniprocessor performance enhancement through adaptive clock frequency control,” IEEE Trans.On Computers, vol.54, no.2, pp.132-140, 2005.

    [17]M.Miller, K.Janik, and S.L.Lu, “Non-stalling counterflow microarchitecture,” in Proc.of the 4th Int.Symposium on High Performance Computer Architecture, Las Vegas, 1988,pp.334-341.

    [18]S.Das, D.Roberts, S.Lee, S.Pant, D.Blaauw, T.Austin, K.Flautner, and T.Mudge, “A self-tuning DVS processor using delay-error detection and correction,” IEEE Journal of Solid-State Circuits, vol.41, no.4, pp.792-804, 2006.

    [19]D.Ernst, N.S.Kim, S.Das, S.Pant, T.Pham, R.Rao, C.Ziesler, D.Blaauw, T.Austin, T.Mudge, and K.Flautner,“Razor: A low-power pipeline based on circuit-level timing speculation,” in Proc.of the 36th Annual IEEE/ACM Int.Symposium on Microarchitecture, doi: 10.1109/MICRO.2003.1253179.

    [20]D.Blaauw, S.Kalaiselvan, K.Lai, W.-H.Ma, S.Pant, C.Tokunaga, S.Das, and D.Bull, “Razor II: In situ error detection and correction for PVT and SER tolerance,” in Digest of Technical Papers of IEEE Int.Solid-State Circuits Conf., San Francisco, doi: 10.1109/ISSCC.2008.4523226.

    av一本久久久久| 伦理电影免费视频| 久久这里只有精品19| 日韩大片免费观看网站| 欧美另类亚洲清纯唯美| 久久午夜综合久久蜜桃| 免费一级毛片在线播放高清视频 | 国产精品国产三级国产专区5o| 国产亚洲欧美精品永久| 久久国产精品人妻蜜桃| 国产亚洲一区二区精品| 久久毛片免费看一区二区三区| 51午夜福利影视在线观看| 久久中文看片网| 十八禁高潮呻吟视频| 欧美一级毛片孕妇| 满18在线观看网站| 亚洲成人免费av在线播放| 夫妻午夜视频| 亚洲精品自拍成人| 亚洲九九香蕉| 久久精品aⅴ一区二区三区四区| 亚洲欧美日韩另类电影网站| 久久午夜综合久久蜜桃| 免费观看a级毛片全部| 久久人妻熟女aⅴ| 欧美黑人欧美精品刺激| 国产精品九九99| 大香蕉久久网| 日韩欧美免费精品| 电影成人av| 又大又爽又粗| 中文欧美无线码| 后天国语完整版免费观看| tocl精华| 国产成人免费观看mmmm| 久久ye,这里只有精品| 成人影院久久| 大片免费播放器 马上看| 大片免费播放器 马上看| 无限看片的www在线观看| 久久精品亚洲熟妇少妇任你| 日韩一区二区三区影片| 狠狠精品人妻久久久久久综合| 国产在线一区二区三区精| av线在线观看网站| 人妻久久中文字幕网| 黑人猛操日本美女一级片| 亚洲欧美清纯卡通| 无遮挡黄片免费观看| 一个人免费在线观看的高清视频 | 久久久久精品国产欧美久久久 | 精品人妻在线不人妻| 精品国产乱码久久久久久男人| 一进一出抽搐动态| 美国免费a级毛片| 女人高潮潮喷娇喘18禁视频| 亚洲七黄色美女视频| 一本—道久久a久久精品蜜桃钙片| 99国产精品99久久久久| 乱人伦中国视频| 性高湖久久久久久久久免费观看| 亚洲天堂av无毛| 色视频在线一区二区三区| 性色av一级| 十八禁网站网址无遮挡| 黄色片一级片一级黄色片| 91精品伊人久久大香线蕉| 成人国产一区最新在线观看| 香蕉丝袜av| 成人国语在线视频| 国产亚洲精品一区二区www | tube8黄色片| 欧美激情高清一区二区三区| 国产成人啪精品午夜网站| 日韩中文字幕视频在线看片| 久久精品国产综合久久久| 国产亚洲av片在线观看秒播厂| 99国产综合亚洲精品| 极品人妻少妇av视频| 亚洲av片天天在线观看| 精品一区二区三卡| 最近最新免费中文字幕在线| 亚洲欧美日韩高清在线视频 | 五月开心婷婷网| 久久精品久久久久久噜噜老黄| 亚洲色图综合在线观看| 午夜福利视频在线观看免费| 精品福利永久在线观看| 成年女人毛片免费观看观看9 | 欧美日韩亚洲国产一区二区在线观看 | 国产欧美日韩一区二区三区在线| 国产免费现黄频在线看| 极品人妻少妇av视频| 日韩免费高清中文字幕av| 天天躁狠狠躁夜夜躁狠狠躁| 男女下面插进去视频免费观看| 欧美一级毛片孕妇| 啦啦啦啦在线视频资源| 视频区欧美日本亚洲| 欧美日韩精品网址| 欧美老熟妇乱子伦牲交| 国产黄频视频在线观看| 精品高清国产在线一区| 男女午夜视频在线观看| 最近最新免费中文字幕在线| 国产免费视频播放在线视频| 免费少妇av软件| 永久免费av网站大全| 成人国产av品久久久| 亚洲精品国产av成人精品| 国产精品久久久av美女十八| 在线看a的网站| 国产亚洲午夜精品一区二区久久| 欧美亚洲日本最大视频资源| 久久中文字幕一级| 国产成人啪精品午夜网站| 国产精品国产三级国产专区5o| 国产欧美日韩精品亚洲av| 免费在线观看黄色视频的| 亚洲成人手机| 热99久久久久精品小说推荐| 欧美精品一区二区免费开放| 免费在线观看视频国产中文字幕亚洲 | 人成视频在线观看免费观看| 日本av手机在线免费观看| 女人被躁到高潮嗷嗷叫费观| 叶爱在线成人免费视频播放| 免费久久久久久久精品成人欧美视频| 国产精品久久久久久精品古装| 90打野战视频偷拍视频| 伦理电影免费视频| 极品少妇高潮喷水抽搐| 日韩大码丰满熟妇| netflix在线观看网站| 国产成人系列免费观看| 欧美成狂野欧美在线观看| 窝窝影院91人妻| 97在线人人人人妻| 汤姆久久久久久久影院中文字幕| 亚洲av成人一区二区三| 久久毛片免费看一区二区三区| 香蕉国产在线看| 少妇猛男粗大的猛烈进出视频| 精品亚洲成国产av| 大香蕉久久成人网| 人妻人人澡人人爽人人| 国产精品二区激情视频| 久久久精品国产亚洲av高清涩受| 欧美激情久久久久久爽电影 | 久久香蕉激情| 欧美精品啪啪一区二区三区 | 久久久久国产一级毛片高清牌| 精品福利观看| 久久久国产精品麻豆| 成年女人毛片免费观看观看9 | 精品一区二区三区av网在线观看 | 欧美在线黄色| 久久九九热精品免费| 黄色毛片三级朝国网站| 久久久欧美国产精品| 亚洲美女黄色视频免费看| 久久久久久久精品精品| 亚洲伊人色综图| 欧美激情高清一区二区三区| 人人澡人人妻人| 狠狠精品人妻久久久久久综合| 亚洲九九香蕉| 久久人人爽av亚洲精品天堂| tube8黄色片| 免费高清在线观看视频在线观看| 久久精品国产综合久久久| 久久亚洲精品不卡| 久久久精品国产亚洲av高清涩受| 日韩一区二区三区影片| 国产免费福利视频在线观看| 国产日韩一区二区三区精品不卡| 丁香六月天网| 亚洲精品日韩在线中文字幕| netflix在线观看网站| 考比视频在线观看| 操美女的视频在线观看| 妹子高潮喷水视频| 亚洲国产精品一区二区三区在线| xxxhd国产人妻xxx| 男女无遮挡免费网站观看| 91国产中文字幕| 色播在线永久视频| 99国产精品免费福利视频| 色婷婷av一区二区三区视频| 日韩中文字幕欧美一区二区| 免费高清在线观看日韩| 免费av中文字幕在线| 成年av动漫网址| 大型av网站在线播放| 色视频在线一区二区三区| 国产精品一区二区在线观看99| 熟女少妇亚洲综合色aaa.| 欧美日韩黄片免| 亚洲性夜色夜夜综合| 国产人伦9x9x在线观看| av在线老鸭窝| 99精品久久久久人妻精品| 免费日韩欧美在线观看| 90打野战视频偷拍视频| 亚洲欧美日韩高清在线视频 | 狠狠狠狠99中文字幕| 高潮久久久久久久久久久不卡| 久久久国产欧美日韩av| 国产熟女午夜一区二区三区| 水蜜桃什么品种好| 99国产综合亚洲精品| 亚洲国产精品一区三区| 欧美精品高潮呻吟av久久| 亚洲人成电影观看| 老司机影院成人| 亚洲精品美女久久久久99蜜臀| 成人国语在线视频| www.自偷自拍.com| 丝袜人妻中文字幕| 免费日韩欧美在线观看| 99精国产麻豆久久婷婷| 黄色怎么调成土黄色| 国产xxxxx性猛交| 精品熟女少妇八av免费久了| 国产亚洲av高清不卡| 99国产综合亚洲精品| 亚洲情色 制服丝袜| 黑人巨大精品欧美一区二区蜜桃| 波多野结衣一区麻豆| 一本综合久久免费| 啦啦啦 在线观看视频| 操出白浆在线播放| 国产亚洲一区二区精品| 男女边摸边吃奶| 国产成人精品久久二区二区免费| 欧美黄色片欧美黄色片| 午夜久久久在线观看| 亚洲全国av大片| 国产精品 国内视频| 精品国产国语对白av| 亚洲精品一区蜜桃| 操出白浆在线播放| 蜜桃国产av成人99| 老鸭窝网址在线观看| 无遮挡黄片免费观看| 国产精品久久久av美女十八| 亚洲天堂av无毛| 国产成+人综合+亚洲专区| www.999成人在线观看| 亚洲综合色网址| 午夜视频精品福利| 麻豆av在线久日| 99久久99久久久精品蜜桃| 久久天堂一区二区三区四区| 美女扒开内裤让男人捅视频| 精品亚洲成国产av| 亚洲伊人久久精品综合| 好男人电影高清在线观看| 日韩人妻精品一区2区三区| 午夜日韩欧美国产| 亚洲国产日韩一区二区| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品一二三| 在线av久久热| 丝瓜视频免费看黄片| 日韩大码丰满熟妇| 一级a爱视频在线免费观看| 亚洲av日韩精品久久久久久密| av一本久久久久| 国产亚洲av片在线观看秒播厂| 国产熟女午夜一区二区三区| 久久人人爽人人片av| 中文字幕人妻丝袜制服| 亚洲国产欧美网| 亚洲第一青青草原| av天堂久久9| 青春草视频在线免费观看| 日本vs欧美在线观看视频| 免费在线观看影片大全网站| 欧美精品一区二区免费开放| 国产精品一二三区在线看| 精品福利永久在线观看| 色老头精品视频在线观看| 国产av精品麻豆| 精品国产乱子伦一区二区三区 | 久久人人爽av亚洲精品天堂| 亚洲成人国产一区在线观看| 国产人伦9x9x在线观看| 国产又色又爽无遮挡免| 午夜久久久在线观看| 丝袜喷水一区| 色婷婷av一区二区三区视频| av天堂在线播放| 别揉我奶头~嗯~啊~动态视频 | 性少妇av在线| 久久人人97超碰香蕉20202| 久久九九热精品免费| 久热爱精品视频在线9| 狠狠婷婷综合久久久久久88av| 国产av国产精品国产| 久久毛片免费看一区二区三区| 91麻豆av在线| 国产成人系列免费观看| 精品久久久久久电影网| 嫩草影视91久久| 久9热在线精品视频| 97精品久久久久久久久久精品| 国产亚洲精品久久久久5区| 国产精品一区二区在线不卡| 久热这里只有精品99| 一本—道久久a久久精品蜜桃钙片| 久久国产精品影院| 永久免费av网站大全| 高清欧美精品videossex| 久久av网站| 法律面前人人平等表现在哪些方面 | 日韩视频一区二区在线观看| 精品国产国语对白av| 美女高潮到喷水免费观看| 国产一区二区 视频在线| 少妇被粗大的猛进出69影院| 男女高潮啪啪啪动态图| 欧美午夜高清在线| 男女国产视频网站| 午夜免费观看性视频| 亚洲成国产人片在线观看| www.自偷自拍.com| 亚洲伊人久久精品综合| 国产亚洲精品第一综合不卡| 免费不卡黄色视频| 丝袜喷水一区| 婷婷丁香在线五月| 亚洲第一av免费看| 高清av免费在线| 免费黄频网站在线观看国产| 成年女人毛片免费观看观看9 | 亚洲va日本ⅴa欧美va伊人久久 | 真人做人爱边吃奶动态| 亚洲精品国产精品久久久不卡| 午夜免费鲁丝| 99re6热这里在线精品视频| 高清在线国产一区| 久久中文看片网| 国产高清国产精品国产三级| 国产精品国产av在线观看| 多毛熟女@视频| 精品一品国产午夜福利视频| www.精华液| 久久国产精品男人的天堂亚洲| 国产成人免费观看mmmm| 国产精品久久久av美女十八| 国产亚洲欧美精品永久| 国产淫语在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人系列免费观看| 欧美另类亚洲清纯唯美| 少妇被粗大的猛进出69影院| 精品第一国产精品| 精品人妻熟女毛片av久久网站| 成人影院久久| 国产精品二区激情视频| 日日爽夜夜爽网站| 亚洲av日韩精品久久久久久密| 久久国产亚洲av麻豆专区| 国产在线视频一区二区| 美女福利国产在线| 国产av精品麻豆| 国产亚洲精品一区二区www | 亚洲性夜色夜夜综合| 亚洲av成人一区二区三| 黄频高清免费视频| 无限看片的www在线观看| 免费观看人在逋| 超碰成人久久| 电影成人av| av免费在线观看网站| av视频免费观看在线观看| 免费av中文字幕在线| 日韩欧美一区二区三区在线观看 | 亚洲五月婷婷丁香| 每晚都被弄得嗷嗷叫到高潮| 久9热在线精品视频| 亚洲国产成人一精品久久久| 视频区图区小说| 亚洲专区中文字幕在线| 亚洲av男天堂| 欧美精品高潮呻吟av久久| 777米奇影视久久| 波多野结衣av一区二区av| 免费不卡黄色视频| 国产真人三级小视频在线观看| 久久久国产一区二区| 欧美黑人精品巨大| 免费久久久久久久精品成人欧美视频| kizo精华| 国产av国产精品国产| 国产伦理片在线播放av一区| 亚洲综合色网址| 新久久久久国产一级毛片| 久久免费观看电影| 最新的欧美精品一区二区| 日日爽夜夜爽网站| 黄色视频不卡| 高潮久久久久久久久久久不卡| 久久久欧美国产精品| 精品欧美一区二区三区在线| 久久国产精品影院| 亚洲国产精品一区二区三区在线| 国产1区2区3区精品| 久久毛片免费看一区二区三区| 国产男人的电影天堂91| 精品人妻1区二区| 国产一区二区在线观看av| 亚洲专区中文字幕在线| 久久香蕉激情| 亚洲欧美精品综合一区二区三区| cao死你这个sao货| 亚洲自偷自拍图片 自拍| 久久国产精品大桥未久av| 亚洲av成人一区二区三| 国产在线视频一区二区| 久久久久久久久免费视频了| 亚洲男人天堂网一区| 黑人猛操日本美女一级片| 人人妻人人添人人爽欧美一区卜| 日韩一卡2卡3卡4卡2021年| 丝袜脚勾引网站| 他把我摸到了高潮在线观看 | 亚洲国产精品一区三区| 亚洲中文av在线| 咕卡用的链子| 久久精品国产亚洲av高清一级| 亚洲午夜精品一区,二区,三区| 亚洲精品日韩在线中文字幕| 午夜视频精品福利| 国产精品亚洲av一区麻豆| 精品一区二区三卡| www.精华液| av视频免费观看在线观看| 天堂8中文在线网| 亚洲精品国产精品久久久不卡| 91九色精品人成在线观看| 狠狠狠狠99中文字幕| 亚洲国产精品成人久久小说| 性色av乱码一区二区三区2| 亚洲午夜精品一区,二区,三区| 亚洲精品久久久久久婷婷小说| 啦啦啦啦在线视频资源| 少妇人妻久久综合中文| 精品国产一区二区三区四区第35| 成人影院久久| 久久精品人人爽人人爽视色| 在线 av 中文字幕| 久久九九热精品免费| 国产深夜福利视频在线观看| 精品欧美一区二区三区在线| 亚洲,欧美精品.| 在线观看免费高清a一片| 亚洲性夜色夜夜综合| 曰老女人黄片| 国产欧美日韩一区二区精品| 午夜福利在线观看吧| 亚洲中文字幕日韩| 女警被强在线播放| 亚洲欧美色中文字幕在线| √禁漫天堂资源中文www| 久久av网站| 热re99久久国产66热| 久久中文字幕一级| 国产视频一区二区在线看| 精品国产乱码久久久久久小说| 极品少妇高潮喷水抽搐| 久久久久精品国产欧美久久久 | 久久午夜综合久久蜜桃| 人人妻人人澡人人爽人人夜夜| 在线十欧美十亚洲十日本专区| 伊人亚洲综合成人网| 韩国高清视频一区二区三区| 一区二区av电影网| 美女中出高潮动态图| 久久影院123| 国产一区二区激情短视频 | 日韩大码丰满熟妇| 乱人伦中国视频| 日本猛色少妇xxxxx猛交久久| 亚洲成人国产一区在线观看| 99九九在线精品视频| 69av精品久久久久久 | 久久久水蜜桃国产精品网| 亚洲欧美清纯卡通| 黄片大片在线免费观看| av在线app专区| 国产男女内射视频| 亚洲精品国产精品久久久不卡| 亚洲va日本ⅴa欧美va伊人久久 | 国产1区2区3区精品| 最近最新中文字幕大全免费视频| 欧美日韩黄片免| 首页视频小说图片口味搜索| 黄片小视频在线播放| 精品国产国语对白av| 日韩人妻精品一区2区三区| 飞空精品影院首页| 老司机福利观看| 人妻一区二区av| 精品卡一卡二卡四卡免费| 69av精品久久久久久 | 亚洲av日韩精品久久久久久密| 高清欧美精品videossex| 免费人妻精品一区二区三区视频| 乱人伦中国视频| 男女高潮啪啪啪动态图| 女人久久www免费人成看片| 亚洲va日本ⅴa欧美va伊人久久 | 黑人巨大精品欧美一区二区mp4| 美女主播在线视频| 免费黄频网站在线观看国产| 久久人人爽av亚洲精品天堂| 狠狠婷婷综合久久久久久88av| 秋霞在线观看毛片| 亚洲国产av新网站| 久久亚洲精品不卡| 国产成人a∨麻豆精品| 永久免费av网站大全| 国产高清视频在线播放一区 | 久久久久精品人妻al黑| 国产精品久久久久成人av| 久久九九热精品免费| 少妇精品久久久久久久| 亚洲欧美日韩高清在线视频 | 欧美另类亚洲清纯唯美| 国产一区二区激情短视频 | 中文字幕人妻熟女乱码| 巨乳人妻的诱惑在线观看| 一级毛片女人18水好多| 99国产精品一区二区蜜桃av | 啦啦啦啦在线视频资源| 中文字幕色久视频| 精品乱码久久久久久99久播| 免费在线观看视频国产中文字幕亚洲 | 久久精品亚洲av国产电影网| 丁香六月天网| 我的亚洲天堂| 麻豆国产av国片精品| 欧美在线黄色| 免费一级毛片在线播放高清视频 | 美女扒开内裤让男人捅视频| 在线天堂中文资源库| 欧美国产精品va在线观看不卡| 超色免费av| 国产日韩欧美亚洲二区| 精品一区二区三区av网在线观看 | 青草久久国产| 日本欧美视频一区| 日日摸夜夜添夜夜添小说| 电影成人av| 亚洲伊人色综图| 精品第一国产精品| 国产免费福利视频在线观看| 中文字幕制服av| 亚洲avbb在线观看| 一个人免费在线观看的高清视频 | 欧美日韩亚洲综合一区二区三区_| 亚洲五月色婷婷综合| 日韩一卡2卡3卡4卡2021年| 亚洲第一青青草原| 欧美国产精品va在线观看不卡| 久久久国产成人免费| 久久亚洲精品不卡| 亚洲欧美一区二区三区久久| 免费高清在线观看视频在线观看| 日本五十路高清| 黄片播放在线免费| 永久免费av网站大全| 丝瓜视频免费看黄片| 亚洲av电影在线观看一区二区三区| 免费女性裸体啪啪无遮挡网站| 12—13女人毛片做爰片一| 2018国产大陆天天弄谢| 女性生殖器流出的白浆| 国产日韩欧美视频二区| 久久久久国产一级毛片高清牌| 亚洲精品国产精品久久久不卡| 一二三四在线观看免费中文在| 精品一区二区三区四区五区乱码| 亚洲国产精品999| 老司机深夜福利视频在线观看 | 美女午夜性视频免费| 中文字幕高清在线视频| 国产精品偷伦视频观看了| 国产精品久久久av美女十八| 国产1区2区3区精品| a在线观看视频网站| 巨乳人妻的诱惑在线观看| 91精品伊人久久大香线蕉| 亚洲五月婷婷丁香| 国产淫语在线视频| 丰满少妇做爰视频| 久9热在线精品视频| 久久毛片免费看一区二区三区| 高清欧美精品videossex| 免费在线观看黄色视频的| 国产精品久久久人人做人人爽| 国产在视频线精品| 麻豆国产av国片精品| 日韩欧美一区二区三区在线观看 | 久久久国产一区二区| 免费高清在线观看日韩| 国产一级毛片在线| av一本久久久久| 男女免费视频国产| 自线自在国产av| 精品一区二区三区av网在线观看 | 一进一出抽搐动态|