• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust Texture Classification via Group-Collaboratively Representation-Based Strategy

    2013-06-19 17:39:42XiaoLingXiaandHangHuiHuang

    Xiao-Ling Xia and Hang-Hui Huang

    Robust Texture Classification via Group-Collaboratively Representation-Based Strategy

    Xiao-Ling Xia and Hang-Hui Huang

    —In this paper, we present a simple but powerful ensemble for robust texture classification. The proposed method uses a single type of feature descriptor, i.e. scale-invariant feature transform (SIFT), and inherits the spirit of the spatial pyramid matching model (SPM). In a flexible way of partitioning the original texture images, our approach can produce sufficient informative local features and thereby form a reliable feature pond or train a new class-specific dictionary. To take full advantage of this feature pond, we develop a group-collaboratively representation-based strategy (GCRS) for the final classification. It is solved by the well-known group lasso. But we go beyond of this and propose a locality-constraint method to speed up this, named local constraint-GCRS (LC-GCRS). Experimental results on three public texture datasets demonstratetheproposedapproachachieves competitive outcomes and even outperforms the state-of-the-art methods. Particularly, most of methods cannot work well when only a few samples of each category are available for training, but our approach still achieves very high classification accuracy, e.g.an average accuracy of 92.1% for the Brodatz dataset when only one image is used for training, significantly higher than any other methods.

    Index Terms—Dictionary learning, group lasso, local constraint,spatialpyramidmatching,texture classification.

    1. Introduction

    Texture classification is an important problem in the computer vision community with many applications. Yet despite several decades of research, designing a high-accuracy and robust texture classification system for real-world applications remains a challenge due to at least three reasons: the wide range of various natural texture types; the presence of large intra-class variations in texture images, e.g. rotation, scale, and viewpoint, caused by arbitrary viewing and illumination conditions; and the demands of low computational complexity and a desire to limit algorithm tuning[1].

    Liuet al.pointed out in [2] that there are four basic elements that constitute a reliable texture classification system: 1) local texture descriptors, 2) non-local statistical descriptors, 3) the design of a distance/similarity measure, and 4) the choice of classifier. Thanks to the emergence of the bag-of-feature words (BoF) model, which treats an image as a collection of unordered appearance descriptors extracted from local patches, quantizes them into discrete“visual words”, and then computes a compact histogram representation for semantic image classification. Recent interests for texture classification tend to represent a texture non-locally by the distribution of local textons[1],[3]?[5].

    Inspired by a spatial pyramid matching model (SPM)[6], an extension of BoF, which is a similar framework to the spatial pyramid matching model (SPM), is used to partition an image into increasingly finer segments, but in a more flexible way by exploiting multi-level partitions and permitting various overlapping patterns. Thereby, our method can produce redundant local texture features and form a reliable feature pond containing these feature codes, or a much compacted feature pond (a new dictionary learned from those codes).

    To take full advantage of the feature pond, we develop an effective and efficient mechanism for the final classification via the group-collaboratively representationbased strategy (GCRS), which is similar in appearance to the sparse representation-based classification (SRC)[7], but essentially differs in employing group sparsity rather than the simple1l sparse penalty. It is the well-known group lasso problem, but we go beyond of this by exploring the local constraint (LC) to speed up the group lasso as well as promoting intra-group sparsity. We call our classification mechanism as LC-GCRS. The overall flowchart of our method is shown in Fig. 1.

    2. Proposed Texture Classification

    2.1 Local Texture Descriptor

    In our work, we use a single type of feature descriptor, the popular scale-invariant feature transform descriptor (SIFT)[8], which is extracted on a dense grid rather than at interest points and has been shown to yield superiorclassification performance in [9] and [10]. Suppose there areTimages fromCclasses andLcdenotes the index of thecth class, and let thetth image be represented by a set of dense scale-invariant feature transform (SIFT) descriptorsatNlocations identified with their indicesAndmregions of interest are defined on the image, whereanddenotes the set of these regions. Then,means themth region belongs to thelth level,indexes the regions in thelth level. So we use all the dense SIFT descriptors to train a dictionary DICdD×∈R , where R denotes the real number range,dis the dimensionality, andDis the number of atoms. And we employ the learned dictionary back to represent the dense SIFT descriptors into a sparse code vector, as the formulation below:

    Fig. 1. Flowchart of our proposed robust texture classification approach (best seen in color).

    Each elementkaof the code vectoraindicates the local descriptor’s response to thekth visual word in the dictionary. Let|denote the cardinality of the setNm, meaning the number of elements. We align all the SIFT descriptors belonging to the regionmas a matrix, then the corresponding code matrixis obtained. Here we aggregate the local descriptors’ responses across all thelocations of this region into an-dimensional response vector(thekth row ofA), in which each elementrepresents the response of the local descriptormxat themth location to thekth visual word. After obtaining all the feature descriptorsAwithin a region, we can use a pooling operation to pool these feature descriptors into a single vectoryof a fixed dimension. Before the feature pooling, we first address the relevant partition issues.

    ? Partition issues. Different from the classical and common SPM method[9]which is three-level pyramid comprising pooling regions of {1×1, 2×2, 4×4}, we adopt a more flexible partition strategy and divide the original image into finer regions, e.g. {3×3, 4×4, 5×5}. Merely relying on this flexible partition fashion, through our observation, the proposed method can indeed capture sufficient local features in different scales and is resilient to local rotations. We do further by permitting different overlapping patterns at the same level. Various overlapping patterns within a single level produce more regions and therefore these redundant local texture features can effectively alleviate the difficulty caused by local variance. In conjunction with our proposed classification mechanism described in Subsection 2.2, the proposed method will lead to state-of-the-art performance of texture classification in the experiments.

    ? Feature pooling. Feature pooling is essential to map the response vectors within each region into a statistic valuevia some spatial pooling operationf.Among various pooling methods, such as average pooling, max pooling, and some other pooling methods transiting from the average to the max, max pooling is inspired by the mechanism of the complex cells in the primary visual cortex and has been shown a powerful operation empirically and theoretically[9],[11]. In this paper, we also adopt max pooling for its translation-invariance in different levels of partitions[12], thusand the pooled feature codeover the code matrixAof the regionm:Actually, no matter how the size of different regions differs, the pooled feature code is of the same dimension and well summarizes the distribution of the SIFT feature descriptors in each region. This property enables us to adopt the flexible partition way and various overlapping patterns within the same level of partition, thereby producing redundant local texture features.

    2.2 Texture Image Representation

    As described in the previous subsection, we store all the pooled feature codes of one image to form a matrixas the new texture image representation. That is to say, regardless of the region size and overlapping patterns, all the pooled feature vectors of regions are stored in an orderless way. This orderless storage, in conjunction with max pooling, holds invariance to translation, rotation, and scale, then we will see the benefit of it from the experiment in Section 3.

    2.3 Proposed Classification Mechanism

    Actually, all the pooled feature codes from regions of various levels of training images can be seen as redundant feature bases, or a feature pond, which can effectively represent pooled feature codes of a new image, and in this way, scale, translation, and rotation invariance can be achieved. This idea has been explored in the SRC scheme[7].

    In SRC, a vectorized test imagezis coded collaboratively over the feature pond of all the training samples under the-norm sparsity constraint, whereconsists of all the images from thecth category. For simplicity, SRC first calculates the sparse coefficient vector by

    Then, SRC classifies the test imagezindividually to determine which classzshould belong to. In other words, it calculates the reconstruction errorfor all theCclasses, whereis the part fromathat corresponds tocLY. Finally, it selectsas the predicted label.

    SRC uses the1l-norm penalty in (2) and the resultant nonzero elements of a scatters, therefore, it is desirable to make the nonzero elements cluster in one part of the feature pond. For this reason, we propose to apply the group-sparse penalty instead of the1l-norm penalty, or the well-known group lasso problem. Moreover, we also keep the coefficient a sparse intra group:

    where “°” means the element-wise production, andcLdis the group mask in which the elements corresponding toare 1 and 0 elsewhere, and they are of the same dimension asa. There are several toolboxes to solve (3), and we do not elaborate the algorithms due to limited space.

    In fact, the number of the atoms from the feature pond can be very big, and direct solving (3) will be computationally expensive. To circumvent this problem, we borrow the idea of learning locality-constrained linear coding (LLC)[10],[21]by applying theK-nearest neighbors (KNN) search among the feature pond before solving (3) by choosing theKnearest neighbors to formwith indices ()H K, and representing the testing image by solving a much lower-complexity sparse group lasso problem, replacingYin (3) with()KYand the relevant modification of group masksd. After this, an overall coefficient vector (code vector)ais formed by embedding the elements oflocations ofaand zeros elsewhere. The final classification follows the SRC method.

    3. Experiment

    We evaluate the proposed texture classification framework on three public datasets: the Brodatz dataset[13], KTH-TIPS dataset[14], and UMD texture database[15]. Due to the limited space, we briefly summarize the three datasets in Fig. 2.

    Direct comparisons between the proposed and the state-of-the-art methods on three datasets are shown in Table 1. Scores were originally reported or taken from the comparative study in Zhanget al.[4]. For the three datasets, 3, 41, and 20 samples per class are used for training, respectively. Interested readers can refer to the papers of these methods for details. We can easily see that our method achieves comparable performance or even outperforms the state-of-the-art approaches. It is worth noting that our method uses only a single type feature descriptor, i.e. SIFT, whereas other methods simultaneously adopt several types of features, such as multiple histograms in [16]. Moreover, benefiting from our LC-GCS classification method, we avoid more complex classifiers, such as combining several classifier in [2].

    Fig. 3 plots the performance of our method vs. the number of training samples on the three databases, as well as the performances of other methods. Here we compare our method with three methods from [16], Mellors’s method[17], and Lazebnik’s method[3]on the Brodatz dataset; with the methods of Zhanget al.[4], Lazebniket al.[3], and Liuet al.[2]on the KTH-TIPS dataset; and with the methods proposed by Lazebniket al.[3], Xiaet al.[16], Xuet al.[1], and Liuet al.[2]on the UMD dataset. From Fig. 3, it is easy to see that our method can extract reliable texture features, and even though only a few training sample images are available, our method can still achieve promising performance.

    Fig. 2. Summary of texture datasets used in our experiment.

    Fig. 3. Classification rate vs. number of training samples on the three datasets: (a) Brodatz, (b) KTH-TIPS, and (c) UMD.

    Table 1: Direct comparisons between the proposed and the state-of-the-art methods

    Fig. 4. Confusion matrix on KTH-TIPS database.

    Fig. 5. Textures from two categories of KTH-TIPS.

    A confusion matrix is presented in Fig. 4. As shown in Fig. 4, the number at rowRand columnCis the proportion ofRclass which is classified asCclass. For example, 7.04% of corduroy images are misclassified as cotton. The average accuracy is 94.8%. While the number of training sample grows, our method can still achieve decent results. Particularly on the Brodatz dataset, when only one sample per category is used for training, our method achieves an impressive result with the accuracy of 90.12%, largely higher than that of other methods. Also on the KTH-TIPS dataset, when only ten sample images of each class are used for training, our method achieves the classification accuracy of 95.14%, much higher than others. Fig. 5 displays some similar textures of the KTH-TIPS dataset. It is easy to see that some texture images are very similar with various scales. This phenomenon explains the misclassification on this dataset.

    4. Conclusions and Future Work

    Different from many advanced texture classification methods which combine several types of descriptors, we propose a method which uses only a single type of feature descriptor (SIFT). This makes our method much simple but be capable of discriminating textures demonstrated in the experiment. Benefiting from the flexible partition strategy inspired by SPM, our method can produce redundant features to form a reliable feature pond, even though only a few samples of each category are available for training. Instead of the widely-used SVMs, we develop a new classification mechanism called LC-GORS, which is a simple and fast implementation of group lasso with intra-group sparsity, and use the reconstruction error for the final classification. Experiments show the proposed LC-GORS is very effective and efficient. As future work, we intend to introduce a new class-specific sub-dictionary[20]?[24]instead of the original feature pond to improve the performance further. This idea can be transformed to a multi-layer dictionary learning problem. Furthermore, besides the low-level SIFT feature descriptor, other features can be also simultaneously adopted to improve the performance, such as multi-feature fusion[25],[26].

    5. References

    [1] Y. Xu, X. Yang, H. Ling, and H. Ji, “A new texturedescriptor using multifractal analysis in multi-orientation wavelet pyramid,” inProc. of IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, 2010, pp. 161?168.

    [2] L. Liu, P. Fieguth, G. Kuang, and H. Zha, “Sorted random projections for robust texture classification,” inProc. of IEEE Int. Conf. on Computer Vision, Barcelona, 2011, pp. 391?398.

    [3] S. Lazebnik, C. Schmid, and J. Ponce, “A sparse texture representation using local affine regions,”IEEE Trans.on Pattern Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1265?1278, 2005.

    [4] J.-G. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid,“Local features and kernels for classification of texture and object categories: a comprehensive study,” inProc. of Conf. on Computer Vision and Pattern Recognition Workshop, doi: 10.1109/CVPRW.2006.121.

    [5] M. Crosier and L. D. Griffin, “Use basic image features for texture classification,”Int. Journal of Computer Vision, vol. 88, no. 3, pp. 447?460, 2010.

    [6] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: spatial pyramid matching for recognition natural scene categories,” inProc. of IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2006, doi: 10.1109/CVPR.2006.68.

    [7] J. Wright, A.-Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma,“Robust face recognition via sparse representation,”IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 31, no. 2, pp. 210?227, 2008.

    [8] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”Int. Journal of Computer Vision, vol. 60, no. 2, pp. 91?110, 2004.

    [9] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid matching using sparse coding for image classification,” inProc. of IEEE Conf. on Computer Vision and Pattern Recognition, Miami, 2009, pp. 1794?1801.

    [10] J.-J. Wang, J.-C. Yang, K. Yu, and F.-J. Lv, T. Huang, and Y. Gong, “Locality-Constrained linear coding for image classification,” inProc. of IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, 2010, pp. 3360?3367.

    [11] Y. L. Boureau, J. Ponce, and Y. Lecun, “A theoretical analysis of feature pooling in visual recognition,” inProc. of the 27th Int. Conf. on Machine Learning, Haifa, 2010.

    [12] J.-C. Yang, K. Yu, and T. Huang, “Supervised translation-invariant sparse coding,” inProc. of IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, 2010, pp. 3517?3524.

    [13] P. Brodatz,Textures: A Photographic Album for Artists and Designers, New York: Dover Publications, 1966.

    [14] E. Hayman, B. Caputo, M. Fritz, and J. O. Eklundh, “On the significance of real-World conditions for material classification,”Lecture Notes in Computer Science, vol. 3024, pp. 253-266, 2004, doi: 10.1007/978-3-540-24673-2_21

    [15] Y. Xu, H. Ji, and C. Fermuller, “Viewpoint invariant texture description using fractal analysis,”Int. Journal of Computer Vision, vol. 83, no. 1, pp. 85?100, 2009.

    [16] G. S. Xia, J. Delon, and Y. Gousseau, “Shape-based invariant texture indexing,”Int. Journal of Computer Vision, vol. 88, no. 3, pp. 382?403, 2010.

    [17] M. Mellor, B. W. Hong, and M. Brady, “Locally rotation, contrast, and scale invariant descriptors for texture analysis,”IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 30, no. 1, pp. 52?61, 2008.

    [18] M. Varma and A. Zisserman, “A statistical approach to material classification using image patches,”IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 31, no. 11, pp. 2032?2047, 2009.

    [19] Y. Xu, S. B. Huang, H. Ji, and C. Fermuller, “Combining powerful local and global statistics for texture description,”inProc. of IEEE Conf. on Computer Vision and Pattern Recognition, Miami, 2009, pp. 573?580.

    [20] M. Yang, L. Zhang, J. Yang, and D. Zhang, “Metaface learning for sparse representation based face recognition,” inProc. ofthe 17th IEEE Int. Conf. on Image Processing, Hong Kong, 2010, pp. 1601?1604.

    [21] S. Kong and D. Wang. Multi-level feature descriptor for robust texture classification via locality-constrained collaborative strategy. [Online]. Available: http://arxiv.org/abs/1203.0488

    [22] S. Kong and D. Wang, “A dictionary learning approach for classification: separating the particularity and the commonality,”Lecture Notes in Computer Science, vol. 7572, pp. 186?199, 2012, doi: 10.1007/978-3-642-33718-5_14.

    [23] S. Kong and D.-H. Wang, “Learning exemplar-represented manifolds in latent space for classification,”Lecture Notes in Computer Science, 2013, doi: 10.1007/978-3-642-40994-3_16.

    [24] S. Kong, X.-K. Wang, D.-H. Wang, and Fei Wu, “Multiple feature fusion for face recognition,” inProc. of the10th IEEE Int. Conf. and Workshops on Automatic Face and Gesture Recognition, Shanghai, 2013, doi: 10.1109/FG.2013. 6553718.

    [25] S. Kong and D. Wang, “Learning individual-specific dictionaries with fused multiple features for face recognition,” in10th IEEE Int. Conf. and Workshops on Automatic Face and Gesture Recognition, Shanghai, 2013, doi: 10.1109/FG.2013.6553710.

    Xiao-Ling Xiawas born in Hubei, China in 1966. She received the Ph.D. degree from Shanghai Jiao Tong University in image processing and pattern recognition in 1994. Now, she works with Donghua University, Shanghai, China as an associate professor. Her research interests include image processing and data visualization.

    Hang-Hui Huangwas born in Shaanxi, China in 1986. He received the B.S. degree from Donghua University in 2010. He is currently a graduate student with the Department of Computer Science and Technology, Donghua University. His research interests include computer vision, machine learning, and pattern recognition.

    t

    May 28, 2013; revised September 27, 2013

    X.-L. Xia is with the Department of Computer Science and Technology, Donghua University, Shanghai 201620, China (Corresponding author email: sherlysha@dhu.edu.cn).

    H.-H. Huang is with the Department of Computer Science and Technology, Donghua University, Shanghai 201620, China (email: yellow.beyond@mail.dhu.edu.cn).

    Color versions of one or more of the figures in this paper are available online at http://www.intl-jest.com.

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2013.04.014

    久久人妻福利社区极品人妻图片| 欧美乱妇无乱码| 亚洲欧美色中文字幕在线| 亚洲欧美日韩另类电影网站| 久久ye,这里只有精品| 黄片大片在线免费观看| 亚洲精品国产精品久久久不卡| 精品国产一区二区三区四区第35| 黄网站色视频无遮挡免费观看| 咕卡用的链子| 色视频在线一区二区三区| 国产亚洲欧美精品永久| av福利片在线| 亚洲七黄色美女视频| 亚洲精品一二三| 天天影视国产精品| 国产男靠女视频免费网站| 午夜视频精品福利| 黑人巨大精品欧美一区二区mp4| 久久 成人 亚洲| 亚洲第一欧美日韩一区二区三区 | 日韩大码丰满熟妇| 欧美日韩中文字幕国产精品一区二区三区 | 99精国产麻豆久久婷婷| 久久国产精品男人的天堂亚洲| 亚洲精品成人av观看孕妇| 久久ye,这里只有精品| 日韩大片免费观看网站| 一级,二级,三级黄色视频| 成人亚洲精品一区在线观看| 午夜福利乱码中文字幕| 国产精品麻豆人妻色哟哟久久| 国产精品1区2区在线观看. | 国产成人影院久久av| 国产亚洲精品久久久久5区| 99国产精品免费福利视频| 一区二区日韩欧美中文字幕| av不卡在线播放| 亚洲综合色网址| 国产成人精品无人区| 人人妻人人澡人人爽人人夜夜| 日本黄色日本黄色录像| 欧美变态另类bdsm刘玥| 波多野结衣av一区二区av| 亚洲av成人不卡在线观看播放网| 岛国在线观看网站| 怎么达到女性高潮| 最新在线观看一区二区三区| 国产精品美女特级片免费视频播放器 | 十八禁人妻一区二区| 久久中文字幕人妻熟女| 1024香蕉在线观看| 国产一区有黄有色的免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日韩亚洲综合一区二区三区_| 91精品三级在线观看| 国产一区有黄有色的免费视频| 女人被躁到高潮嗷嗷叫费观| 色老头精品视频在线观看| 久久 成人 亚洲| 久久热在线av| 国产精品免费大片| 久久久精品国产亚洲av高清涩受| 十八禁人妻一区二区| 国产免费福利视频在线观看| 美女高潮到喷水免费观看| 热99久久久久精品小说推荐| avwww免费| tube8黄色片| 怎么达到女性高潮| 国产在线一区二区三区精| 一区在线观看完整版| 男女无遮挡免费网站观看| 高清视频免费观看一区二区| 久久精品国产a三级三级三级| videos熟女内射| 亚洲美女黄片视频| 在线亚洲精品国产二区图片欧美| 中文亚洲av片在线观看爽 | 久久久久久久久免费视频了| 久久久久视频综合| 国产一区二区在线观看av| 极品人妻少妇av视频| 国产成人免费观看mmmm| www.精华液| 亚洲精品久久午夜乱码| 啦啦啦视频在线资源免费观看| 啦啦啦中文免费视频观看日本| 亚洲欧美日韩高清在线视频 | h视频一区二区三区| 人妻 亚洲 视频| 亚洲精品一二三| 捣出白浆h1v1| 捣出白浆h1v1| 亚洲精品国产精品久久久不卡| 黄色视频不卡| 女性生殖器流出的白浆| 精品久久久久久久毛片微露脸| 黑丝袜美女国产一区| 国产精品自产拍在线观看55亚洲 | 成人亚洲精品一区在线观看| 一个人免费在线观看的高清视频| videosex国产| 久久中文字幕人妻熟女| 日本a在线网址| 欧美精品一区二区大全| 久久精品成人免费网站| 国产精品偷伦视频观看了| 男女边摸边吃奶| 亚洲五月婷婷丁香| 日本wwww免费看| 亚洲精品乱久久久久久| 国产精品久久电影中文字幕 | 久久精品成人免费网站| 亚洲五月婷婷丁香| 在线观看免费日韩欧美大片| 成人手机av| 黄色片一级片一级黄色片| 两人在一起打扑克的视频| 一本—道久久a久久精品蜜桃钙片| aaaaa片日本免费| 一本色道久久久久久精品综合| 亚洲综合色网址| 亚洲精品国产一区二区精华液| 午夜成年电影在线免费观看| 免费久久久久久久精品成人欧美视频| 一级毛片电影观看| 精品国产乱子伦一区二区三区| 午夜免费鲁丝| 国产免费视频播放在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 免费观看a级毛片全部| 下体分泌物呈黄色| 人妻久久中文字幕网| 久久久久久亚洲精品国产蜜桃av| 亚洲成a人片在线一区二区| 久久精品国产99精品国产亚洲性色 | 最近最新免费中文字幕在线| 免费观看av网站的网址| 一夜夜www| 欧美亚洲 丝袜 人妻 在线| 香蕉国产在线看| 最黄视频免费看| 亚洲人成伊人成综合网2020| 亚洲国产欧美在线一区| 午夜久久久在线观看| 脱女人内裤的视频| 在线十欧美十亚洲十日本专区| 国产精品99久久99久久久不卡| 久久久精品区二区三区| 999精品在线视频| av线在线观看网站| 国产又爽黄色视频| 亚洲成人国产一区在线观看| 国产免费现黄频在线看| 中文字幕人妻丝袜制服| 99国产精品一区二区蜜桃av | 欧美精品人与动牲交sv欧美| 超色免费av| 欧美日韩福利视频一区二区| 亚洲成国产人片在线观看| 午夜成年电影在线免费观看| 精品国内亚洲2022精品成人 | 国产区一区二久久| 国产精品电影一区二区三区 | 91大片在线观看| 高潮久久久久久久久久久不卡| 桃花免费在线播放| 国产单亲对白刺激| 日本av免费视频播放| e午夜精品久久久久久久| 成人18禁在线播放| 亚洲欧美日韩高清在线视频 | 久久久久精品人妻al黑| 亚洲人成77777在线视频| 久久亚洲真实| 最近最新免费中文字幕在线| 成人黄色视频免费在线看| 精品国产一区二区久久| 国产精品亚洲av一区麻豆| 国产aⅴ精品一区二区三区波| 久久国产亚洲av麻豆专区| 国产成+人综合+亚洲专区| 丰满饥渴人妻一区二区三| 人人妻,人人澡人人爽秒播| 黄片小视频在线播放| 久久精品人人爽人人爽视色| 亚洲欧美一区二区三区黑人| 一边摸一边抽搐一进一小说 | av网站免费在线观看视频| 麻豆国产av国片精品| 精品午夜福利视频在线观看一区 | 老司机在亚洲福利影院| 欧美 日韩 精品 国产| tube8黄色片| 中文字幕人妻丝袜一区二区| 中文字幕人妻丝袜制服| 制服诱惑二区| 久久久久视频综合| 国产成人av激情在线播放| 在线十欧美十亚洲十日本专区| 亚洲欧美日韩另类电影网站| 自线自在国产av| 国产日韩欧美在线精品| 一本一本久久a久久精品综合妖精| 极品教师在线免费播放| 在线观看免费日韩欧美大片| 少妇的丰满在线观看| 人人妻人人添人人爽欧美一区卜| 丰满少妇做爰视频| 国产高清视频在线播放一区| 久久久久精品人妻al黑| 最新的欧美精品一区二区| 色婷婷av一区二区三区视频| 黄色丝袜av网址大全| 美女福利国产在线| 又紧又爽又黄一区二区| 男人舔女人的私密视频| 精品人妻在线不人妻| 久久国产精品大桥未久av| 亚洲精品自拍成人| 日本vs欧美在线观看视频| 91大片在线观看| 中文字幕高清在线视频| 精品少妇一区二区三区视频日本电影| 午夜免费成人在线视频| 日韩欧美三级三区| 国产亚洲精品久久久久5区| 男人操女人黄网站| 国产男女内射视频| 精品卡一卡二卡四卡免费| 国产亚洲av高清不卡| 黑人巨大精品欧美一区二区蜜桃| a级片在线免费高清观看视频| 狠狠婷婷综合久久久久久88av| 国产熟女午夜一区二区三区| 午夜久久久在线观看| 热re99久久国产66热| 日韩一区二区三区影片| 欧美精品高潮呻吟av久久| 美女高潮到喷水免费观看| 欧美日韩亚洲综合一区二区三区_| 母亲3免费完整高清在线观看| 一进一出抽搐动态| 成人影院久久| 在线 av 中文字幕| 女人高潮潮喷娇喘18禁视频| 国产av精品麻豆| 91麻豆av在线| 99久久99久久久精品蜜桃| 亚洲成人免费电影在线观看| 国产真人三级小视频在线观看| 国产av精品麻豆| 亚洲人成电影免费在线| 欧美大码av| 国产精品一区二区精品视频观看| 人人妻,人人澡人人爽秒播| www.999成人在线观看| 国产精品 国内视频| 欧美黄色淫秽网站| 少妇猛男粗大的猛烈进出视频| 亚洲中文字幕日韩| 欧美在线黄色| 一个人免费在线观看的高清视频| 两性夫妻黄色片| 国产男女内射视频| 搡老熟女国产l中国老女人| 麻豆成人av在线观看| 日韩视频在线欧美| 黑丝袜美女国产一区| 久久性视频一级片| av又黄又爽大尺度在线免费看| 亚洲精品av麻豆狂野| 在线观看免费视频日本深夜| 国产又色又爽无遮挡免费看| 俄罗斯特黄特色一大片| 18禁黄网站禁片午夜丰满| 国产精品一区二区在线不卡| 亚洲av成人一区二区三| 亚洲中文字幕日韩| 免费少妇av软件| 欧美日本中文国产一区发布| 91国产中文字幕| 国产亚洲午夜精品一区二区久久| 少妇猛男粗大的猛烈进出视频| 另类精品久久| 一本一本久久a久久精品综合妖精| 国产成人精品久久二区二区91| 女人精品久久久久毛片| 亚洲精品av麻豆狂野| 国产无遮挡羞羞视频在线观看| avwww免费| 电影成人av| 亚洲国产欧美在线一区| 欧美人与性动交α欧美软件| 日韩制服丝袜自拍偷拍| 国产精品九九99| 欧美精品一区二区免费开放| 法律面前人人平等表现在哪些方面| 美国免费a级毛片| 女人被躁到高潮嗷嗷叫费观| 欧美黄色片欧美黄色片| 欧美精品人与动牲交sv欧美| 日韩大片免费观看网站| netflix在线观看网站| 久久久久久人人人人人| 亚洲精品美女久久久久99蜜臀| 中国美女看黄片| 国产高清videossex| 色婷婷久久久亚洲欧美| 嫩草影视91久久| 国产精品.久久久| 最黄视频免费看| 久久 成人 亚洲| 久久久久久人人人人人| 成年人免费黄色播放视频| 亚洲av国产av综合av卡| 亚洲情色 制服丝袜| 国产精品久久久久久精品古装| 亚洲精品粉嫩美女一区| 亚洲一卡2卡3卡4卡5卡精品中文| 久久人人爽av亚洲精品天堂| 日韩一区二区三区影片| 亚洲男人天堂网一区| 欧美日韩视频精品一区| 亚洲精品久久午夜乱码| 999久久久国产精品视频| 国产一区二区三区在线臀色熟女 | www.自偷自拍.com| 亚洲av日韩精品久久久久久密| 国产极品粉嫩免费观看在线| 中文字幕高清在线视频| 日韩欧美国产一区二区入口| 国产成人精品在线电影| 久久这里只有精品19| av电影中文网址| avwww免费| cao死你这个sao货| 一级毛片电影观看| 亚洲精品成人av观看孕妇| 欧美变态另类bdsm刘玥| 日韩大码丰满熟妇| 久久久久精品国产欧美久久久| 9热在线视频观看99| 久久亚洲精品不卡| 欧美日韩成人在线一区二区| 免费在线观看日本一区| 丝瓜视频免费看黄片| 欧美日韩亚洲综合一区二区三区_| 一本色道久久久久久精品综合| 女性被躁到高潮视频| 日韩欧美一区视频在线观看| 午夜福利在线观看吧| 中文字幕最新亚洲高清| 欧美日韩一级在线毛片| 大香蕉久久网| 国产精品免费大片| 黄色视频在线播放观看不卡| 99国产精品免费福利视频| 无人区码免费观看不卡 | 久久毛片免费看一区二区三区| 国产精品成人在线| 热re99久久国产66热| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧美精品综合一区二区三区| 久久久久精品人妻al黑| 欧美日韩视频精品一区| 男男h啪啪无遮挡| 亚洲成人免费av在线播放| 69av精品久久久久久 | 每晚都被弄得嗷嗷叫到高潮| 岛国毛片在线播放| 99久久国产精品久久久| 香蕉久久夜色| 午夜福利乱码中文字幕| av福利片在线| 不卡av一区二区三区| 亚洲精品一二三| 久久九九热精品免费| 天天躁日日躁夜夜躁夜夜| 精品视频人人做人人爽| 国产精品成人在线| 热re99久久国产66热| 在线观看一区二区三区激情| 最近最新免费中文字幕在线| 免费在线观看日本一区| 在线观看人妻少妇| 视频在线观看一区二区三区| 一级毛片女人18水好多| 新久久久久国产一级毛片| cao死你这个sao货| 夫妻午夜视频| 在线 av 中文字幕| 狠狠精品人妻久久久久久综合| 少妇粗大呻吟视频| 亚洲av成人不卡在线观看播放网| 女人被躁到高潮嗷嗷叫费观| 免费在线观看影片大全网站| 国产一区二区三区视频了| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av第一区精品v没综合| www.精华液| 少妇粗大呻吟视频| 天堂中文最新版在线下载| 正在播放国产对白刺激| 老汉色∧v一级毛片| 18禁美女被吸乳视频| 久久久久精品国产欧美久久久| 国产高清视频在线播放一区| 久久人妻福利社区极品人妻图片| www.精华液| 国产高清视频在线播放一区| 肉色欧美久久久久久久蜜桃| 黑人猛操日本美女一级片| 老熟妇仑乱视频hdxx| 纵有疾风起免费观看全集完整版| 一级毛片女人18水好多| 热99久久久久精品小说推荐| 一级片'在线观看视频| 午夜免费成人在线视频| 亚洲天堂av无毛| 亚洲精品一卡2卡三卡4卡5卡| 天堂中文最新版在线下载| 亚洲中文日韩欧美视频| 18禁国产床啪视频网站| 欧美黄色淫秽网站| 又紧又爽又黄一区二区| 午夜福利免费观看在线| 多毛熟女@视频| av线在线观看网站| 1024视频免费在线观看| 免费一级毛片在线播放高清视频 | 国产淫语在线视频| tocl精华| 手机成人av网站| 女人久久www免费人成看片| 欧美成人免费av一区二区三区 | 成人18禁高潮啪啪吃奶动态图| 亚洲精品在线观看二区| 亚洲黑人精品在线| 淫妇啪啪啪对白视频| 日韩中文字幕欧美一区二区| 国产xxxxx性猛交| 99精品久久久久人妻精品| 美女国产高潮福利片在线看| 视频区欧美日本亚洲| √禁漫天堂资源中文www| 久久久久久久国产电影| 亚洲精华国产精华精| 一区二区三区国产精品乱码| 午夜福利乱码中文字幕| 欧美日韩福利视频一区二区| 9191精品国产免费久久| 久久精品aⅴ一区二区三区四区| 免费在线观看黄色视频的| 久久久久网色| 亚洲中文av在线| 多毛熟女@视频| 午夜精品国产一区二区电影| 高清黄色对白视频在线免费看| 日本av手机在线免费观看| 国产又爽黄色视频| 精品国产一区二区久久| 国产精品免费视频内射| 午夜福利在线免费观看网站| 欧美大码av| 欧美精品高潮呻吟av久久| 成年人黄色毛片网站| 精品国产一区二区三区久久久樱花| 国产激情久久老熟女| 丁香欧美五月| 精品欧美一区二区三区在线| 97在线人人人人妻| 国产一区二区在线观看av| 国产精品亚洲一级av第二区| 天天添夜夜摸| 久久人人爽av亚洲精品天堂| 在线观看人妻少妇| 亚洲熟女精品中文字幕| 免费日韩欧美在线观看| 亚洲精品国产精品久久久不卡| 午夜久久久在线观看| 国产野战对白在线观看| 如日韩欧美国产精品一区二区三区| 99九九在线精品视频| 久久精品国产亚洲av香蕉五月 | 色精品久久人妻99蜜桃| 亚洲av成人一区二区三| 国产精品二区激情视频| 免费久久久久久久精品成人欧美视频| 亚洲五月色婷婷综合| 国产av精品麻豆| 日日夜夜操网爽| 国产免费av片在线观看野外av| 少妇的丰满在线观看| 丝瓜视频免费看黄片| 青草久久国产| 老司机在亚洲福利影院| 肉色欧美久久久久久久蜜桃| 99国产精品99久久久久| 一进一出好大好爽视频| 欧美黄色淫秽网站| 18禁观看日本| 国产黄频视频在线观看| 激情在线观看视频在线高清 | 亚洲av电影在线进入| 人人澡人人妻人| 考比视频在线观看| 亚洲国产欧美在线一区| 新久久久久国产一级毛片| 99香蕉大伊视频| 亚洲精品一卡2卡三卡4卡5卡| 久久人妻福利社区极品人妻图片| 国产av国产精品国产| 亚洲国产毛片av蜜桃av| aaaaa片日本免费| 每晚都被弄得嗷嗷叫到高潮| 99国产精品一区二区蜜桃av | 国产精品电影一区二区三区 | 精品乱码久久久久久99久播| 成年女人毛片免费观看观看9 | 一级毛片女人18水好多| 午夜福利一区二区在线看| 精品久久久久久电影网| 亚洲精品中文字幕在线视频| 色精品久久人妻99蜜桃| 中文字幕精品免费在线观看视频| 精品乱码久久久久久99久播| 午夜久久久在线观看| 欧美av亚洲av综合av国产av| 国产一区二区在线观看av| 大型黄色视频在线免费观看| 久久九九热精品免费| 美女国产高潮福利片在线看| 黄频高清免费视频| 女人爽到高潮嗷嗷叫在线视频| 视频区欧美日本亚洲| 黄色怎么调成土黄色| 亚洲第一av免费看| bbb黄色大片| 老司机靠b影院| 香蕉国产在线看| 国产日韩欧美视频二区| 国产福利在线免费观看视频| 黄色毛片三级朝国网站| 日本精品一区二区三区蜜桃| 免费av中文字幕在线| 国产xxxxx性猛交| 亚洲精品乱久久久久久| 亚洲熟女毛片儿| 高清黄色对白视频在线免费看| 成人永久免费在线观看视频 | 91老司机精品| 午夜福利,免费看| 黑人猛操日本美女一级片| 在线观看一区二区三区激情| 久久久久久亚洲精品国产蜜桃av| 欧美+亚洲+日韩+国产| 日本一区二区免费在线视频| 成人av一区二区三区在线看| 超色免费av| 亚洲精品在线美女| 99riav亚洲国产免费| 国产精品亚洲一级av第二区| 99国产精品一区二区蜜桃av | 日日爽夜夜爽网站| 日本黄色日本黄色录像| 一级毛片女人18水好多| 中文字幕人妻丝袜一区二区| 黄片播放在线免费| 欧美黑人欧美精品刺激| 色视频在线一区二区三区| 日本黄色日本黄色录像| 亚洲 欧美一区二区三区| 国产一区二区三区综合在线观看| 丰满迷人的少妇在线观看| 免费在线观看完整版高清| 国产精品一区二区免费欧美| 精品少妇黑人巨大在线播放| 人人澡人人妻人| 欧美黑人欧美精品刺激| 怎么达到女性高潮| 国产在线免费精品| 成人精品一区二区免费| 成人亚洲精品一区在线观看| 午夜日韩欧美国产| 日本黄色日本黄色录像| 国精品久久久久久国模美| 亚洲久久久国产精品| 日日摸夜夜添夜夜添小说| 久久久国产精品麻豆| 热re99久久国产66热| 俄罗斯特黄特色一大片| 不卡av一区二区三区| 日韩人妻精品一区2区三区| 黑人巨大精品欧美一区二区mp4| 在线观看免费日韩欧美大片| 飞空精品影院首页| 国产成人av教育| 久久人人97超碰香蕉20202| 国产精品秋霞免费鲁丝片| 十八禁高潮呻吟视频| 欧美黄色淫秽网站| 国产不卡一卡二| 久久ye,这里只有精品| 深夜精品福利| 日日夜夜操网爽| 成在线人永久免费视频| 超碰成人久久| 亚洲国产欧美一区二区综合| 亚洲三区欧美一区| av福利片在线| 纯流量卡能插随身wifi吗| 极品人妻少妇av视频| 久久国产精品男人的天堂亚洲|