• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterization of Fundamental Logics for the Sub-Threshold Digital Design

    2013-11-26 11:49:20YanMingHeYaJuanHeYangMingLiShaoWeiZhenandPingLuo

    Yan-Ming He, Ya-Juan He, Yang-Ming Li, Shao-Wei Zhen, and Ping Luo

    1.Introduction

    With the development of very large scale integrated circuites (VLSI) techniques, the integrity of system-on-chip(SoC) chips has drastically increased, which increases the power dissipation of electronic devices.The minimum energy consumption is desired for some applications to extend the battery life, such as the portable device,micro-sensor, and radio frequency identification devices(RFID)[1]-[4], for which recharging the battery is impossible or inconvenient.Sub-threshold voltage designs can be an effective way to realize ultra-low power systems.It enables circuits to operate at the sub-threshold voltage, achieving the minimum energy per operation[5].Previous research has proved the lowest usable supply voltage for the complementary metal-oxide-semiconductor (CMOS)transistor is under the threshold voltage of the CMOS transistor[6].

    Modern electronic design automation (EDA) tools make it possible to integrate millions, even billions, of transistors on a single chip.But the implementation of a digital design is based on a standard cell library.Thus, a sub-threshold library is indispensable to enable the design flow for the sub-threshold designs.In this paper, a design methodology for the sub-threshold cell library is proposed,the structure and size of each cell is optimized based on the existing standard cell library.The characterization flow is illustrated in 0.13 μm CMOS technology with the supply voltage of 300 mV.

    2.Digital Cell Library

    The purpose of enabling the design to operate at a sub-threshold supply voltage is to achieve the minimum energy per operation.A minimum energy model is indispensable for the theoretical analysis of a design in the sub-threshold regime[7].Furthermore, an optimized digital cell library is also necessary to serve the design better and meet the design specifications.

    2.1 Minimum Energy Model

    From the previous research, it is known that the minimum energy point occurs at the sub-threshold regime[5].here the analysis on an energy model gives the exact equation of the optimum supply voltage.An inverter is taken as an example, the delay of an inverter is given as

    where Cloadis the output capacitance of the inverter, Vddis the supply voltage, K is the fitting parameter, and Ⅰonis the driving current of the inverter.For the sub-threshold voltage case, Ⅰonis expressed as

    where Ⅰois the drain current when VGS=Vth, and Vthis the threshold voltage of the metal-oxide-semiconductor(MOS) transistor.AndWeffis the effective width of MOS transistor’s channel , L is the length of the MOS transistor’s channel, COXis the capacitance of gate oxide layer,nμ is the mobility of carriers, VTis the thermal voltage, n is a parameter determined by the technology[8].This equation ignores the drain induced barrier lowering (DIBL) effect on Ⅰon-sub.Combining (1) and (2) gives the delay equation of an inverter in the sub-threshold regime:

    For a more generic case, the delay time of a design can be expressed as Td=LDtd, where LDis the logic depth of the design’s critical path, so the operational frequency of this design is f=1/Td.The power of a digital circuit consists of two parts: the dynamic power, Pdynamic, and leakage power,Pleakage, both of which are given as

    where Ceffis the effective switched capacitance of the design, including the active factor, f is the operational frequency and Vddis the supply voltage, and Ⅰleakageis the leakage current, which is mainly the sub-threshold current when VGS=0.So the energy for each operation is derived from (3), (4), and (5):

    Total energy consumed by each operation is: Etotal=Edynamic+Eleakage.To find the minimum energy point, we calculate the derivative of Etotaltowards Vdd, and set the equation to zero:

    Simplifing (8), we have:

    The optimum supply voltage for the minimum energy point is derived by solving the above Lambert W function[9].

    Generally speaking, the threshold voltage for a technology is fixed, so using (3), Td=LDtd, and f=1/Td, the relationship between Vthand Vddis given as

    Since Vthis fixed for a particular design, the optimum Vddis derived from (9) to satisfy the sub-threshold condition: Vth>Vdd.There is a maximum frequency fmax, if the design’s operating frequency is larger than that, Vddwill be larger than Vth, the above model will not hold.

    2.2 Cell Design Considerations for the Sub-Threshold Operation

    The operation of conventional cells from the standard cell library in the sub-threshold regime is not exactly the same as that in the above-threshold regime.In this section,we first look into the operation of fundamental logic cells in the sub-threshold regime.Then, to ensure the functionality of these cells, some optimizations on the size and logic styles are introduced.Both combinational logics and sequential logics are involved.For combinational logics,the number of stacking and parallel transistors is constrained for obtaining a larger Ⅰdriving/Ⅰleakageratio.For sequential logics, the critical transistors in the cell are upsized to maintain the voltage of certain node at a correct level.

    A.Design Example: A Sub-Threshold Ⅰnverter

    The analysis of the minimum supply voltage is started with an inverter, and then extended to other standard cells in the library.The inverter is assumed with the minimum sized n-channel MOS (NMOS), and the width of p-channel MOS (PMOS) is sized to ensure a 10%Vddto 90%Vddoutput swing.First, a logic “0” is applied to the input node,the driving current from PMOS is supposed to charge the output node to logic “1”, which is called Ⅰdriving.The leakage current throw NMOS is called Ⅰleakage, and the ratioⅠdriving/Ⅰleakageindicates the functionality of a logic cell.In the sub-threshold regime, the driving current Ⅰdrivingfrom PMOS decreases exponentially with the supply voltage.So a largely reduced Ⅰdriving/Ⅰleakagemay cause that the output node fails to be pulled up to 90%Vdd.To solve this problem, the width of the PMOS, Wp, needs to be upsized, so the stronger Ⅰdrivingis able to pull the output voltage up to 90%Vdd.Especially in a strong NMOS/weak PMOS corner,the Wpneeds to be even larger.A minimum Wpwhich can drive the output voltage to 90%Vddis defined as Wpmin.

    Further, a logic “1” is applied to the input, and the driving current from NMOS is supposed to pull the output voltage down to the logic “0”.But the leakage current from a large width PMOS will charge the output node, and the output node may fail to drop below 10%Vdd.So Wpcannot be upsized too much.Especially for a weak NMOS/strong PMOS corner, the Wpshould be even smaller, the largest Wpwhich allows the output voltage to be pulled below 10%Vddis defined as Wpmax.We simulate the Wpminand Wpmaxcorresponding to different voltages from 50 mV to 200 mV at a typical corner.In the simulation, Wnis in the minimum size, and Wp/Wnis changed from 1 to 80 in different voltages.By observing the output voltage of the inverter,Wpminfor 90%Vddand Wpmaxfor 10%Vddcan be achieved.The result is illustrated in Table 1.To ensure the output swing of 10%Vddto 90%Vdd, Wpshould satisfy the condition:Wpmin

    Table 1: Wpmin and Wpmax for typical corner

    Table 2: Wpmin and Wpmax for the worst case

    As the simulation result shows, if an inverter is supposed to operate at the sub-threshold voltage, its size needs to be set in a reasonable range.

    B.Combinational Logics

    The cells designed in a conventional library may have some problems at the sub-threshold regime.First, a cell with too many transistors in parallel may induce a large leakage current, which will reduce the Ⅰdriving/Ⅰleakageratio and cause the node of the cell fail to maintain a stable voltage.Second, a cell with large stacked transistors will cause the driving current to diminish.This will also reduce the Ⅰdriving/Ⅰleakageratio, and cause the output node of the cell fail to be charged to an ideal voltage.Designers should avoid using cells with large stacked devices and with too many devices in parallel.Since NMOS has a stronger driving current than PMOS, to avoid stacked PMOS, the NAND logic is preferred rather than the NOR logic[10],Third, the cells with transmission gates may induce the sneak leakage.To eliminate this flaw, buffers are added to the input and output of this kind of cells.

    C.Sequential Logics

    The D flip-flop is the most commonly used sequential cell in the digital design.The traditional type D flip-flop is illustrated in Fig.1, which is triggered by the positive edge of the clock signal.It may have some problems in sub-threshold regime[11].We consider two kinds of failures.First, when G1 is closed and G2 is opened, the feedback loop consisting of INV1, INV2, and G2 is supposed to maintain the voltage of nodes N1 and N2 at a stable level.But in the sub-threshold regime, the Ⅰdriving/Ⅰleakageratio is small and the large leakage current through INV2 may pull the voltage of N1 towards the wrong side and cause the voltage unstable.To solve this problem, the size of inverters in the feedback loop needs to be enlarged, so the strong driving current can maintain the voltages of N1 and N2 at a stable level.

    Second, when the clock signal is “0” and the D signal changes from “0” to “1”.The voltage of N2 changes from“1” to “0”.As G3 is closed, the output voltage at Q is not supposed to change.But when this D flip-flop operates at the sub-threshold regime, the leakage current of G3 may be large enough to change the voltage of N3, and cause the Q output to change before the active edge.The circuit fails to work synchronously with the clock signal.To avoid this kind of failure, the INV3 and INV4 need to be enlarged, so the driving current can be strong enough to overcome the leakage current through G3.

    Therefore, if the D flip-flop operates correctly in the sub-threshold regime, the size of transistors should be adjusted to avoid the potential failures.

    3.Characterization

    The purpose for characterization is to generate a technology library file (.lib file).It contains the logic,timing, and power information of each cell in the library.This file is necessary for synthesis, placement, routing process, and design verifications.

    3.1 Technology Library

    The content in technology library can be classified into two parts: the head section and cell section[12].The head section contains the process information, delay model,operating condition, wire load model, unit of each parameter in the file, etc., which are the information used throughout the technology library.The other part is the cell section, which gives the information of each particular cell,such as the cell’s area, each pin’s direction, and the propagation delay from each input to output under different conditions.

    During the synthesis and placement&routing (P&R)process, the information in the technology library is used to elevate the cell’s function and performance, in order to choose the proper cells to meets the design constraints.

    3.2 Data Preparation

    In this design, we perform the characterization with the Synopsys Liberty NCX[13].The basic mechanism is illustrated in Fig.2: Liberty NCX reads in the netlist files,template files, and the Spice model file of the technology.Then the simulator, such as Hspice or Spectre, is invoked to perform the simulation for each cell.After that, Liberty NCX writes the data extracted from Hspice simulation results to a technology file.

    Fig.1.Schematic of a transmission gate D flip-flop.

    Fig.2.Characterization flow.

    Netlist: The netlist of each cell is extracted from their layouts, using the PEX function of the software Calibre.Each cell contains three files: cellname.pex.netlist.pex,cellname.pex.netlist.cellname.pxi, and cellname.pex.netlist;then the name of the file cellname.pex.netlist is changed into cellname.sp in order to be recognized by Hspice.The netlist describes the schematic and parasitic resistance&capacitance (RC) parameters of the cell.These files will be used by Hspice to generate the simulation data.Fig.3 shows the generation of the netlist[14].

    Model file:The model file is the technique file which is necessary for Hspice to perform the simulation.Library described in this paper is based on 0.13 μm CMOS technology.The model file “ms013_io33_v2p5.lib” is offered by the foundry.It gives the parameters of each circuit element used in the cell’s netlist, including the MOS transistor, ploy resistor, metal-insulator-metal (MIM)capacitance, etc.The content of the model file is as follows:lib“/home/tdc_rezor/heyanming/libertyncx/spicemodel/ms 013_io33_v2p5.lib” tt.

    3.3 Templates

    Liberty NCX uses the data from simulation results and writes them back to the output library file.The template file specifies the data to be used.There are two kinds of template files in the template directory: one library template for the whole library and the other template files for each cell in the library.They separately specified the parameters contained in the head section and cell description part of the library.

    Fig.3.Netlist generation.

    Fig.4.Templates generation flow.

    Fig.5.Templates generation.

    The template files can be written by hand according to the syntax[12].But this way is complicated and inefficient.A more efficient and convenient way is to generate templates from a seed technology library by Liberty NCX,which is shown in Fig.4.The seed library used in this paper is provided by the foundry whose nominal operating voltage is 1.2 V.The script that Liberty NCX uses for generating template files is illustrated in Fig.5.

    In Fig.5, several options are set for the generation of template: the input_library is the library used as a seed library; the output_library is the output library of characterization; the “prechar” is set to be true, which allows the Liberty NCX to write information from the seed library to the template files.The information in the template files can be modified according to users’requirements.Power and timing are set false to indicate that this script is just used to generating template files, not characterization.The “timing_arcs_to_template” is set true,which indicates that the “timing arcs”, which appears in the seed library, are written to templates[13].

    After the templates are generated, simulation options in the template files should be modified, such as adjusting the operating voltage from 1.2 V to 300 mV, extending the simulation time, and modifying the indexes values.In this way, the templates are able to model the behavior of the cells in the sub-threshold regime.

    3.4 Characterization

    After all the input files are ready, Liberty NCX runs the script shown in Fig.6 and completes the characterization.

    Fig.6.Characterization control.

    Fig.7.Timing and power information in characterization results:(a) propagation delay for INV in sub-threshold library, (b)propagation delay for INV in the seed library, (c) internal power for INV in sub-threshold library, and (d) internal power for INV in the seed library.

    This script is used for the characterization of the sub-threshold library under the 300 mV supply voltage.The output_library specifies the name and directory of the output library file after characterization.The input_template_dir defines the directory storing the template files Netlist_dir/netlist_suffix that specifies the directory and suffix of each cell’s netlist.The simulator_exec specifies the simulator used to generate the simulation results, and the simulation_dir gives the directory storing the simulation results.The timing/power is set true, which tells Liberty NCX that this script is used for characterization, and Liberty NCX will write power and timing information from simulation results to the output library.The nlpm/nldm is also set true, which indicates Liberty NCX that the nonlinear delay/power model is used in the output library to store the power/timing information.

    4.Results

    The result of characterization is a technology library file whose cells operate in the sub-threshold regime, and the timing and power information in it is shown in Fig.7.

    Fig.7 (a) shows the propagation delay for the INV cell in the sub-threshold library.Compared with the same propagation delay in the 1.2 V seed library which is showed in Fig.7 (b), the propagation delay in the sub-threshold library is largely increased.This is because the INV cell operates in sub-threshold regime, and the driving current is much smaller.Fig.7 (c) shows the internal power of the INV cell in the sub-threshold library.Compared with that in the 1.2 V seed library shown in Fig.7 (d), the internal power in the sub-threshold library is largely decreased.This is because the supply voltage is decreased from 1.2 V to 300 mV.

    5.Conclusions

    In this paper, a methodology to characterize a cell library in the sub-threshold regime is proposed based on 0.13 μm CMOS technology with the supply voltage of 300 mV.The results of the characterization show that the fundamental logics in the new library can operate properly in the sub-threshold regime.Their delay and power metrics in the technology library are coincident with the characteristics of the sub-threshold cells.

    [1]R.Weinstein, “RFID: a technical overview and its application to the enterprise,” ⅠT Professional, vol.7, no.3,pp.27-33, 2005.

    [2]L.Schwiebert, S.Gupta, and J.Weinmann, “Research challenges in wireless networks of biomedical sensors,” in Proc.of the 7th Annual Ⅰnt.Conf.on Mobile Computing and Networking, New York, 2001, pp.151-165.

    [3]A.Mainwaring, D.Culler, J.Polastre, R.Szewczyk, and J.Anderson, “Wireless sensor networks for habitat monitoring,” in Proc.of the ACM Ⅰnt.Workshop on Wireless Sensor Networks and Applications, New York, 2002, pp.88-97.

    [4]A.Cerpa, J.Elson, D.Estrin, L.Girod, M.Hamilton, and J.Zhao, “Habitat monitoring: application driver for wireless communications technology,” in Proc.of the ACM SⅠGCOMM Workshop on Data Communications in Latin America and the Caribbean, San Jose, 2001, pp.20-41.

    [5]A.Wang, B.H.Calhoun, and A.P.Chandrakasan,Sub-Threshold Design for Ultra Low-Power Systems, New York: Springer, 2006, pp.10-11.

    [6]R.M.Swanson and J.D.Meindl, “Ion-implanted complementary MOS transistors in low-voltage circuits,”ⅠEEE Journal of Solid-State Circuits, vol.7, no.2, pp.146-153, 1972.

    [7]B.H.Calhoun and A.Chandrakasan, “Characterizing and modeling minimum energy operation for sub-threshold circuits,” in Proc.of the 2004 Ⅰnt.Symposium on Low Power Electronics and Design, Newport Beach, 2004, pp.90-95.

    [8]X.-B.Chen, Q.-Z.Zhang, and Y.Chen, Microelectronics Decives, Beijing: Publishing House of Electronics Industry,2011, pp.216-217 (in Chinese).

    [9]R.M.Corless , G.H.Gonnet , D.E.G.Hare , D.J.Jeffrey,and D.E.Knuth, “On the Lambert W function,” Advances in Computational Mathematics, 1996, doi: 10.1.1.112.6117.

    [10]M.Liu, H.Chen, C.Jia, and Z.-H.Wang, “Design of a sub-threshold 32bit data path,” Journal of Tsinghua University (Science and Technology), vol.50, no.1, pp.9-12, 2010 (in Chinese).

    [11]W.Jin, S.Lu, W.-F.He, and Z.-G.Mao, “Robust design of sub-threshold flip-flop cells for wireless sensor network,” in Proc.of ⅠEEE/ⅠFⅠP the 19th Ⅰnt.Conf.on VLSⅠ and System-on-Chip, Hong Kong, 2011, pp.440-443.

    [12]Library Compiler User Guide, Volume 1, Synopsys, Inc.,Mountain View, 1998, pp.2-1-2-49.

    [13]Liberty NCX User Guide, Version F-2011.06, Synopsys,Inc., Mountain View, 2011.

    [14]Calibre xRC User’s Manual, Mentor Graphics Co.,Wilsonville, 2008.

    免费在线观看视频国产中文字幕亚洲 | 一级,二级,三级黄色视频| 色婷婷av一区二区三区视频| 亚洲成人手机| 国产无遮挡羞羞视频在线观看| 男人添女人高潮全过程视频| 人成视频在线观看免费观看| 色哟哟·www| 色婷婷久久久亚洲欧美| 亚洲精品久久成人aⅴ小说| 女人久久www免费人成看片| 亚洲精品视频女| 国产一区亚洲一区在线观看| 久久久久网色| 欧美变态另类bdsm刘玥| 欧美精品一区二区大全| 各种免费的搞黄视频| 热re99久久国产66热| 久热久热在线精品观看| videosex国产| 日本色播在线视频| 一二三四中文在线观看免费高清| 精品99又大又爽又粗少妇毛片| 欧美+日韩+精品| 汤姆久久久久久久影院中文字幕| 黄片播放在线免费| 久久久久久久大尺度免费视频| 亚洲成av片中文字幕在线观看 | 免费在线观看视频国产中文字幕亚洲 | 亚洲人成电影观看| 久久青草综合色| 久久精品久久久久久久性| 国产午夜精品一二区理论片| 成人手机av| 国产一区二区 视频在线| 最近的中文字幕免费完整| 一区福利在线观看| 一区二区三区精品91| 久久午夜综合久久蜜桃| 如何舔出高潮| 成人免费观看视频高清| 男女边摸边吃奶| 女人精品久久久久毛片| 性色avwww在线观看| av线在线观看网站| 国产男女超爽视频在线观看| 精品久久久久久电影网| 国产在视频线精品| 亚洲精品久久成人aⅴ小说| 国产av精品麻豆| 国产极品粉嫩免费观看在线| 日日爽夜夜爽网站| 久久久久久久国产电影| 中文字幕另类日韩欧美亚洲嫩草| 有码 亚洲区| 国产片特级美女逼逼视频| 国产xxxxx性猛交| 黄频高清免费视频| 免费av中文字幕在线| 水蜜桃什么品种好| 欧美人与善性xxx| 国产精品一国产av| 9191精品国产免费久久| 丁香六月天网| 黄频高清免费视频| 久久久久人妻精品一区果冻| 一边摸一边做爽爽视频免费| 九草在线视频观看| av免费观看日本| 中文字幕av电影在线播放| 黄色 视频免费看| 精品少妇黑人巨大在线播放| 极品人妻少妇av视频| 一本久久精品| 80岁老熟妇乱子伦牲交| 亚洲熟女精品中文字幕| 国产免费一区二区三区四区乱码| 欧美在线黄色| 老鸭窝网址在线观看| 免费av中文字幕在线| 99热全是精品| 亚洲成色77777| 国产成人91sexporn| 日韩欧美精品免费久久| 精品人妻在线不人妻| 亚洲精品视频女| 亚洲情色 制服丝袜| 99热全是精品| 97在线人人人人妻| 狠狠精品人妻久久久久久综合| 尾随美女入室| 一区二区av电影网| 国产精品久久久久久av不卡| 国产亚洲精品第一综合不卡| 伊人亚洲综合成人网| 久久久精品94久久精品| 中文字幕制服av| 五月开心婷婷网| 精品一区二区三区四区五区乱码 | 亚洲伊人久久精品综合| 青青草视频在线视频观看| 午夜老司机福利剧场| 欧美 日韩 精品 国产| 精品一区二区三卡| 亚洲国产日韩一区二区| 亚洲精品aⅴ在线观看| 搡女人真爽免费视频火全软件| 中文字幕最新亚洲高清| 国产精品久久久久成人av| 国产亚洲一区二区精品| 91成人精品电影| 不卡视频在线观看欧美| 久久久亚洲精品成人影院| 色婷婷av一区二区三区视频| 色视频在线一区二区三区| 最近手机中文字幕大全| 免费黄网站久久成人精品| 人妻一区二区av| 伊人亚洲综合成人网| 女人精品久久久久毛片| 啦啦啦在线免费观看视频4| 免费黄色在线免费观看| 一级爰片在线观看| 亚洲av电影在线进入| 最新中文字幕久久久久| 午夜免费鲁丝| 欧美日韩精品网址| 国产亚洲av片在线观看秒播厂| 国产精品.久久久| 最新的欧美精品一区二区| 久久久久国产一级毛片高清牌| videossex国产| 天天影视国产精品| 日本色播在线视频| 婷婷色综合www| 成人午夜精彩视频在线观看| 少妇人妻 视频| 婷婷色综合www| av视频免费观看在线观看| 街头女战士在线观看网站| 中文字幕av电影在线播放| 精品亚洲成国产av| 亚洲一区二区三区欧美精品| 精品国产国语对白av| 天天影视国产精品| 欧美日韩精品成人综合77777| 一级毛片我不卡| 日韩电影二区| 亚洲熟女精品中文字幕| 在现免费观看毛片| 九草在线视频观看| 国产精品欧美亚洲77777| 国产无遮挡羞羞视频在线观看| 色94色欧美一区二区| 在线观看三级黄色| 一区二区三区激情视频| 成人亚洲精品一区在线观看| www.熟女人妻精品国产| 亚洲精品一区蜜桃| 亚洲一区二区三区欧美精品| 高清不卡的av网站| 两个人免费观看高清视频| 欧美日韩成人在线一区二区| 午夜久久久在线观看| 中文乱码字字幕精品一区二区三区| 亚洲av在线观看美女高潮| 久久亚洲国产成人精品v| 日本免费在线观看一区| 桃花免费在线播放| 嫩草影院入口| 三上悠亚av全集在线观看| 久久久久人妻精品一区果冻| 国产极品天堂在线| 男女边吃奶边做爰视频| 亚洲欧美清纯卡通| 亚洲国产毛片av蜜桃av| 亚洲成人av在线免费| 亚洲天堂av无毛| av天堂久久9| 少妇熟女欧美另类| 国产淫语在线视频| 肉色欧美久久久久久久蜜桃| 欧美日韩成人在线一区二区| 日韩av免费高清视频| 免费在线观看视频国产中文字幕亚洲 | xxxhd国产人妻xxx| 狂野欧美激情性bbbbbb| 日韩一区二区视频免费看| 在线看a的网站| 大码成人一级视频| 不卡av一区二区三区| 欧美av亚洲av综合av国产av | 在线看a的网站| av又黄又爽大尺度在线免费看| 2021少妇久久久久久久久久久| 欧美成人午夜免费资源| 中文天堂在线官网| 高清av免费在线| 下体分泌物呈黄色| 一区福利在线观看| 国产精品国产三级专区第一集| av一本久久久久| 一级a爱视频在线免费观看| 欧美人与性动交α欧美软件| 精品少妇内射三级| 在线观看www视频免费| 赤兔流量卡办理| 男的添女的下面高潮视频| 美女国产视频在线观看| 最近中文字幕高清免费大全6| 999精品在线视频| 亚洲精品一二三| 国产精品国产三级专区第一集| 综合色丁香网| 久久久久久久大尺度免费视频| 久久狼人影院| 国产一区二区三区综合在线观看| 人体艺术视频欧美日本| 亚洲精品久久久久久婷婷小说| 国产熟女午夜一区二区三区| 熟女少妇亚洲综合色aaa.| 亚洲 欧美一区二区三区| 国产老妇伦熟女老妇高清| 久久久久久人人人人人| 青春草视频在线免费观看| 黄色一级大片看看| 制服诱惑二区| 我的亚洲天堂| 999久久久国产精品视频| 日韩熟女老妇一区二区性免费视频| 久久精品亚洲av国产电影网| 人人妻人人添人人爽欧美一区卜| 久久久久久免费高清国产稀缺| 亚洲,欧美精品.| 美女主播在线视频| 午夜日韩欧美国产| 国产野战对白在线观看| 永久免费av网站大全| 欧美人与性动交α欧美精品济南到 | 久久久亚洲精品成人影院| 97在线视频观看| 国产日韩欧美视频二区| 国产成人午夜福利电影在线观看| 亚洲av国产av综合av卡| 制服人妻中文乱码| 妹子高潮喷水视频| 久久鲁丝午夜福利片| 亚洲国产av新网站| 天天躁日日躁夜夜躁夜夜| 国产日韩欧美在线精品| 纵有疾风起免费观看全集完整版| √禁漫天堂资源中文www| 国产乱来视频区| 日本黄色日本黄色录像| 久久精品久久久久久噜噜老黄| 热re99久久国产66热| 在线观看人妻少妇| 日韩av在线免费看完整版不卡| 精品第一国产精品| 国产精品久久久久久久久免| 99re6热这里在线精品视频| 国产黄频视频在线观看| 日本爱情动作片www.在线观看| 自线自在国产av| 熟女电影av网| 中文精品一卡2卡3卡4更新| 夜夜骑夜夜射夜夜干| 巨乳人妻的诱惑在线观看| 中文天堂在线官网| 青春草亚洲视频在线观看| 国产精品久久久久久久久免| 美女高潮到喷水免费观看| 99热网站在线观看| 欧美国产精品va在线观看不卡| 日韩一区二区视频免费看| 日本av免费视频播放| 国产免费一区二区三区四区乱码| 天天躁狠狠躁夜夜躁狠狠躁| 人成视频在线观看免费观看| 黑人欧美特级aaaaaa片| 亚洲第一av免费看| 各种免费的搞黄视频| 国产爽快片一区二区三区| 婷婷色麻豆天堂久久| 老司机影院成人| 亚洲成人av在线免费| av国产精品久久久久影院| 亚洲视频免费观看视频| 伦理电影免费视频| 久久久欧美国产精品| 国产一区亚洲一区在线观看| tube8黄色片| 亚洲欧洲国产日韩| 九九爱精品视频在线观看| 国产精品一国产av| 婷婷色av中文字幕| 国产精品偷伦视频观看了| 国产精品99久久99久久久不卡 | 亚洲伊人久久精品综合| 精品亚洲乱码少妇综合久久| 精品久久久久久电影网| 蜜桃国产av成人99| 久久99蜜桃精品久久| 777久久人妻少妇嫩草av网站| 精品国产一区二区三区久久久樱花| 国产av国产精品国产| 午夜免费男女啪啪视频观看| 免费av中文字幕在线| 欧美97在线视频| 美女国产视频在线观看| 男女午夜视频在线观看| 99热网站在线观看| 老女人水多毛片| 亚洲美女视频黄频| 黑人巨大精品欧美一区二区蜜桃| 99热国产这里只有精品6| 成人二区视频| av在线观看视频网站免费| 日韩免费高清中文字幕av| 女性生殖器流出的白浆| 99久久综合免费| www.av在线官网国产| 国产成人av激情在线播放| 1024香蕉在线观看| 国产一区二区 视频在线| 赤兔流量卡办理| 日本猛色少妇xxxxx猛交久久| 在线观看一区二区三区激情| 精品久久蜜臀av无| 精品国产一区二区三区四区第35| 中文字幕色久视频| 巨乳人妻的诱惑在线观看| 成人国语在线视频| 在线观看人妻少妇| 精品久久蜜臀av无| 国产淫语在线视频| 丰满乱子伦码专区| 18禁国产床啪视频网站| 亚洲av电影在线观看一区二区三区| 精品人妻在线不人妻| 亚洲精品国产一区二区精华液| 免费黄频网站在线观看国产| av又黄又爽大尺度在线免费看| 日本91视频免费播放| 国产成人91sexporn| 久久精品国产a三级三级三级| 欧美日韩一级在线毛片| 韩国精品一区二区三区| 七月丁香在线播放| 午夜影院在线不卡| 国产激情久久老熟女| 国产免费又黄又爽又色| 国产男人的电影天堂91| 久久婷婷青草| 久久ye,这里只有精品| 欧美变态另类bdsm刘玥| 精品第一国产精品| 国产一区二区三区综合在线观看| 一二三四中文在线观看免费高清| 午夜福利在线免费观看网站| av电影中文网址| 国产av码专区亚洲av| av电影中文网址| 香蕉丝袜av| 亚洲精品国产av成人精品| 日本免费在线观看一区| 亚洲一区中文字幕在线| 91午夜精品亚洲一区二区三区| 黄色视频在线播放观看不卡| 男女啪啪激烈高潮av片| 天堂俺去俺来也www色官网| 亚洲精品,欧美精品| 久久久精品区二区三区| 亚洲熟女精品中文字幕| 九九爱精品视频在线观看| 久久久精品国产亚洲av高清涩受| 丁香六月天网| 国产亚洲欧美精品永久| 另类亚洲欧美激情| 在线观看美女被高潮喷水网站| 91精品三级在线观看| 久久久久久久精品精品| 成人免费观看视频高清| 最近手机中文字幕大全| 天天操日日干夜夜撸| 男人爽女人下面视频在线观看| 国产成人精品无人区| 人妻少妇偷人精品九色| 亚洲精品,欧美精品| 国产无遮挡羞羞视频在线观看| 亚洲熟女精品中文字幕| 黑人巨大精品欧美一区二区蜜桃| 一本色道久久久久久精品综合| 巨乳人妻的诱惑在线观看| 一边亲一边摸免费视频| 18禁国产床啪视频网站| 一区二区三区四区激情视频| 亚洲人成77777在线视频| 亚洲综合精品二区| 亚洲av欧美aⅴ国产| 水蜜桃什么品种好| 中文欧美无线码| 欧美亚洲日本最大视频资源| 日韩制服骚丝袜av| 国产一区有黄有色的免费视频| 精品午夜福利在线看| 男女无遮挡免费网站观看| 亚洲精品国产一区二区精华液| 精品人妻在线不人妻| 久久久久人妻精品一区果冻| 成年人免费黄色播放视频| 美女福利国产在线| 成年美女黄网站色视频大全免费| 777久久人妻少妇嫩草av网站| 亚洲av中文av极速乱| 韩国av在线不卡| 欧美日韩视频精品一区| 亚洲伊人色综图| 可以免费在线观看a视频的电影网站 | 亚洲视频免费观看视频| 亚洲 欧美一区二区三区| 色94色欧美一区二区| 亚洲欧美清纯卡通| 日韩av不卡免费在线播放| 久久人人爽人人片av| 亚洲色图 男人天堂 中文字幕| 三上悠亚av全集在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲欧美色中文字幕在线| 国产精品三级大全| 亚洲成av片中文字幕在线观看 | 免费在线观看完整版高清| 啦啦啦中文免费视频观看日本| 亚洲人成77777在线视频| 欧美 亚洲 国产 日韩一| 中文天堂在线官网| 成人二区视频| 七月丁香在线播放| 80岁老熟妇乱子伦牲交| 亚洲精品久久午夜乱码| 精品国产露脸久久av麻豆| 亚洲精品日本国产第一区| 婷婷色麻豆天堂久久| 飞空精品影院首页| 亚洲一级一片aⅴ在线观看| 国产精品香港三级国产av潘金莲 | 久久久国产一区二区| 18+在线观看网站| 天堂8中文在线网| 精品酒店卫生间| 亚洲综合精品二区| 午夜日本视频在线| 女人被躁到高潮嗷嗷叫费观| 亚洲精品乱久久久久久| 亚洲精华国产精华液的使用体验| 一二三四中文在线观看免费高清| 制服丝袜香蕉在线| 天堂俺去俺来也www色官网| 日韩精品有码人妻一区| 巨乳人妻的诱惑在线观看| av天堂久久9| 精品酒店卫生间| 99久久精品国产国产毛片| 亚洲精品自拍成人| 999久久久国产精品视频| 18禁裸乳无遮挡动漫免费视频| 久久久精品免费免费高清| 天堂8中文在线网| 国产男女超爽视频在线观看| 777久久人妻少妇嫩草av网站| 色吧在线观看| 免费看av在线观看网站| 亚洲人成电影观看| 国产精品国产三级国产专区5o| 久久精品国产自在天天线| 亚洲国产毛片av蜜桃av| 男女高潮啪啪啪动态图| 国产精品国产av在线观看| √禁漫天堂资源中文www| 在线观看免费视频网站a站| 在线观看三级黄色| 女人高潮潮喷娇喘18禁视频| 人人妻人人澡人人看| 精品99又大又爽又粗少妇毛片| av免费观看日本| 久久精品久久久久久久性| 欧美日韩精品成人综合77777| 久久久a久久爽久久v久久| 97在线视频观看| 久久久久国产网址| 国产精品久久久久成人av| 最新的欧美精品一区二区| 成年av动漫网址| 一级片'在线观看视频| 亚洲,欧美,日韩| 精品久久久精品久久久| 最新的欧美精品一区二区| 亚洲美女搞黄在线观看| 男女边吃奶边做爰视频| 五月开心婷婷网| 女性被躁到高潮视频| 久久99精品国语久久久| 亚洲精品av麻豆狂野| 黄频高清免费视频| 妹子高潮喷水视频| 久久久久视频综合| 中文字幕人妻丝袜一区二区 | 国产亚洲av片在线观看秒播厂| 男女高潮啪啪啪动态图| videosex国产| 国产精品免费视频内射| 亚洲av成人精品一二三区| 国产淫语在线视频| 日日摸夜夜添夜夜爱| 男女下面插进去视频免费观看| 欧美亚洲日本最大视频资源| xxx大片免费视频| 99re6热这里在线精品视频| 亚洲欧美清纯卡通| 91aial.com中文字幕在线观看| 久久久国产欧美日韩av| 美女xxoo啪啪120秒动态图| 人体艺术视频欧美日本| 国产精品一二三区在线看| 久久久久久伊人网av| 精品人妻在线不人妻| 91精品伊人久久大香线蕉| 国产精品 国内视频| 免费黄网站久久成人精品| 国产精品三级大全| 成人亚洲精品一区在线观看| 亚洲欧美日韩另类电影网站| 菩萨蛮人人尽说江南好唐韦庄| 欧美变态另类bdsm刘玥| 久久精品国产综合久久久| 最新的欧美精品一区二区| 97在线人人人人妻| 9色porny在线观看| 亚洲欧美精品自产自拍| 晚上一个人看的免费电影| 啦啦啦在线观看免费高清www| 日韩,欧美,国产一区二区三区| 日本欧美国产在线视频| 欧美日韩精品成人综合77777| 青春草视频在线免费观看| 啦啦啦在线免费观看视频4| 欧美精品一区二区大全| 亚洲美女搞黄在线观看| 国产视频首页在线观看| 精品国产露脸久久av麻豆| 久久精品久久久久久久性| 成年女人毛片免费观看观看9 | 亚洲美女搞黄在线观看| 国产视频首页在线观看| 精品国产露脸久久av麻豆| 亚洲精品在线美女| 亚洲国产欧美在线一区| 看免费成人av毛片| 最近2019中文字幕mv第一页| 国产一区二区在线观看av| 熟女av电影| 我要看黄色一级片免费的| 哪个播放器可以免费观看大片| 国产淫语在线视频| 丝袜美足系列| 国产黄频视频在线观看| 日本欧美视频一区| 卡戴珊不雅视频在线播放| 午夜日本视频在线| 久久久a久久爽久久v久久| 亚洲精品久久午夜乱码| 美女大奶头黄色视频| 国产在线一区二区三区精| 国产一区二区 视频在线| 制服丝袜香蕉在线| 天天躁夜夜躁狠狠躁躁| 久久ye,这里只有精品| av.在线天堂| 18禁动态无遮挡网站| 国产精品欧美亚洲77777| 欧美日韩综合久久久久久| 亚洲成人一二三区av| 国产男女内射视频| 亚洲成人av在线免费| 成人二区视频| 国产亚洲午夜精品一区二区久久| 成人亚洲欧美一区二区av| 亚洲成人一二三区av| 免费久久久久久久精品成人欧美视频| 波野结衣二区三区在线| 久久久精品区二区三区| 日韩av免费高清视频| 老司机影院毛片| 免费看av在线观看网站| 色哟哟·www| 精品国产露脸久久av麻豆| 黄色 视频免费看| 久久久精品94久久精品| 肉色欧美久久久久久久蜜桃| 午夜精品国产一区二区电影| 伦理电影免费视频| 亚洲欧美一区二区三区黑人 | 色哟哟·www| 精品国产露脸久久av麻豆| 国产精品蜜桃在线观看| 国产亚洲最大av| 成年美女黄网站色视频大全免费| 精品99又大又爽又粗少妇毛片| 成人漫画全彩无遮挡| 亚洲欧美一区二区三区黑人 | 国产精品 欧美亚洲| 色网站视频免费| 亚洲国产成人一精品久久久| av天堂久久9| 边亲边吃奶的免费视频|