• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Correcting Image Distortion for Adaptive Cruise Control

    2013-11-26 10:48:04YingChenGongjunYanDandaRawatAwnyAlnusairandBhedBista

    Ying Chen, Gongjun Yan, Danda B.Rawat, Awny Alnusair, and Bhed B.Bista

    1.Introduction

    In recent years, people have witnessed the emergence of adaptive cruise control in intelligent vehicles.Many adaptive cruise control systems adopt radar to detect other vehicles, pedestrian, or obstacles.In fact, there is few research focusing on lower-price camera-based adaptive cruise control systems.Comparing with radar-based cruise control systems, a camera-based adaptive control system has several advantages, such as lane departure warning,intelligent heading control, and traffic sign recognition.

    However, lower-price camera-based adaptive cruise controls systems have great challenges as well.One of the great challenges lies in the fact that the quality of lower-price camera is normally not ready to provide high quality adaptive cruise control which has extreme importance to driver’s life in a certain condition.The images of the lower-price camera are often distorted or blurred.To improve the quality of the adaptive cruise control system, we have to correct image distortion by an economical and efficient method.

    This paper presents a new method for camera image distortion correction by using optical flow techniques,which are normally applied in motion estimation and video compression research.As the optical flow techniques have a limited delay of processing time, they fit vehicular networks which are the delay-limited environment[1].We are the first to adopt optical flow techniques in image distortion correction.Two classic optical flow methods are introduced and the experiment shows that the Lucas-Kanade method has better errors control than the Horn-Schunck for our sinusoidal test signals.A simple test pattern pair is used to verify the optical flow method in three ways:

    · A pair of synthetic test images, including linear distortion-translation, rotation zoom distortion and nonlinear distortion-barrel distortion.

    · A pair of test images with independent Gaussian noise.

    · A pair of photographs that capture the ideal test images.

    2.Related Work

    For traffic monitoring applications, Trajkovic[2]presented an interactive approach to calibrate a pan-tilt-zoom camera by assuming that the camera height is known.Bas and Crisman[3]used the height and tilt of the measured camera and the road edges in an image.But Lai and Yung[4]presented an algorithm to extract complete multi-lane information by utilizing prominent orientation and length features of lane markings and curb structures to discriminate against other minor features.Fung et al.[5]proposed a method using the geometry properties of road lane makings.With the help of the known length and width of road lane markings, He and Yung[6]fixed the problem of ill-conditioned vanishing points.In an automatic approach,Schoepflin and Dailey[7]dynamically calibrated pan-tiltzoom (PTZ) cameras using lane activity maps to find the center of lanes and estimate the vanishing point of lines perpendicular to the road using dynamic images by detecting the bottom edges of the vehicles.Song and Tai[8]estimated the vanishing point by assuming the camera height and lane width are known in advance with using edge detection to find the lane markings in the static background image.To lower-price cameras, the most commonly encountered geometry distortions are radically symmetric.Currently, two kinds of software correction methods exist: correcting distortions by warping the image with a reverse distortion, which is an approximation the inverse distortion dominated by the low-order version of Brown’s distortion model in [9]; and an alternative method that iteratively computes the undistorted pixel position in[10].Both methods are complicated and have a very heavy burden on computational consumption.Furthermore, the image correction process of both methods also varies for each lens and its adjustable focus and zoom settings.In this paper, a new distortion correction method which is straightforward and independent of camera parameters is proposed.If the distortion value on the whole image is known, it is able to estimate the position change of each pixel and move this pixel to the ideal position.By subtracting the magnitude that each pixel shifts from the distortion position, the desired position of a pixel is estimated.This desired position is then converted to x, y coordinates which represent the desired position of a pixel in the image.If this process is applied to every pixel of the image, the result is a set of non-uniformly spaced points.These points are associated with the appropriate pixel values, so the corrected image can be interpolated.

    The most commonly encountered geometry distortions are radically symmetric, and arise from the symmetry of photographic lenses.The radial distortion is usually described as either barrel or pincushion distortion, depicted in Fig.1.Most camera lenses will introduce some distortion,which could only be corrected optically with other lenses before the emergence of digital cameras.But for digital cameras, any lens distortion can be corrected with in-camera image processing software[11].

    Since the optical flow methods are capable of calculating the motion between two frames which are taken at time t and t+δt at every voxel position, we use them in this paper for calculating the displacement between distortion image and ideal image.Sequences of ordered images are used in the estimation of motion as either instantaneous image velocities or discrete image displacement[12], so the desired (ideal) image and the distortion image are treated as two sequential images at different times with the same scene in this paper.And the texture mapping method is used to warp the new image with the result of optical flow.

    Fig.1.Description for different types of lens distortion: (a) none distortion, (b) barrel, and (c) pincushion.

    3.Image Correction with Optical Flow Technology

    In this paper, the image correction procedure using the optical flow method is described in Fig.2.

    In the flowchart, the first input image is named InputImage1 which is the current frame image in optical flow method, and the second input image is named InputImage2 which is the previous frame image in the optical flow method.The result of the optical flow method is the position change from the previous frame image to the current frame image.Then InputImage2 and the values of position change are put into the warping function, and the output of the warping function is the new image.The error is found by comparing the new image and Inputimage1.If the error equals to zero, the new image is the same image with InputImage1.

    3.1 Optical Flow Techniques

    The optical flow method is the pattern of apparent motion of objects, surfaces, and edges in a visual scene caused by the relative motion between an observer and the scene[13],[14].Those optical flow methods, which are based on local Taylor series approximation of the image signal,estimate the motion of two frames of the image which are taken at times t and t + δt.

    where Vxand Vyare x and y components of velocity or optical flow; Ⅰ (x, y, t) denotes the image brightness at the point(x, y) in the image at time t; ?Ⅰ/?x, ?Ⅰ/?y, and ?Ⅰ/?t are derivatives of image at x direction, y direction, and t direction, respectively.Equation (1) cannot be solved since there are two unknown parameters.In order to get the second constraint, another set of optical flow equations are needed.

    Fig.2.Diagram of image correction with optical flow.

    Because we do not confirm the feasibility of optical flow methods in image distortion correction, the two different classical optical flow methods are employed to implement the image distortion correction in this paper.Vxand Vyare solved based on different assumptions.The precision of each method are checked by different image inputs in Section 4.

    3.2 Lucas-Kanade Method

    The Lucas-Kanade method is a widely used differential method for optical flow estimation that introduces additional conditions for estimating the actual flow.Assuming the flow (Vx, Vy) is a constant in the local neighborhood, a small window of size n×n (n>1) is defined around the central pixel (x, y).These pixels in the window are numbered by 1, 2,…, m, where m=n2.With these conditions,(1) is represented in the matrix form as

    where xiand yiare the coordinate values for pixels in the window, and i=1, 2,…, m.

    To solve those equations, the least squares method is applied:

    The above least squares solution gives the same attention to all n pixels i in the window.

    In practice, a weighted window is usually added to prominence the central pixel ρ of the window.The weighting function is

    where wiis usually a Gaussian function of the distance between i and ρ.

    3.3 Horn-Schunck Method

    The Horn-Schunck algorithm introduces an equation that relates the change in image brightness at a point to the motion of the brightness pattern[15].It assumes smoothness in the flow in the whole image.The equation is given for two-dimensional image as

    where Ⅰx, Ⅰy, and Ⅰtare the derivatives of the image intensity values with x, y and time dimensions, respectively; α is the weight coefficient.

    By solving the Euler-Lagrange equations, (5) can be simplified as

    where L is the integrand of the energy expression:

    here the Laplace operator Δ equals to ?2/?x2+?2/?y2, anda weighted average of u calculated in a neighborhood around the pixel at the location (x, y).

    With these notations, the above equation system may be written as

    Once the neighbors have been updated, (8) for each point in the image must be recalculated since the solution depends on the neighboring values of the flow field.According to Gauss-Seidel method[16], the following iterative scheme is derived:

    4.Test Image

    In order to compare the result images reconstructed by the Lucas-Kanade and the Horn-schunck methods, a pair of synthetic test images is generated as inputs of the these two methods.Only the grayscale digital image is used for reducing the effect of color distortion.And the sine wave signal is employed to generate these grayscale images,because sine wave has high gradients almost everywhere in the whole image and low spatial frequency means has no effects from blur and lens resolution.Besides, photographed images are also taken as input to compare two optical flow methods in real image distortion correction.

    We use LCD screen[17]to display the original image and capture the LCD screen as source photography in the camera image case.Comparing with traditional checkerboard patterns, our test pattern showed on the screen is stable, corrected and less manual interventions.

    Ten pairs of camera images are generated for testing.The object scene used in image capturing is also a sine wave image.For example, according to the original image in Section 3.1, the original object scene (Fig.3 (a)) of source photograph (Fig.3 (b)) is generated from (9) with parameters A = B = 2p/10, C = D = 0.

    Similarly, according to the shift image, the shift object scene (Fig.4 (a)) of destination photograph (Fig.4 (b)) is generated with parameters A = B = 2π/10, C = 0.3×2π/10, D= 0.

    Since the resolution of photograph is 640×480 pixels,the translation along y-axis is 0.3 pixel in object scenes will result in shifting 0.96 pixels along y-axis in photographs.

    Fig.3.Original camera image: (a) original object scene and (b)source photograph.

    Fig.4.Shift camera image: (a) shift object scene and (b)destination photograph.

    Table 1: Y dimension error of photographs

    Fig.5.Y dimension error curves of photographs in translation case.

    5.Experiments

    All experiments are conducted through our python implementation of the algorithm running on a PC workstation equipped with an AMD Athlon 64×2 dual core processor and 3 GB of RAM.The main time consumer in our experiments is a new image generating part.For a photograph with the resolution 640×480 pixels, new image warping spends around 15 seconds.The part of optical flow and error calculation takes less than 1 second.

    Five pairs of photographs were tested in experiments.The first input image in the Lucas-Kanade method and the Horn-Schunck method is the source photograph introduced in Section 4.The second input image is the destination photograph.

    In Table 1, dy with unit pixel means the translation between two input photographs.Column 3 gives the average error calculated by the result gotten from the Horn-Schunck method and Column 4 gives the average error with the Lucas-Kanade method.In general, the errors of the Lucas-Kanade method are smaller than the errors of the Horn-Schunck method.

    Fig.5 gives error curves with the Lucas-Kanade and the Horn-Schunck.Errors resulted from the Lucas-Kanade method are significantly less than errors resulted from the Horn-Schunck method.

    6.Conclusions

    In this paper, an image distortion correction algorithm has been presented to improve the quality of adaptive cruise control using lower-price cameras.The Lucas-Kanade method and the Horn-Schunck method were compared.The procedure of image distortion correction using optical flow method was tested by both synthetic test images and camera images.The experimental results show that image distortion correction using the Lucas-Kanade method achieves one hundred of one pixel error.

    Our work verified that the optical flow used in image distortion correction is feasible since errors are very small,nearly one hundreds of a pixel for test images.Although errors in photographs are slightly bigger than errors of synthetic test images, the analysis shows that the increase of error is due to the noised introduced by camera itself.

    [1]J.C.F.Li and S.Dey, “Outage minimisation in wireless relay networks with delay constraints and causal channel feedback,” Eur.Trans.Telecomm., vol.21, no.3, pp.251-265, 2010.

    [2]M.Trajkovic, “Interactive calibration of a PTZ camera for surveillance applications,” in Proc.of Asian Conf.on Computer Vision, Melbourne, 2002, pp.1-8.

    [3]E.K.Bas and J.D.Crisman, “An easy to install camera calibration for traffic monitoring,” in Proc.of ⅠEEE Conf.onⅠntelligent Transportation Symposium, Boston, 1997, pp.362-366.

    [4]A.H.S.Lai and N.H.C.Yung, “Lane detection by orientation and length discrimination,” ⅠEEE Trans.on Systems, Man, and Cybernetics, Part B, vol.30, no.4, pp.539-548, 2000.

    [5]G.S.K.Fung, N.H.C Yung, and G.K.H.Pang, “Camera calibration from road lane markings,” Optical Engineering,vol.2, no.10, pp.2967-2977, 2003.

    [6]X.C.He and N.H.C Yung, “New method for overcoming ill-conditioning in vanishing-point-based camera calibration,” Optical Engineering, vol.46, no.3, pp.1-12,2007.

    [7]T.N.Schoepflin and D.J.Dailey, “Dynamic camera calibration of road-side traffic management cameras for vehicle speed estimation,” ⅠEEE Trans.on Ⅰntelligent Transportation Systems, vol.4, no.2, pp.90-98, 2003.

    [8]K.-T.Song and J.-C.Tai, “Dynamic calibration of pan-tilt-zoom camerea for traffic monitoring,” ⅠEEE Trans.on Systems, Man, and Cybernetics Part B: Cybernetics, vol.36, no.5, pp.1091-1103, 2006.

    [9]D.C.Brown, “Decentering distortion of lenses,”Photogrammetric Engineering, vol.32, no.3, pp.444-462,1966.

    [10]J.Heikkila and O.Silven, “A four-step camera calibration procedure with implicit image correction,” in Proc.of 1997ⅠEEE Computer Society Conf.on Computer Vision and Pattern Recognition, San Juan, 1997, pp.1106-1112.

    [11]E.M.Mikhail, J.S.Bethel, and J.C.McGlone, Ⅰntroduction to Modern Photogrammetry, New York: Willey, 2001.

    [12]S.S.Beauchemin and L.J.Barron, The Computation of Optical Flow.New York: ACM, 1995.

    [13]A.Burton and J.Radford, Thinking in Perspective: Critical Essays in the Study of Thought Processes, London: Methuen,1978.

    [14]D.H.Harren and R.E.Strelow, Electronic Spatial Sensing for the Blind: Contributions from Perception, Berlin:Springer, 1985.

    [15]B.K.P Horn and B.G.Schunck, “Determining optical flow,” Artificial Ⅰntelligence, vol.17, no.1-3, pp.185-203,1981.

    [16]R.W.Hamming, Numerical Methods for Scientists and Engineers, New York: McGraw-Hill, 1962.

    [17]F.Yannick, H.Chris, and B.Philippe, “Screen-Camera Calibration using Gray Codes,” presented at Sixth Canadian Conference on Computer and Robot Vision, Kelowna, 2009.

    欧美性猛交黑人性爽| 欧美性长视频在线观看| 亚洲精品国产一区二区精华液| a级毛片在线看网站| 伊人久久大香线蕉亚洲五| 色综合欧美亚洲国产小说| 国产高清视频在线观看网站| 精品国产美女av久久久久小说| 88av欧美| 亚洲熟妇熟女久久| 亚洲人成77777在线视频| 日韩av在线大香蕉| 制服诱惑二区| 又爽又黄无遮挡网站| 伦理电影免费视频| 麻豆一二三区av精品| 国产av又大| 精品国产美女av久久久久小说| 亚洲成av人片在线播放无| 久久热在线av| xxx96com| 人成视频在线观看免费观看| 欧美+亚洲+日韩+国产| 天天一区二区日本电影三级| 亚洲欧美激情综合另类| 五月玫瑰六月丁香| 白带黄色成豆腐渣| 很黄的视频免费| www.999成人在线观看| 国产精品久久久久久久电影 | 日本一本二区三区精品| 欧美成人性av电影在线观看| www.自偷自拍.com| 久久婷婷成人综合色麻豆| 精品久久久久久久久久免费视频| 香蕉丝袜av| 欧美在线黄色| 亚洲国产精品合色在线| 麻豆成人av在线观看| 神马国产精品三级电影在线观看 | 成人国语在线视频| 欧美中文日本在线观看视频| 免费在线观看成人毛片| 一个人免费在线观看的高清视频| 亚洲欧美日韩东京热| 亚洲人与动物交配视频| 老司机午夜十八禁免费视频| 色综合欧美亚洲国产小说| 精品一区二区三区av网在线观看| 国产成+人综合+亚洲专区| 亚洲中文字幕日韩| 久久精品人妻少妇| 国产一区二区在线观看日韩 | 男女床上黄色一级片免费看| 国产精品亚洲一级av第二区| 国产真实乱freesex| 99久久国产精品久久久| 老司机午夜十八禁免费视频| 亚洲欧美激情综合另类| 久99久视频精品免费| x7x7x7水蜜桃| 精品欧美一区二区三区在线| 久久久久国产一级毛片高清牌| 精品熟女少妇八av免费久了| 久久久久九九精品影院| 99精品欧美一区二区三区四区| 国产午夜精品久久久久久| 亚洲成人国产一区在线观看| avwww免费| 久久香蕉精品热| 可以免费在线观看a视频的电影网站| 国产精品日韩av在线免费观看| 少妇裸体淫交视频免费看高清 | 欧美成人免费av一区二区三区| 久久九九热精品免费| АⅤ资源中文在线天堂| 黄色女人牲交| 国产精品,欧美在线| 黄色视频,在线免费观看| 国产午夜精品久久久久久| 黄色视频不卡| 波多野结衣高清作品| 亚洲av电影在线进入| 欧美日韩亚洲综合一区二区三区_| 亚洲人成网站在线播放欧美日韩| 天天一区二区日本电影三级| 三级男女做爰猛烈吃奶摸视频| 一边摸一边做爽爽视频免费| 国产亚洲精品久久久久久毛片| 国产精品综合久久久久久久免费| 人人妻人人澡欧美一区二区| 午夜福利18| 一区二区三区激情视频| 久久精品人妻少妇| 18禁黄网站禁片免费观看直播| 在线永久观看黄色视频| 国产一区二区激情短视频| 丝袜人妻中文字幕| bbb黄色大片| www.精华液| 99精品在免费线老司机午夜| 国产乱人伦免费视频| 亚洲自拍偷在线| 麻豆国产97在线/欧美 | 国产单亲对白刺激| 99久久国产精品久久久| 色综合欧美亚洲国产小说| 成人18禁在线播放| 午夜精品一区二区三区免费看| 99久久99久久久精品蜜桃| 在线观看免费视频日本深夜| 久久婷婷成人综合色麻豆| 18禁黄网站禁片免费观看直播| 国产精品免费一区二区三区在线| 久久久久久大精品| 最近视频中文字幕2019在线8| 欧美一区二区国产精品久久精品 | 国产69精品久久久久777片 | 校园春色视频在线观看| 在线播放国产精品三级| 黑人欧美特级aaaaaa片| 免费一级毛片在线播放高清视频| 一级毛片高清免费大全| 国语自产精品视频在线第100页| 在线观看66精品国产| 人妻夜夜爽99麻豆av| av欧美777| 美女高潮喷水抽搐中文字幕| 国产一区二区在线观看日韩 | 国产麻豆成人av免费视频| 成人午夜高清在线视频| 亚洲五月婷婷丁香| 男插女下体视频免费在线播放| 久久这里只有精品19| 午夜成年电影在线免费观看| 一级毛片精品| 亚洲欧美精品综合一区二区三区| 好男人电影高清在线观看| 久久亚洲精品不卡| 久久精品夜夜夜夜夜久久蜜豆 | 成人午夜高清在线视频| 久久性视频一级片| 国产精品美女特级片免费视频播放器 | 五月玫瑰六月丁香| 亚洲一码二码三码区别大吗| 免费在线观看黄色视频的| 欧美一级毛片孕妇| 美女 人体艺术 gogo| 日本 欧美在线| 99国产综合亚洲精品| 99热只有精品国产| 国产野战对白在线观看| 成人国产一区最新在线观看| 久久婷婷成人综合色麻豆| 在线十欧美十亚洲十日本专区| 精品久久久久久久久久久久久| 麻豆国产av国片精品| 18禁裸乳无遮挡免费网站照片| 丝袜美腿诱惑在线| 男人舔女人下体高潮全视频| 全区人妻精品视频| av中文乱码字幕在线| 日韩欧美三级三区| 日日干狠狠操夜夜爽| 免费在线观看成人毛片| 免费观看精品视频网站| 国产精品免费视频内射| 97碰自拍视频| 国产av一区二区精品久久| 亚洲性夜色夜夜综合| 亚洲精华国产精华精| 三级毛片av免费| 中文字幕最新亚洲高清| 久久久久免费精品人妻一区二区| 全区人妻精品视频| 美女午夜性视频免费| 国产一区二区在线av高清观看| 大型av网站在线播放| 美女 人体艺术 gogo| 天堂影院成人在线观看| www日本在线高清视频| www.自偷自拍.com| 51午夜福利影视在线观看| 国产人伦9x9x在线观看| 村上凉子中文字幕在线| 丝袜人妻中文字幕| 一本大道久久a久久精品| 欧美午夜高清在线| 99热6这里只有精品| 国产精品国产高清国产av| 88av欧美| 亚洲国产中文字幕在线视频| 国产男靠女视频免费网站| 中国美女看黄片| 99国产精品99久久久久| 美女黄网站色视频| 国产v大片淫在线免费观看| 一区二区三区激情视频| 欧美在线一区亚洲| 中文资源天堂在线| 国产成年人精品一区二区| 最新在线观看一区二区三区| 12—13女人毛片做爰片一| а√天堂www在线а√下载| 欧美国产日韩亚洲一区| 少妇人妻一区二区三区视频| 欧美色视频一区免费| 99久久99久久久精品蜜桃| 亚洲美女视频黄频| 亚洲免费av在线视频| 国产精品一区二区精品视频观看| 淫秽高清视频在线观看| 国产精品一区二区免费欧美| 中文字幕人成人乱码亚洲影| 免费在线观看黄色视频的| 免费无遮挡裸体视频| 亚洲精品美女久久久久99蜜臀| 久久久久性生活片| 国产精品久久久久久久电影 | 国产高清激情床上av| 久久午夜亚洲精品久久| 少妇熟女aⅴ在线视频| 岛国视频午夜一区免费看| 老司机午夜十八禁免费视频| 欧美成人午夜精品| 亚洲av第一区精品v没综合| 精品一区二区三区av网在线观看| 日韩精品免费视频一区二区三区| 狂野欧美白嫩少妇大欣赏| 国产精品98久久久久久宅男小说| 亚洲国产欧美人成| 高清在线国产一区| 搡老岳熟女国产| 久久久国产成人免费| 超碰成人久久| 国产精品日韩av在线免费观看| 色综合欧美亚洲国产小说| 精品国产超薄肉色丝袜足j| av在线天堂中文字幕| 色尼玛亚洲综合影院| 国产爱豆传媒在线观看 | 一边摸一边做爽爽视频免费| 制服丝袜大香蕉在线| 91老司机精品| 午夜福利欧美成人| 免费在线观看亚洲国产| 亚洲 欧美 日韩 在线 免费| 国产亚洲精品久久久久5区| 欧美极品一区二区三区四区| 嫩草影视91久久| 69av精品久久久久久| 国内精品久久久久精免费| 美女大奶头视频| 亚洲五月婷婷丁香| 婷婷亚洲欧美| 嫩草影院精品99| 日韩欧美国产在线观看| 搡老岳熟女国产| 亚洲欧美日韩高清专用| 亚洲欧美精品综合一区二区三区| 成在线人永久免费视频| 中文字幕久久专区| 色噜噜av男人的天堂激情| a级毛片在线看网站| 久久九九热精品免费| 搡老岳熟女国产| 19禁男女啪啪无遮挡网站| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产中文字幕在线视频| 少妇熟女aⅴ在线视频| 人人妻,人人澡人人爽秒播| 亚洲精品美女久久av网站| 毛片女人毛片| 怎么达到女性高潮| 亚洲电影在线观看av| 国产高清激情床上av| 国产精品久久久久久人妻精品电影| 国产单亲对白刺激| 欧美 亚洲 国产 日韩一| 国产av在哪里看| 最近视频中文字幕2019在线8| x7x7x7水蜜桃| 日日摸夜夜添夜夜添小说| 久久亚洲精品不卡| 97超级碰碰碰精品色视频在线观看| 国产亚洲精品久久久久久毛片| 一个人免费在线观看电影 | 亚洲午夜理论影院| 亚洲精品色激情综合| 美女扒开内裤让男人捅视频| 999久久久国产精品视频| 人成视频在线观看免费观看| 国产伦在线观看视频一区| 88av欧美| 久久久久精品国产欧美久久久| 国产精品久久久久久亚洲av鲁大| 麻豆国产av国片精品| 白带黄色成豆腐渣| 岛国在线免费视频观看| 日韩欧美国产在线观看| 在线观看免费视频日本深夜| 老汉色∧v一级毛片| 动漫黄色视频在线观看| 亚洲自拍偷在线| 久久久久久久午夜电影| 给我免费播放毛片高清在线观看| 国产在线精品亚洲第一网站| 国产精品久久久久久久电影 | 欧美黑人巨大hd| 免费在线观看亚洲国产| 国产av一区在线观看免费| 亚洲av五月六月丁香网| 搡老岳熟女国产| 麻豆av在线久日| 国产av一区在线观看免费| 动漫黄色视频在线观看| 九色成人免费人妻av| 午夜老司机福利片| 99国产精品一区二区三区| 欧美在线黄色| 亚洲国产欧美一区二区综合| 亚洲第一欧美日韩一区二区三区| 亚洲自偷自拍图片 自拍| 正在播放国产对白刺激| 欧美性长视频在线观看| 日本 av在线| 日本一二三区视频观看| 欧美一级a爱片免费观看看 | 免费看十八禁软件| 亚洲欧洲精品一区二区精品久久久| 亚洲熟女毛片儿| 18禁国产床啪视频网站| 黄片大片在线免费观看| 高潮久久久久久久久久久不卡| 欧美日韩黄片免| 欧美黄色片欧美黄色片| 一本久久中文字幕| 99久久99久久久精品蜜桃| 亚洲专区中文字幕在线| 精品国产美女av久久久久小说| 国产精品日韩av在线免费观看| 一级作爱视频免费观看| 精品日产1卡2卡| 欧美激情久久久久久爽电影| 久久这里只有精品中国| 成人手机av| 国产片内射在线| 久久久久久免费高清国产稀缺| 亚洲精品粉嫩美女一区| 亚洲人与动物交配视频| 成人永久免费在线观看视频| 亚洲精品在线观看二区| 天堂√8在线中文| 久久九九热精品免费| 日本一本二区三区精品| 日本黄大片高清| 亚洲,欧美精品.| 俺也久久电影网| √禁漫天堂资源中文www| 国产乱人伦免费视频| 亚洲av成人av| 这个男人来自地球电影免费观看| 亚洲第一电影网av| 国产视频一区二区在线看| 日韩精品免费视频一区二区三区| 两个人视频免费观看高清| 黄色片一级片一级黄色片| 99精品在免费线老司机午夜| 成人av一区二区三区在线看| videosex国产| 成年免费大片在线观看| 熟妇人妻久久中文字幕3abv| 男人舔女人下体高潮全视频| 亚洲黑人精品在线| 免费在线观看成人毛片| 看片在线看免费视频| 91字幕亚洲| 婷婷六月久久综合丁香| a级毛片在线看网站| 色尼玛亚洲综合影院| 日本黄色视频三级网站网址| 久久精品国产亚洲av香蕉五月| cao死你这个sao货| 久久久久精品国产欧美久久久| 精品不卡国产一区二区三区| 亚洲精品色激情综合| tocl精华| 国产精品野战在线观看| 亚洲自拍偷在线| 国产精品久久久久久人妻精品电影| 久久久久精品国产欧美久久久| 女同久久另类99精品国产91| АⅤ资源中文在线天堂| 99久久精品国产亚洲精品| 欧美日本视频| 精华霜和精华液先用哪个| 欧美日韩乱码在线| 亚洲第一电影网av| 老汉色∧v一级毛片| 国产一区二区激情短视频| 在线看三级毛片| 不卡av一区二区三区| 欧美在线黄色| 母亲3免费完整高清在线观看| 欧美大码av| 妹子高潮喷水视频| 国产精品一区二区三区四区久久| 成人av在线播放网站| 亚洲av片天天在线观看| 久久久久亚洲av毛片大全| 国产亚洲精品久久久久5区| √禁漫天堂资源中文www| 精品电影一区二区在线| 久久久久久久午夜电影| 亚洲第一欧美日韩一区二区三区| av免费在线观看网站| 日韩欧美免费精品| 成熟少妇高潮喷水视频| 国产精品免费视频内射| 90打野战视频偷拍视频| 熟女少妇亚洲综合色aaa.| 国产高清视频在线播放一区| 极品教师在线免费播放| 久久性视频一级片| 一区二区三区国产精品乱码| www日本黄色视频网| www.www免费av| 91大片在线观看| 国产一区二区三区视频了| 色在线成人网| 欧美成人一区二区免费高清观看 | 成人手机av| 欧美最黄视频在线播放免费| 999久久久国产精品视频| 亚洲国产欧美人成| 欧美色欧美亚洲另类二区| 欧美激情久久久久久爽电影| 久久婷婷人人爽人人干人人爱| 久久精品国产亚洲av高清一级| 中出人妻视频一区二区| 婷婷精品国产亚洲av| 麻豆国产97在线/欧美 | 777久久人妻少妇嫩草av网站| 午夜免费成人在线视频| 久久精品综合一区二区三区| 国产又黄又爽又无遮挡在线| 妹子高潮喷水视频| 亚洲熟妇熟女久久| 99久久精品国产亚洲精品| 国产黄片美女视频| 香蕉av资源在线| 日本一二三区视频观看| 脱女人内裤的视频| 日韩欧美国产一区二区入口| 国产精品精品国产色婷婷| 性欧美人与动物交配| 免费无遮挡裸体视频| 丰满人妻一区二区三区视频av | 国产麻豆成人av免费视频| 国产黄片美女视频| 欧美性猛交黑人性爽| 一卡2卡三卡四卡精品乱码亚洲| 亚洲熟女毛片儿| 久久久国产精品麻豆| 黄色丝袜av网址大全| 精品国产亚洲在线| 免费看美女性在线毛片视频| 日本一本二区三区精品| 99re在线观看精品视频| 一进一出抽搐动态| 久久精品91蜜桃| 日韩av在线大香蕉| 看免费av毛片| 久久精品国产亚洲av香蕉五月| 三级毛片av免费| 国产乱人伦免费视频| 欧美性猛交黑人性爽| 50天的宝宝边吃奶边哭怎么回事| 国产又色又爽无遮挡免费看| 日本一区二区免费在线视频| 999久久久精品免费观看国产| 两个人视频免费观看高清| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲黑人精品在线| 欧美日韩瑟瑟在线播放| 我要搜黄色片| 99久久99久久久精品蜜桃| 琪琪午夜伦伦电影理论片6080| 亚洲欧美日韩高清在线视频| 18禁国产床啪视频网站| 国产又黄又爽又无遮挡在线| 亚洲av电影在线进入| 欧美不卡视频在线免费观看 | av中文乱码字幕在线| 国产成人啪精品午夜网站| 长腿黑丝高跟| 亚洲va日本ⅴa欧美va伊人久久| 嫁个100分男人电影在线观看| 此物有八面人人有两片| 国产久久久一区二区三区| 99在线人妻在线中文字幕| 老司机深夜福利视频在线观看| 欧美成人一区二区免费高清观看 | 亚洲av电影在线进入| 成年版毛片免费区| 欧美日韩一级在线毛片| 国产不卡一卡二| 免费观看精品视频网站| 狠狠狠狠99中文字幕| 妹子高潮喷水视频| www国产在线视频色| 日韩欧美三级三区| 国产精品亚洲美女久久久| 18禁裸乳无遮挡免费网站照片| 男人舔奶头视频| 日本三级黄在线观看| 亚洲中文av在线| 老熟妇乱子伦视频在线观看| 久99久视频精品免费| 国产又色又爽无遮挡免费看| 国产激情欧美一区二区| 99国产精品一区二区蜜桃av| 久久久久久人人人人人| 久久久国产成人精品二区| 日韩欧美三级三区| 夜夜躁狠狠躁天天躁| 国产成人精品久久二区二区91| 精品欧美一区二区三区在线| 十八禁网站免费在线| 国产aⅴ精品一区二区三区波| 嫩草影院精品99| 亚洲在线自拍视频| 性色av乱码一区二区三区2| netflix在线观看网站| 欧美成人一区二区免费高清观看 | 国产精品久久久久久精品电影| 久久久久久亚洲精品国产蜜桃av| 啦啦啦免费观看视频1| 脱女人内裤的视频| 88av欧美| 少妇熟女aⅴ在线视频| 欧美黑人巨大hd| 男人舔奶头视频| 99国产综合亚洲精品| 亚洲中文字幕日韩| 亚洲精华国产精华精| 久久国产精品影院| 两人在一起打扑克的视频| 村上凉子中文字幕在线| 91老司机精品| 波多野结衣高清作品| 少妇熟女aⅴ在线视频| 欧美zozozo另类| 亚洲成人久久性| 亚洲人与动物交配视频| 少妇被粗大的猛进出69影院| 制服人妻中文乱码| 叶爱在线成人免费视频播放| 国产精品国产高清国产av| 国产精品美女特级片免费视频播放器 | www.熟女人妻精品国产| 九色成人免费人妻av| 级片在线观看| 欧美性猛交黑人性爽| 精品高清国产在线一区| 91成年电影在线观看| 观看免费一级毛片| 男人舔女人下体高潮全视频| 又爽又黄无遮挡网站| 日韩中文字幕欧美一区二区| 欧美日韩中文字幕国产精品一区二区三区| www.精华液| 亚洲 国产 在线| 中亚洲国语对白在线视频| 观看免费一级毛片| 亚洲片人在线观看| 在线观看免费午夜福利视频| 变态另类成人亚洲欧美熟女| 一个人免费在线观看电影 | 在线观看午夜福利视频| 精品国内亚洲2022精品成人| 久久婷婷人人爽人人干人人爱| 国产精品永久免费网站| 久久人人精品亚洲av| 日韩大码丰满熟妇| 欧美日韩国产亚洲二区| av视频在线观看入口| 伊人久久大香线蕉亚洲五| 夜夜夜夜夜久久久久| 亚洲男人天堂网一区| 丁香六月欧美| a在线观看视频网站| 国内少妇人妻偷人精品xxx网站 | 欧美日本亚洲视频在线播放| 久久久久国产一级毛片高清牌| 哪里可以看免费的av片| 老司机在亚洲福利影院| av超薄肉色丝袜交足视频| 国产精品综合久久久久久久免费| www国产在线视频色| 亚洲中文av在线| 久久精品亚洲精品国产色婷小说| 别揉我奶头~嗯~啊~动态视频| 国产精品98久久久久久宅男小说| 国产69精品久久久久777片 | 亚洲av美国av| 国内精品一区二区在线观看| 51午夜福利影视在线观看| 又粗又爽又猛毛片免费看| 99热6这里只有精品| 男女床上黄色一级片免费看| 老司机在亚洲福利影院| 好男人在线观看高清免费视频| 黄色女人牲交| 中文字幕久久专区|