• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamics and Operation-State Estimation of Current-Mode Controlled Flyback Converter

    2013-06-19 16:16:43GuoDongShiQiuJuanCaoBoChengBaoandZhengHuaMa

    Guo-Dong Shi, Qiu-Juan Cao, Bo-Cheng Bao, and Zheng-Hua Ma

    Dynamics and Operation-State Estimation of Current-Mode Controlled Flyback Converter

    Guo-Dong Shi, Qiu-Juan Cao, Bo-Cheng Bao, and Zheng-Hua Ma

    —By utilizing total magnetic fluxφof the primary and secondary windings of the flyback transformer as a state variable, the discrete-time model of current-mode controlled flyback converter is established, upon which the bifurcation behaviors of the converter are analyzed and two boundary classification equations of the orbit state shifting are obtained. The operation- state regions of the current-mode controlled flyback converter are well classified by two boundary classification equations. The theoretical analysis results are verified by power electronics simulator (PSIM). The estimation of operation-state regions for the flyback converter is useful for the design of circuit parameters, stability control of chaos, and chaos-based applications.

    Index Terms—Bifurcation, chaos, discrete-time model, flyback converter.

    1. Introduction

    Bifurcation phenomena and border collision have been studied in buck, boost, and buck-boost converters[1]–[3]. In recent years, these phenomena have been also studied in peak-current-controlled superbuck converter[4], singleinductor dual-switching dc-dc converter[5], and boost PFC (power factor correction) converter[6]. However, few studies have been performed on isolated converter, such as flyback converter[7],[8]. In flyback converter, the secondary winding current of the transformer is zero when the switch is turned on, whereas the primary winding current of the transformer is zero when the switch is turned off. Thus the inductance currents of the primary and secondary windings of the transformer are discontinuous and can not be regarded as state variables to analyze the bifurcation behaviors. For this reason, total ampere-turns of the primary and secondary windings of the transformer have been presented as one of the variables to analyze the bifurcation behaviors on voltage-mode controlled flyback converter[8]. In this paper, we consider the total magnetic flux of the primary and secondary windings as a state variable to describe the dynamics of current-mode controlled flyback converter.

    In current-mode controlled switching dc-dc converters, the operation-states may shift from continuous conduction mode (CCM) to discontinuous conduction mode (DCM), and three operation-state regions classified by stable period region, robust chaos region in CCM, and intermittent chaos region in DCM exist in the current-mode controlled switching dc-dc converters with the variations of circuit parameters, such as input voltage, output voltage, or reference current[4],[9]–[11]. Some methods have been developed to locate the boundary of the period-one zone of switching dc-dc converters[12]–[14], and an approach to locate two boundaries of three operation-state regions of current-mode controlled switching dc-dc converters has been proposed recently[11]. In this paper, the dynamics of a current-mode controlled flyback converter is analyzed through a discrete-time map model covering both CCM and DCM, and two boundary classification equations dividing three smooth operation-state regions over the parameter space of the converter are derived.

    2. Modeling of Current-Mode Controlled Flyback Converter

    2.1 Flyback Converter with Current-Mode Control

    The schematic of current-mode controlled flyback converter is shown in Fig. 1, in which the main circuit topology is a second-order circuit consisting of an inductor L, a capacitor C, a switch S, a diode D, a load resistor R and a transformer.

    Fig. 1. Current-mode controlled flyback converter.

    The parameters of the transformer in Fig. 1 are the primary winding leakage inductanceL1, the secondary winding leakage inductanceL2, and the turn ratio of the primary and secondary windingsN1:N2. A timer generates a free-running clock which controls the operation of current-mode control loop. The converter is controlled by a feedback loop consisting of a comparator and a RS trigger.

    Fig. 2 shows the waveforms of the currents and the corresponding total magnetic flux of the primary and secondary windings of the flyback transformer. The switch S is turned on at the beginning of each switching cycle, and during the time interval when the switch S is turned on, the primary winding currenti1rises linearly and the secondary winding currenti2equals to zero. The switch S is turned off wheni1increases to a reference currentIref, and during the time interval when the switch S is turned off,i1equals to zero andi2decreases. In CCM,i2is always non-zero, while in DCM,i2decreases to zero during the time interval when the switch S is turned off and remains at zero until the end of switching cycle. Because the switching frequency of flyback converter is usually much higher than the natural frequency of the converter, the dynamics of the outer voltage loop is much slower and can be ignored, and the output of the flyback converter can be represented by a constant voltage sourceVo[9],[11]. Under this assumption, the current-mode controlled flyback converter becomes onedimensional and the inductor current waveform becomes piecewise linear.

    2.2 State Equations

    Since two currentsi1andi2are discontinuous and can not be regarded as state variables[8], we consider the total magnetic fluxφof the primary and secondary windings as a state variable to describe the dynamics of the flyback converter. The expression ofφis

    whereΨ1andΨ2are the magnetic flux linkages of the primary and secondary windings of the transformer, respectively.

    The converter can be regarded as a system with a variable structure that toggles its topologies according to the states of the switches as shown in Fig. 2. Typically, when the converter operates in DCM, three switch states can be identified as follow:

    State 1: switch S on and diode D off.

    State 2: switch S off and diode D on.

    State 3: switch S off and diode D off.

    Fig. 2. Waveforms of the inductance currents and the magnetic flux.

    When the converter operates in CCM, only two switch states are identified by State 1 and State 2, i.e., the state 3 does not appear in CCM. Thus, the system operating in both CCM and DCM can be described by the following state equations.

    State 1: When S is on, D is off,i2= 0,φ=L1i1/N1anddφ/dt= (L1/N1)di1/dt. The state equation is

    State 2: When S is off, D is on,i1= 0, soφ=L2i2/N2anddφ/dt=(L2/N2)di2/dt. The relationship between the primary inductorL1and the secondary inductorL2is. Thus the state equation is

    State 3: When the converter operates in DCM, both S and D are off,i1=i2= 0. The state equation is

    2.3 Two Borders

    For current-mode controlled flyback converter operating in DCM, there are two borders in the discrete state-space. The borderφb1is defined as the total magnetic flux of the primary and secondary windings at the beginning of switching cycle when the currenti1reachesIrefjust at the end of the switching cycle. The borderφb2is defined as the total magnetic flux of the primary and secondary windings at the beginning of switching cycle which decreases to zero just at the end of the switching cycle. Fig. 3 shows the total magnetic flux waveforms of current-mode controlled flyback converter at these borders. Fig. 3 (a) shows the evolution of total magnetic flux ifφn=φb1, where the currenti1reachesIrefat the end of the switching cycle, and the switch S remains on throughout this switching cycle. Fig. 3 (b) shows the evolution of total magnetic flux ifφn=φb2, where the currenti2decreases to zero at the end of the switching cycle.

    Based on the definitions of these two borders, we can easily obtain two borders of the total magnetic flux,φb1andφb2, as below:

    Fig. 3. Total magnetic flux waveforms of current-mode controlled flyback converter with two borders: (a)φn=φb1,φn+1=L1Iref/N1and (b) φn=φb2, φn+1= 0.

    2.4 Discrete-Time Model

    With these two borders given by (5) and (6), there are three types of orbits between consecutive clock instants.

    1)φn≤φb1. The switch remains on throughout the switching cycle, and the map is easily derived from (2) and given by

    2)φb1<φn<φb2. The magnetic flux of the primary winding increases toL1Iref/N1and then the magnetic flux of the secondary winding decreases until the end of the switching cycle, and the map is derived from (3) and given by

    3)φn≥φb2. The inductance currenti2of the secondary winding decreases to zero during thenth switching cycle, i.e., the converter enters DCM. Thus, at the end of thenth switching cycle, we have

    Thus, the discrete-time model of current-mode controlled flyback converter can then be written in the form:

    Based on three piecewise linear equations containing two borders, the discrete map model of current-mode controlled flyback converter is obtained and the corresponding dynamical analysis can be performed.

    3. Dynamics and Operation-State Estimation

    3.1 Dynamics of Current-Mode Controlled Flyback Converter

    By utilizing the discrete-time model (10), the bifurcation to chaotic behavior of current-mode controlled flyback converter with circuit parameters variation can be effectively exhibited. The numerical simulations are performed by using MATLAB software platform with following parameters:Iref= 1.2 A,L1= 1 mH,T= 100 μs, andN1:N2= 3:2. If we fixE= 7 V and takeVoas bifurcation parameter, we can obtain the magnetic flux bifurcation diagram with the increasing ofVoas shown in Fig. 4 (a). If we fixVo= 9 V and takeEas bifurcation parameter, then we can obtain the magnetic flux bifurcation diagram with the increasing ofEas shown in Fig. 4 (b). In Fig. 4, two bordersφb1andφb2are plotted by using the dashed line and dash-dot line, respectively.

    From Fig. 4, it is found that the current-mode controlled flyback converter has complex dynamical behaviors. First consideringVoas variable, whenVoincreases gradually, a period-doubling bifurcation occurs atVo= 4.67 V. After the occurrence of period-doubling bifurcation, the unstable periodic orbit with period-two collides with the borderφb1, resulting in a border collision bifurcation at the same parameter value, and the operation-state of the converter goes into the robust chaos with CCM from the stable period. WhenVoincreases further, the chaotic orbit collides with the borderφb2atVo= 8 V, resulting in another border collision bifurcation, and the operation-state of the converter shifts into the intermittent chaos with DCM from the robust chaos with CCM. Then consideringEas variable, whenEdecreases gradually, a reverse period-doubling bifurcation occurs atE= 13.5 V. After the occurrence of period-doubling bifurcation, the converter operates in DCM, i.e., the currenti2remains at zero in the durations of some switching cycles, the unstable periodic orbit collides with the borderφb2, resulting in a border collision bifurcation at the same parameter, and the operation-state of the converter directly enters into sub-harmonics with DCM. WhenEdecreases further, the unstable periodic orbit collides with the borderφb1atE=L1Iref/T= 12 V, resulting in the nonzero periodic orbit to be folded. The folded non-zero periodic orbit collides with the borderφb2atE= 10.8 V, and a period-four orbit emerges from the period-two orbit. The operation-state of the converter jumps into the intermittent chaos with DCM from the period-sixteen orbit atE=8.17 V.

    Fig. 4. Dynamics of current-mode controlled flyback converter: (a) Bifurcation diagram withVoincreasing and (b) Bifurcation diagram withEincreasing.

    The above analysis results show that there exist three operation-state regions, i.e., stable period region, robust chaos region with CCM, and intermittent chaos region with DCM, in current-mode controlled flyback converter. Especially, the super-stable periodic orbits exist in DCM due to the occurrence of zero eigenvalue[9]. The converter shows weak chaos and strong intermittency, which means that the chaotic behavior becomes weak in DCM[10].

    3.2 Boundary Classification Equations for Operation-State

    From (10), the eigenvalueλof the characteristic equation for current-mode controlled flyback converter is given byλ= –N1Vo/N2E. To ensure stable operation,λmust fall between –1 and 1[15]. The first period-doubling occurs whenλ= –1. Hence, by puttingλ= –1, the first boundary classification equationσ1for the operation mode shifting from the stable period-one to subharmonics and chaos will be

    which implies that if the circuit parameters satisfyσ1> 0, i.e.Vo<N2E/N1, the converter operates with periodic oscillation, otherwise with subharmonics or chaotic oscillation.

    It is clear that the maximum total magnetic flux at the end of thenth switching cycle isφn+1,max=L1Iref/N1. When the total magnetic flux of the flyback converter reaches the borderφb2, the border collision bifurcation and operation-state shift occur. Under this condition, there existsφb2=φn+1,max, i.e. Therefore, the second boundary classification equationσ2for the operation-state region shifting from CCM to DCM will be

    Fig. 5. Estimation of operation-state regions for current-mode controlled flyback converter: (a) parameter space map ofVoandEand (b) corresponding division of operation-state regions.

    If the circuit parameters satisfyσ2< 0, i.e.,Vo>N2L1Iref/N1T, the converter will operate in DCM, otherwise in CCM.

    It is remarkable thatσ1only depends on the input voltageE, the output voltageVo, and the turns ratio of the primary and secondary windings of the transformer, whileσ2depends on all of circuit parameters of current-mode controlled flyback converter except for the input voltageE.

    3.3 Estimation of Operation-State Regions

    Considering the circuit parameters with rangesE= 2~18 V andVo= 2 ~ 12 V, and letingIref= 1.2 A,L1= 1 mH,T= 100 μs, andN1:N2= 3:2, we can obtain the parameter space map as shown in Fig. 5 (a). The higher periodicities are depicted with deeper gray levels, the darker shade areas imply chaos, while the white and shallower gray areas mean low period.

    The three smooth operation-state regions of currentmode controlled flyback converter over the parameter space can be divided by above boundary classification equationsσ1andσ2. Fig. 5 (b) shows the regions of the orbit operation-states corresponding to Fig. 5 (a). From (11) and (12), the two boundaries areσ1:Vo=N2E/N1andσ2:Vo=N2L1Iref/N1Trespectively. The boundaryσ1is called as the first period-doubling bifurcation borderline and the boundaryσ2is called as the operation mode shifting borderline. The regions of stable period-one, robust chaos in CCM, and intermittent chaos in DCM are shown in Fig. 5 (b). From the parameter space map, the different operation-state regions of the converter can be demonstrated clearly.

    It is visible that the 1-D bifurcation diagrams ofφnversusVoandEin Fig. 4 (a) and Fig. 4 (b) can be obtained along the paths from point A to point B and from point C to point D in Fig. 5 (a), respectively. It should also be noted that the boundary classification equationσ2will lose its physical significance when current-mode controlled flyback converter is located in stable operation-state region.

    3.4 PSIM Simulation Results

    In order to verify theoretical analysis, the PSIM (power electronics simulator) simulations of the current-mode controlled flyback converter are performed with the parameters as mentioned above, by first fixingE= 7 V and thenVo= 9 V. With the increasing ofVoorE, the waveforms of the primary winding currenti1and the secondary winding currenti2of the flyback transformer are obtained in Fig. 6 and Fig. 7. Fig. 6 depicts that with the variation of output voltageVo: 4 V, 4.68 V, 7 V and 10 V, the period-1 with CCM, period-2 with CCM, robust chaos with CCM, and intermittent chaos with DCM occur respectively. Fig. 7 describes that with the variation of inputvoltageE: 5 V, 9.5 V, 12 V, and 14 V, the intermittent chaos with DCM, period-4 with DCM, period-2 with DCM, and period-1 with CCM occur respectively. These simulation results are consistent with those results shown in Fig. 4.

    Considering the other four sets of circuit parameters locating in the different operation-state regions divided by two boundary classification equationsσ1andσ2in Fig. 5 (b), we can further obtain the simulation results as shown in Fig. 8. Fig. 8 (a) shows that when the circuit parameters are located in CCM robust chaos region in Fig. 5 (b), the converter is in chaotic state with CCM. Fig. 8 (b) depicts that when the circuit parameters are just located at the boundaryσ2in Fig. 5 (b), the secondary winding currenti2decreases to zero at the end of some switching cycle, and the operation-state shifts between CCM and DCM. The circuit parameters for Fig. 8 (c) are located in DCM intermittent chaos region in Fig. 5 (b), thus the converter is in chaotic state with intermittency. While the circuit parameters locating in DCM intermittent chaos region in Fig. 5 (b) are selected, the converter operates at period-2 with DCM, as shown in Fig. 8 (d).

    Fig. 6. Simulation waveforms whileVois increased along the path from point A to point B in Fig. 5 (a): (a) CCM, period-1 forVo= 4 V, (b) CCM, period-2 forVo= 4.68 V, (c) CCM, robust chaos forVo= 7 V, and (d) DCM, intermittent chaos forVo= 10 V.

    Fig. 7. Simulation waveforms whileEis increased along the path from point C to point D in Fig. 5 (a): (a) DCM, intermittent chaos forE= 5 V, (b) DCM, period-4 forE= 9.5 V, (c) DCM, period-2 forE= 12 V, and (d) CCM, period-1 forE= 14 V.

    Fig. 8. Simulation waveforms whileEandVoare arbitrarily selected in different operation-state regions of Fig. 5(b): (a) CCM, robust chaos forE= 3 V andVo= 6 V, (b) shifting between CCM and DCM, critical robust chaos forE= 6 V andVo= 8 V, (c) DCM, intermittent chaos forE= 5 V andVo= 10 V, and (d) DCM, period-2 forE= 12 V andVo= 11 V.

    4. Conclusions

    With the variations of circuit parameters such as input voltage and output voltage, the current-mode controlled flyback converter exhibits two borders and its operationstates can shift between stable period-1, robust chaos in CCM, and intermittent chaos in DCM via period-doubling bifurcation and border collision bifurcation. Two boundary classification equations of operation-state regions can characterize the constitutive relations that the current-mode controlled flyback converter shifts among different operation-states. Utilizing total magnetic fluxφof the primary and secondary windings as a state variable, we establish the discrete-time model with two borders, analyze the bifurcation behaviors, and obtain two boundary classification equations. The estimated operation-states by two boundary classification equations are verified by PSIM simulation results of the current-mode controlled flyback converter.

    [1] C. K. Tse and M. Di Bernardo, “Complex behavior in switching power converters,”Proc.IEEE, vol. 90, no. 5, pp. 768–781, 2002.

    [2] G. Yuan, S. Banerjee, E. Ott, and J. A. Yorke, “Bordercollision bifurcations in the buck converter,”IEEE Trans. on Circuits and Systems Part I: Fundamental Theory and Applications, vol. 45, no. 7, pp. 707–716, 1998.

    [3] B. Basak and S. Parui, “Exploration of bifurcation and chaos in buck converter supplied from a rectifier,”IEEE Trans. on Power Electronics, vol. 25, no. 6, pp. 1556–1564, 2010.

    [4] M. Karppanen, J. Arminen, T. Suntio, K. Savela, and J. Simola, “Dynamical modeling and characterization of peak-current-controlled superbuck converter,”IEEE Trans. Power Electronics, vol. 23, no. 3, pp. 1370–1380, 2008.

    [5] V. Moreno-Font, A. E. Aroudi, J. Calvente, R. Giral, and L. Benadero, “Dynamics and stability issues of a single-inductor dual-switching dc-dc converter,”IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 57, no. 2, pp. 415–426, 2010.

    [6] F. Wang, H. Zhang, and X. Ma, “Analysis of slow-scale instability in boost PFC converter using the method of harmonic balance and floquet theory,”IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 57, no. 2, pp. 405–414, 2010.

    [7] F. H. Hsieh, K. M. Lin, and J. H. Su, “Chaos phenomenon in UC3842 current-programmed flyback converters,” inthe 4th IEEE Conf. Ind. Electron. Appl., Xi’an, 2009, pp. 166–171.

    [8] F. Xie, R. Yang, and B. Zhang, “Bifurcation and border collision analysis of voltage-mode-controlled flyback converter based on total ampere turns,”IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 58, no. 9, pp. 2269–2280, 2011.

    [9] T. Kabe, S. Parui, H. Torikai, S. Banerjee, and T. Saito,“Analysis of piecewise constant models of current mode controlled DC-DC converters,”IEICE Trans. Fundamentals, vol. E90-A, no. 2, pp. 448–456, 2007.

    [10] S. Parui and S. Banerjee, “Bifurcations due to transition from continuous conduction mode to discontinuous conduction mode in the boost converter,”IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 50, no. 11, pp. 1464–1469, 2003.

    [11] B.-C. Bao, G.-H. Zhou, J.-P. Xu, and Z. Liu, “Unified classification of operation-state regions for switching converters with ramp compensation,”IEEE Trans. Power Electronics, vol. 26, no. 7, pp. 1968–1975, 2011.

    [12] A. E. Aroudi, E. Rodriguez, R. Leyva, and E. Alarcon, “A design-oriented combined approach for bifurcation in switched-mode power converters,”IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 57, no. 3, pp. 218–222, 2010.

    [13] E. Toribio, A. El Aroudi, G. Olivar, and L. Benadero,“Numerical and experimental study of the region of period-one operation of a PWM boost converter,”IEEE Trans. Power Electronics, vol. 15, no. 6, pp. 1163–1171, 2000.

    [14] K. W. E. Cheng, M. Liu, and J. Wu, “Chaos study and parameter-space analysis of the DC-DC buck-boost converter,”IEE Proc. Electric Power Applications, vol. 150, no. 2, pp. 126–138, 2003.

    [15] R. W. Erickson and D. Maksimovi?,Fundamentals of Power Electronics, 2nd ed., Norwell: Kluwer, 2001.

    Guo-Dong Shiwas born in Jiangsu, China in 1956. He is currently a professor with the School of Information Science and Engineering, Changzhou University, Changzhou, China. His research interests include electrical automation and applications, and artificial intelligence.

    Qiu-Juan Caowas born in Jiangsu, China in 1988. She is currently pursuing the M.S. degree with School of Information Science and Engineering, Changzhou University. Her research interests include the control technology of switching power converter.

    Zheng-Hua Mawas born in Jiangsu, China in 1962. He is currently a professor with the School of Information Science and Engineering, Changzhou University. His research interests include power electronic technology and embedded development with applications.

    Bao

    the B.S. and M.S. degrees in electronic engineering from the University of Electronics Science and Technology of China, Chengdu, China in 1986 and 1989, respectively, and the Ph.D. degree from the Department of Electronic Engineering, Nanjing University of Science and Technology, Nanjing, China in 2010. Dr. Bao is currently a professor with the School of Information Science and Engineering, Changzhou University. His research interests include bifurcation and chaos, analysis and simulation in power electronic circuits, and nonlinear circuits and systems.

    Manuscript received December 6, 2012; revised February 10, 2013. This work was supported by the National Natural Science Foundation of China under Grant No. 51277017 and the Natural Science Foundation of Changzhou, Jiangsu Province, China under Grant No. CJ20120004.

    B.-C. Bao is with the School of Information Science and Engineering, Changzhou University, Changzhou 213164, China (Corresponding author e-mail: mervinbao@126.com).

    G.-D. Shi, Q.-J. Cao, and Z.-H. Ma are with the School of Information Science and Engineering, Changzhou University, Changzhou 213164, China (e-mail: sgd@cczu.edu.cn; jsjma@126.com; qiujuan@126.com).

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2013.03.013

    欧美日本亚洲视频在线播放| 内射极品少妇av片p| 91在线观看av| 欧美精品啪啪一区二区三区| 中文亚洲av片在线观看爽| 欧美又色又爽又黄视频| av在线观看视频网站免费| 成人三级黄色视频| 黄片小视频在线播放| av在线天堂中文字幕| 日本 欧美在线| 中文字幕精品亚洲无线码一区| 国产精品伦人一区二区| 直男gayav资源| 欧美高清成人免费视频www| 久久久久国产精品人妻aⅴ院| 91久久精品电影网| 色噜噜av男人的天堂激情| 我的女老师完整版在线观看| 国产一区二区三区在线臀色熟女| 欧美成人一区二区免费高清观看| 国产成人aa在线观看| 精品久久久久久成人av| 天堂av国产一区二区熟女人妻| 婷婷亚洲欧美| 麻豆久久精品国产亚洲av| 成人三级黄色视频| 床上黄色一级片| 亚洲精品影视一区二区三区av| x7x7x7水蜜桃| 真实男女啪啪啪动态图| 亚洲,欧美,日韩| 麻豆久久精品国产亚洲av| 午夜a级毛片| 丰满乱子伦码专区| 国模一区二区三区四区视频| 97超级碰碰碰精品色视频在线观看| 国产色爽女视频免费观看| 搞女人的毛片| 两个人的视频大全免费| 中文字幕人成人乱码亚洲影| 国产一区二区亚洲精品在线观看| 老鸭窝网址在线观看| 亚洲人成伊人成综合网2020| 级片在线观看| 国产成+人综合+亚洲专区| 亚洲成人久久性| 国产高清激情床上av| 我要看日韩黄色一级片| 美女cb高潮喷水在线观看| 老司机午夜福利在线观看视频| 美女被艹到高潮喷水动态| 国产精品98久久久久久宅男小说| 日本五十路高清| 欧美黄色片欧美黄色片| а√天堂www在线а√下载| 欧美日韩福利视频一区二区| 99热这里只有精品一区| 日日摸夜夜添夜夜添av毛片 | 亚洲精品在线观看二区| www.999成人在线观看| 99国产精品一区二区蜜桃av| 国产精品美女特级片免费视频播放器| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产日韩欧美精品在线观看| 日韩中文字幕欧美一区二区| 国产一区二区在线观看日韩| 久久久久久大精品| 免费观看的影片在线观看| 色av中文字幕| 久久久久久久久中文| 欧美日韩黄片免| 亚洲片人在线观看| 久久久精品欧美日韩精品| 成年人黄色毛片网站| 丰满人妻熟妇乱又伦精品不卡| 熟妇人妻久久中文字幕3abv| 日韩欧美 国产精品| 色综合亚洲欧美另类图片| 欧美成人性av电影在线观看| 精品无人区乱码1区二区| 又爽又黄a免费视频| 757午夜福利合集在线观看| 亚洲av成人不卡在线观看播放网| 亚洲,欧美精品.| 一进一出抽搐动态| 欧美黄色淫秽网站| 真人做人爱边吃奶动态| 欧美日韩综合久久久久久 | 久久久久久九九精品二区国产| 丰满的人妻完整版| 亚洲av第一区精品v没综合| 能在线免费观看的黄片| 观看免费一级毛片| 搞女人的毛片| 亚洲美女黄片视频| 丰满乱子伦码专区| 国产亚洲精品久久久com| 一本精品99久久精品77| 国产探花极品一区二区| 国产精品久久久久久亚洲av鲁大| 亚洲国产欧洲综合997久久,| www.www免费av| 午夜福利成人在线免费观看| 国产熟女xx| 久久精品人妻少妇| www.999成人在线观看| 午夜免费激情av| 欧美高清性xxxxhd video| 国产免费男女视频| 亚洲av成人不卡在线观看播放网| 麻豆国产97在线/欧美| 亚洲最大成人手机在线| 亚洲精品乱码久久久v下载方式| 国产成+人综合+亚洲专区| 久久久久亚洲av毛片大全| 国产成人福利小说| 亚洲av免费高清在线观看| 欧美极品一区二区三区四区| 好看av亚洲va欧美ⅴa在| 91字幕亚洲| 亚洲内射少妇av| 久久久色成人| 又黄又爽又刺激的免费视频.| 小说图片视频综合网站| 一区福利在线观看| 在线观看美女被高潮喷水网站 | 黄色一级大片看看| 久久人人精品亚洲av| 国产亚洲欧美在线一区二区| 精品欧美国产一区二区三| 国产又黄又爽又无遮挡在线| h日本视频在线播放| 亚洲成人精品中文字幕电影| 久久久久久久午夜电影| 精品熟女少妇八av免费久了| 99精品在免费线老司机午夜| 麻豆久久精品国产亚洲av| 天堂动漫精品| 精品欧美国产一区二区三| 天堂影院成人在线观看| 黄色日韩在线| 国产不卡一卡二| 亚洲黑人精品在线| 欧洲精品卡2卡3卡4卡5卡区| 国产精品亚洲美女久久久| 久久人人精品亚洲av| 欧美日韩乱码在线| 桃色一区二区三区在线观看| 日韩欧美在线乱码| 久久久久亚洲av毛片大全| 舔av片在线| 在线免费观看不下载黄p国产 | 国产精品久久久久久久电影| 亚洲美女黄片视频| 女生性感内裤真人,穿戴方法视频| 国产真实乱freesex| 看片在线看免费视频| 一进一出抽搐gif免费好疼| 女生性感内裤真人,穿戴方法视频| 精品熟女少妇八av免费久了| 天堂av国产一区二区熟女人妻| 国产乱人视频| 综合色av麻豆| 一级黄片播放器| 人人妻人人看人人澡| 此物有八面人人有两片| 亚洲av电影在线进入| 午夜激情欧美在线| 精品国内亚洲2022精品成人| 成年女人看的毛片在线观看| 久久中文看片网| 久久久色成人| 国内精品久久久久精免费| 身体一侧抽搐| 琪琪午夜伦伦电影理论片6080| 少妇人妻精品综合一区二区 | 91久久精品电影网| 国产一区二区亚洲精品在线观看| 狂野欧美白嫩少妇大欣赏| 美女被艹到高潮喷水动态| 亚洲专区中文字幕在线| 国产一区二区在线av高清观看| 可以在线观看的亚洲视频| 国产激情偷乱视频一区二区| 久久热精品热| 九九热线精品视视频播放| 免费在线观看亚洲国产| 亚洲国产日韩欧美精品在线观看| 国产野战对白在线观看| 免费看美女性在线毛片视频| 亚洲第一欧美日韩一区二区三区| 国产探花极品一区二区| 国产高清激情床上av| 日韩高清综合在线| 国产精品一区二区免费欧美| 日韩中文字幕欧美一区二区| 欧美精品国产亚洲| 一级作爱视频免费观看| 国产伦精品一区二区三区四那| 国产男靠女视频免费网站| 观看美女的网站| 极品教师在线视频| 欧美+日韩+精品| 欧美bdsm另类| 舔av片在线| 91麻豆av在线| 日韩精品中文字幕看吧| 在线观看一区二区三区| 中亚洲国语对白在线视频| 九色国产91popny在线| 午夜福利在线观看免费完整高清在 | 日韩欧美精品v在线| 最近中文字幕高清免费大全6 | 老司机福利观看| 亚洲经典国产精华液单 | 美女被艹到高潮喷水动态| 波多野结衣高清无吗| 国内毛片毛片毛片毛片毛片| 精品午夜福利视频在线观看一区| 成人国产综合亚洲| 国产欧美日韩一区二区三| 在现免费观看毛片| 赤兔流量卡办理| 村上凉子中文字幕在线| 嫩草影院新地址| 一卡2卡三卡四卡精品乱码亚洲| av天堂中文字幕网| 亚洲av美国av| 午夜精品久久久久久毛片777| a级一级毛片免费在线观看| av中文乱码字幕在线| 亚洲七黄色美女视频| 久久伊人香网站| 我的老师免费观看完整版| 国产一区二区亚洲精品在线观看| 国产精品亚洲av一区麻豆| 国产毛片a区久久久久| 搡女人真爽免费视频火全软件 | 久久久久亚洲av毛片大全| 两个人视频免费观看高清| 久久精品国产亚洲av天美| 国产高清视频在线播放一区| 淫秽高清视频在线观看| 欧美成人免费av一区二区三区| 国语自产精品视频在线第100页| 精品久久久久久久久av| 97超级碰碰碰精品色视频在线观看| 白带黄色成豆腐渣| 欧美黄色片欧美黄色片| 国产美女午夜福利| 91九色精品人成在线观看| 男女下面进入的视频免费午夜| 亚洲成av人片免费观看| 看黄色毛片网站| 国产不卡一卡二| 午夜精品在线福利| 赤兔流量卡办理| 3wmmmm亚洲av在线观看| 成人无遮挡网站| 亚洲人成网站高清观看| 久久精品人妻少妇| 亚洲欧美日韩卡通动漫| 久久久精品大字幕| 国产免费一级a男人的天堂| 嫩草影院新地址| 欧美黄色淫秽网站| 婷婷亚洲欧美| 少妇丰满av| av在线天堂中文字幕| 欧美极品一区二区三区四区| 国产黄片美女视频| 国内揄拍国产精品人妻在线| 免费高清视频大片| 国产精品亚洲av一区麻豆| 全区人妻精品视频| 舔av片在线| 成人亚洲精品av一区二区| 国产一级毛片七仙女欲春2| 丰满乱子伦码专区| 日韩欧美在线二视频| 三级男女做爰猛烈吃奶摸视频| 中文字幕人成人乱码亚洲影| 大型黄色视频在线免费观看| 国内精品美女久久久久久| 自拍偷自拍亚洲精品老妇| av在线天堂中文字幕| 亚洲国产精品久久男人天堂| 成人特级黄色片久久久久久久| 亚洲成人中文字幕在线播放| 亚洲欧美清纯卡通| 伊人久久精品亚洲午夜| 久久精品国产亚洲av香蕉五月| 美女 人体艺术 gogo| 成人国产综合亚洲| 亚洲国产欧美人成| 午夜激情欧美在线| 一级黄色大片毛片| 久久久久久久午夜电影| 亚洲国产精品久久男人天堂| 国产高清视频在线播放一区| 天美传媒精品一区二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | av在线观看视频网站免费| 高清毛片免费观看视频网站| 国产午夜精品论理片| 国产主播在线观看一区二区| 综合色av麻豆| 三级毛片av免费| 成人美女网站在线观看视频| 成人国产综合亚洲| 精品久久久久久久久av| 国产成人欧美在线观看| 人妻制服诱惑在线中文字幕| 在线观看一区二区三区| 免费搜索国产男女视频| 99热这里只有精品一区| 在线a可以看的网站| 草草在线视频免费看| 非洲黑人性xxxx精品又粗又长| 变态另类成人亚洲欧美熟女| 午夜福利免费观看在线| 一本精品99久久精品77| 欧美又色又爽又黄视频| 欧美成人一区二区免费高清观看| 99热精品在线国产| 日韩欧美一区二区三区在线观看| 国内精品久久久久久久电影| 国产午夜精品论理片| 一区福利在线观看| 久久久久国内视频| 欧美潮喷喷水| 日韩成人在线观看一区二区三区| 97热精品久久久久久| 天堂网av新在线| 亚洲真实伦在线观看| 亚洲欧美日韩卡通动漫| 亚洲在线自拍视频| 国产男靠女视频免费网站| 久久天躁狠狠躁夜夜2o2o| 精品福利观看| 十八禁网站免费在线| 美女高潮的动态| 在线a可以看的网站| 亚洲无线在线观看| 欧美3d第一页| 在线天堂最新版资源| 欧美性猛交╳xxx乱大交人| 亚洲国产精品久久男人天堂| 国产精品久久久久久亚洲av鲁大| 最近最新免费中文字幕在线| 在线a可以看的网站| 亚洲精品影视一区二区三区av| 成人国产综合亚洲| 性插视频无遮挡在线免费观看| 亚洲色图av天堂| 丝袜美腿在线中文| 三级男女做爰猛烈吃奶摸视频| 欧美成人a在线观看| 网址你懂的国产日韩在线| 亚洲欧美日韩卡通动漫| 亚洲av二区三区四区| 天天躁日日操中文字幕| 久久香蕉精品热| 久久久久九九精品影院| 久久香蕉精品热| 亚洲五月婷婷丁香| 免费av不卡在线播放| 91久久精品国产一区二区成人| 99久久九九国产精品国产免费| 欧美zozozo另类| 久久久久国产精品人妻aⅴ院| 欧美激情在线99| 老司机深夜福利视频在线观看| 18禁在线播放成人免费| 欧美激情国产日韩精品一区| 日本a在线网址| 日韩精品中文字幕看吧| 中亚洲国语对白在线视频| 在线观看66精品国产| 午夜老司机福利剧场| 久久香蕉精品热| 毛片女人毛片| 好男人电影高清在线观看| 欧美日韩福利视频一区二区| 99国产极品粉嫩在线观看| 两人在一起打扑克的视频| av在线观看视频网站免费| 国产69精品久久久久777片| 亚洲内射少妇av| 亚洲精品乱码久久久v下载方式| 欧美又色又爽又黄视频| 久久性视频一级片| 三级国产精品欧美在线观看| 精品欧美国产一区二区三| 婷婷亚洲欧美| 制服丝袜大香蕉在线| 两性午夜刺激爽爽歪歪视频在线观看| 欧美成人性av电影在线观看| 国产白丝娇喘喷水9色精品| 国产精品久久视频播放| 日本黄色视频三级网站网址| 久久久国产成人免费| 亚洲一区二区三区色噜噜| 免费观看的影片在线观看| 我的老师免费观看完整版| 熟女人妻精品中文字幕| 亚洲真实伦在线观看| 久久精品国产99精品国产亚洲性色| 婷婷色综合大香蕉| 午夜久久久久精精品| 免费电影在线观看免费观看| 成人一区二区视频在线观看| 露出奶头的视频| 国产精品不卡视频一区二区 | 国内精品一区二区在线观看| 午夜福利在线观看吧| 免费无遮挡裸体视频| 亚洲五月天丁香| 国产精品久久久久久久电影| 国产成人aa在线观看| 人人妻人人澡欧美一区二区| 精品午夜福利视频在线观看一区| 久久精品国产清高在天天线| 国产精品电影一区二区三区| 中文字幕熟女人妻在线| 国产精品乱码一区二三区的特点| 性插视频无遮挡在线免费观看| 全区人妻精品视频| bbb黄色大片| 国产野战对白在线观看| 国产久久久一区二区三区| 久久久久久久久久黄片| 窝窝影院91人妻| 极品教师在线免费播放| 欧美激情久久久久久爽电影| 久久人妻av系列| 亚洲av成人av| 欧美日韩国产亚洲二区| 日本免费a在线| 国产精品人妻久久久久久| 丰满的人妻完整版| 男女床上黄色一级片免费看| 色精品久久人妻99蜜桃| 9191精品国产免费久久| 亚洲,欧美精品.| 成熟少妇高潮喷水视频| 老熟妇仑乱视频hdxx| 18美女黄网站色大片免费观看| 亚洲真实伦在线观看| 午夜精品久久久久久毛片777| 全区人妻精品视频| 欧美成人性av电影在线观看| 亚洲一区二区三区不卡视频| 国产一区二区在线av高清观看| 成人美女网站在线观看视频| 久久中文看片网| www.熟女人妻精品国产| 欧美不卡视频在线免费观看| 一级毛片久久久久久久久女| 中文字幕av在线有码专区| 少妇的逼好多水| 亚洲av成人精品一区久久| 免费电影在线观看免费观看| 久久伊人香网站| 97人妻精品一区二区三区麻豆| 无人区码免费观看不卡| 亚洲专区中文字幕在线| 美女cb高潮喷水在线观看| 国产老妇女一区| 亚洲aⅴ乱码一区二区在线播放| 麻豆一二三区av精品| 欧美精品国产亚洲| 99久久成人亚洲精品观看| 一级a爱片免费观看的视频| 欧美黄色淫秽网站| 中文字幕av成人在线电影| 成人av在线播放网站| 国产一级毛片七仙女欲春2| 男插女下体视频免费在线播放| 三级男女做爰猛烈吃奶摸视频| 久久天躁狠狠躁夜夜2o2o| 少妇高潮的动态图| 美女xxoo啪啪120秒动态图 | 久久欧美精品欧美久久欧美| 麻豆成人午夜福利视频| 精品国产亚洲在线| 欧美在线一区亚洲| 国产精品99久久久久久久久| 嫩草影院精品99| 搡老熟女国产l中国老女人| 亚洲av电影在线进入| 国产精品人妻久久久久久| 久久精品综合一区二区三区| 窝窝影院91人妻| 丰满的人妻完整版| 成熟少妇高潮喷水视频| 97人妻精品一区二区三区麻豆| 国产单亲对白刺激| 精品人妻视频免费看| 一级av片app| 国产精品影院久久| 无人区码免费观看不卡| 91久久精品电影网| 国产欧美日韩一区二区精品| 麻豆久久精品国产亚洲av| 久99久视频精品免费| 亚洲专区中文字幕在线| 午夜激情福利司机影院| 91午夜精品亚洲一区二区三区 | 国产美女午夜福利| 男人舔奶头视频| 桃色一区二区三区在线观看| 国产午夜精品久久久久久一区二区三区 | 精品人妻熟女av久视频| 成人av一区二区三区在线看| 一级作爱视频免费观看| 男人舔奶头视频| 成人鲁丝片一二三区免费| 美女大奶头视频| 精品久久久久久成人av| 99久久精品热视频| 亚洲不卡免费看| 亚洲av.av天堂| 国产 一区 欧美 日韩| 美女黄网站色视频| 日日摸夜夜添夜夜添小说| 我要看日韩黄色一级片| 日日摸夜夜添夜夜添av毛片 | 久久性视频一级片| 日韩免费av在线播放| 很黄的视频免费| 国产三级在线视频| 国产69精品久久久久777片| 91av网一区二区| 精品久久久久久成人av| 色综合亚洲欧美另类图片| 亚洲av成人精品一区久久| 少妇的逼好多水| 国产av麻豆久久久久久久| 波多野结衣高清作品| 国产精品一区二区免费欧美| 一进一出好大好爽视频| 日本在线视频免费播放| 少妇丰满av| 中文字幕免费在线视频6| av欧美777| 精品人妻一区二区三区麻豆 | 日本撒尿小便嘘嘘汇集6| 久久人人精品亚洲av| 亚洲欧美激情综合另类| 欧美又色又爽又黄视频| 欧美丝袜亚洲另类 | 国产伦精品一区二区三区视频9| 尤物成人国产欧美一区二区三区| 精品午夜福利在线看| 成人欧美大片| 国产一区二区激情短视频| 国产亚洲精品av在线| 久久久久久久精品吃奶| 99视频精品全部免费 在线| 精品欧美国产一区二区三| 日韩欧美国产一区二区入口| 久久久国产成人精品二区| 久久精品久久久久久噜噜老黄 | 99热6这里只有精品| 国产午夜精品久久久久久一区二区三区 | 中文字幕久久专区| 久久久久久大精品| 在线十欧美十亚洲十日本专区| 亚洲精品影视一区二区三区av| 国产一级毛片七仙女欲春2| 一级作爱视频免费观看| 日本五十路高清| 亚洲精品456在线播放app | 国产私拍福利视频在线观看| 国产在线精品亚洲第一网站| 欧美黑人欧美精品刺激| 成人一区二区视频在线观看| 丰满乱子伦码专区| 老司机深夜福利视频在线观看| 亚洲精品影视一区二区三区av| 动漫黄色视频在线观看| 亚洲av免费高清在线观看| 嫩草影视91久久| 免费看日本二区| 国产不卡一卡二| 国产高清三级在线| 天堂动漫精品| 亚洲国产日韩欧美精品在线观看| а√天堂www在线а√下载| 国产精品一区二区三区四区免费观看 | 99久久精品一区二区三区| 欧美性感艳星| 757午夜福利合集在线观看| 一区二区三区免费毛片| 国内精品美女久久久久久| 国产成人av教育| 最好的美女福利视频网| 免费看日本二区| www.色视频.com| 夜夜躁狠狠躁天天躁| 亚洲av电影在线进入| 成人高潮视频无遮挡免费网站| 亚洲精品久久国产高清桃花| 两个人的视频大全免费| 非洲黑人性xxxx精品又粗又长| av国产免费在线观看| 精品久久久久久久久久久久久| 波多野结衣高清作品| 在线播放无遮挡| 亚洲黑人精品在线| 国产免费一级a男人的天堂| 两人在一起打扑克的视频| 男女做爰动态图高潮gif福利片|