• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Metamaterial Absorbers in Terahertz Band

    2013-11-26 10:48:46QiYeWenHuaiWuZhangQingHuiYangandManManMo

    Qi-Ye Wen, Huai-Wu Zhang, Qing-Hui Yang, and Man-Man Mo

    1.Introduction

    Metamaterials (MM) are artificially constructed electromagnetic (EM) materials which have the extraordinary physical properties that the natural materials do not have.They consequently have many applications,such as negative refractive index[1], superlenses[2],cloaking[3]and thermal emitters[4].A recent example for application of metamaterial is the creation of a resonant absorber at terahertz (THz) frequencies.The MM absorbers are generally composed of a MM layer and a metal plate layer separated by a dielectric spacer.With this kind of novel structure, unity absorptivity can be realized by matching the impedance of MM absorbers to free space.Such an absorber would be of particular importance at THz frequencies where it is difficult to find naturally occurring materials with strong absorption coefficients that are also compatible with standard microfabrication techniques.MM absorbers are very attractive in real applications due to its high absorption, low density, thin thickness, and integration flexibility[1]-[6].Besides that, wide-angle, polarization insensitive and even multi-bands/broadband absorption can be achieved through properly device designing[7]-[11].All these features make MM absorbers very useful in areas such as EM detector/imager, anti-electromagnetic interference, stealth technology, phase imaging,spectroscopy, and thermal emission.

    In this paper, basic concepts and some recent progresses we made on THz MM absorbers are introduced and discussed.In Section 2 we give a simple introduction to the basic structure and the working principle of MM absorbers.A transmission line model was proposed to describe the devices and the asymmetry absorption phenomenon was explained.A dual-band MM absorber was designed and realized in Section 3, following by a demonstration of broadband THz absorbers realized in Section 4.The article closes with a final conclusion and outlook in Section 5.

    2.Basic Structure and Working Principle of Metamaterial Absorbers

    The first metamaterial based absorber was proposed by Landy et al.in the microwave band[1].It is called “a perfect metamaterials absorber” because nearly 100% absorption can be achieved theoretically.A single unit cell of the absorber consists of three layers as shown in Fig.1[1].The top layer is the electric split-ring resonator (eSRR), the middle layer is isolation layer (such as polyimide), and the bottom layer is rectangular metal strip.Due to the lithography alignment and multi-step lithography process,the preparation process of the first MM absorber is complex.Experimentally, the maximum absorptivity only reaches to 70% at 1.3 THz due to the fabrication tolerance.An improved MM absorber was proposed by H.Tao et al., with the bottom metal strips replaced by a continuous metal film[2].This improved absorber operates quite well for both TE and TM radiation over a large range of incident angles(0-50°), and the measured absorbance was further improved to 97%.Therefore, the MM absorber with a continuous metal ground plane becomes the most commonly structure in the researches.

    Fig.1.Basic structure of three layers metamaterial absorber: (a)the layer of metamaterial (eSRR), (b) the bottom metallic layer and (c) the unit structure include the dielectric layer.Figure adapted from Landy et al.[1].

    The absorption mechanism of the MM absorber is as follows.First, by changing the geometry of the SRR and the thickness of the spacer, the impedance Z(ω) of the absorber can be designed to match the impedance of free space at a specific frequency (center frequency) resulting in zero reflection.Second, electromagnetic waves can not pass through the metallic ground plane, giving rise to zero transmission too.Thus, electromagnetic waves will be completely restricted in the device and finally be consumed.In principal, the MM absorber can absorb 100% of the narrow-band electromagnetic waves.It can be used in microwave, THz, and even light wave bands by adjusting the feature size of the unit cell.

    Though more and more attention has been paid to the MM absorber, the mechanism of the near-unity absorption is still under studying.It is not clear that why the absorption is extensively enhanced after the MM structure and the wires structure being integrated into an absorber, and it is also unknown why the absorptions of MA is highly sensitive to the thickness of separated layer.More importantly, metamaterials can be usually treated as effective media.However, the effective medium theory has some problems in describing MA because the three-layer structured device does not exactly satisfy the homogeneous-effective limit, according to Caloz[12].A typical case is that the strong asymmetric absorption phenomenon cannot be fully explained by the effective medium model[13].The simulation results show dramatically different behaviors when the electromagnetic waves incident from the two opposite directions.For example, when light is incident from the front to the resonators the device acts as a perfect absorber, while when light is incident from the back to the ground plane the device behaves like a perfect mirror.Furthermore, the MA consists of only two metallic layers, thus are strongly inhomogeneous in the wave propagating direction, which is obvious in contrast to the effective medium model.

    Here we introduce a transmission line (TL) mode to analyze the mechanism of the MM absorber[14].In the TL model as shown in Fig.2, it is assumed that the transverse electromagnetic (TEM) wave propagates through free space and the substrate with intrinsic impedances Ziand Zo,respectively.There are two assumptions for constructing the TL model.One is that coupling capacitor or coupling inductor between the eSRR layer and wires layer should be ignorable, so that these two layers can be individually modeled, as demonstrated in Fig.1.Another is that the THz wave normally incidents on the absorber plane with the electrical field parallel to the split gap of the eSRR.The TL model of eSRR proposed by Azad[15]is used to describe the eSRR layer, in which the LC resonance and dipole resonance each is represented by one group of L, C, and R,respectively, and the coupling between these two resonances is specified by the parameter M.The wires layer part is mimicked by the TL model developed by Fu et al.[16],with the only resonance expressed by one group of L, C,and R.The function of isolation layer is modeled by a transmission line which contains all EM related properties of the isolation layer such as ε, μ, and thickness.It connects the eSRR part and wire part.All the parameters are needed to be optimized until the S-parameters calculated by the TL model fit the simulation results.

    Once all of the parameters in Fig.1 are determined, the S-parameters of the MA can be derived as follows.

    The ABCD matrix of eSRR structure layer, isolation layer (iso) and wires structure (wires) are

    Fig.2.Transmission line model of metamaterial absorber.

    and k is the wave vector of the TEM wave, l and Zcare the thickness and characteristic impedance of the isolation layer,respectively.

    So the ABCD matrix of the MA is

    Then the S matrix thus can be calculated as

    In the TL model of the absorber, the R1, R2, and R3represent the components for energy consumption.The energy consumed by R1, R2, R3in two exciting conditions were calculated by our TL model, as shown in Fig.3.When the EM wave is emitted from eSRR to wires structure (the positive case), nearly 90% of the incident energy is consumed by R1, and about 10% consumed by R3.These results mean that the LC resonance of eSRR is predominant in the energy absorption to the EM wave, while the contribution from dipole resonance is very small and ignorable.In the negative case (from wires structure to eSRR), the total energy consumption of the absorber is very small.It is the wire structure which provides about only 6%energy loss to the incidence wave, and R1and R2contribute very little.These results unambiguously demonstrate and explain the asymmetric phenomenon of THz absorption.It also confirm that, for the absorber discussed here, it is mainly the LC resonance of the eSRR structure contributes to the strong absorption when EM wave propagate along the positive direction.

    Abovementioned results give an insight into the basic function of each components of MM absorbers: 1) As hints by the TL model, the LC resonance of eSRR strongly affects the absorption characteristics of the absorber.It is also known that for eSRR, the inductance L is provided by its metallic loops and the capacitance C is induced by the splits of the ring[12].Thus the absorption curve of the absorber mainly depends on the framework of the eSRR.Of course, the effects of other components such as interlayer coupling and other resonance from Liand Ci(i=2, 3) are also not negligible.2) More importantly, the function of the isolation layer is to adjust the impedance of the metamaterials and enable the EM wave to enter into the device as much as possible.Therefore, the absorption is highly sensitive to the properties of the isolation layer, such as its thickness, permeability and permittivity.3) The role of wires structure is to enhance the reflection of EM wave thus benefits the trapping and absorbing of wave in the space between the two metallic layers.All these features revealed by TL model set the basic principles for the design of THz MM absorbers.

    By this TL model, the asymmetric phenomenon of THz absorption is unambiguously demonstrated and explained.The strong absorption is found to be mainly related to the LC resonance of the eSRR structure.The isolation layer in the absorber, however, is actually an impedance transformer and plays key role in producing the perfect absorption.The studies by the TL model also show that the electromagnetic wave is concentrated on some specific location in the absorber.It indicates that the trapped electromagnetic wave in the absorber can be converted into thermal energy,electric energy or any kinds of other energy depending on the functions of the spacer materials.This feature as electromagnetic wave trapper has many potential applications such as radiation detecting bolometers and thermal emitter.

    Fig.3.Spectrum of energy consumption of Ri (i=1, 2, 3) in TL model for the positive (P) and negative (N) incidence of the THz wave.

    3.Dual-Band THz MM Absorbers

    Most of the existed designs for perfect THz absorbers only have single-band response.Actually, design and fabrication of multi-absorptive metamaterials are potentially useful and attractive[9].It is also a possible step towards broadband THz absorber for microbolometers.Since our TL model suggest that the strong absorption is found to be mainly related to the LC resonance of the eSRR structure, an eSRR with dual band LC resonance are possible to construct a dual band absorber.

    The designed single unit of the absorber consists of two metallic elements: an electric-field-coupled split resonance ring structure (eSRR), and a metal plate bottom layer.The eSRR unit cell is composed of two symmetrical single-resonant metamaterials with one invaginated in another, as shown in Fig.4 (a).The two single-resonant parts have different split gaps and different inductive loops,which will induce two different LC resonances.In order to maximize the absorption of the device, both the transmission and reflection should be minimized.The resonance of the eSRR would be tuned to approximately match the impedance z(w) to free space in order to minimize the reflectance at specific frequencies.At the same time, there is no transmission through the absorber across the entire frequency range under studied due to the shielding of the bottom metal plate.The total structure is constructed on a 500 μm SI-GaAs substrate as shown in Fig.4 (b).The complex dielectric constants ε of GaAs and polymide are 12.9+0.077i and 2.5+0.2i, respectively[3].Both the metal plate and the eSRR are made of Gold with conductance of 4.09×107S/m.Utilizing the CST Microwave Studio, the structure of the absorber was optimized (simulating radiation at normal incidence with the electric field perpendicular to the split gaps) with the size parameters are listed in the caption of Fig.4 (a).The device was fabricated by sputtering of Ti(40 nm)/Au(800 nm) followed by spin coating with 10 μm polyimide.Another 200 nm Au film was sputtering deposited on the top of the polyimide film, and which was then patterned into the designed eSRR shape by reactive ion etching.The photograph of a unit cell and a portion of the fabricated absorber are shown in Fig.4 (c) and (d).The dimension of the fabricated eSRR structure is very close to the theoretically optimized value, and the size parameters are measured and listed in the caption of Fig.4 (c).

    The reflection of the absorber was measured by a THz-TDS system with an incident direction of 30 degree off the normal direction.The measured reflection as a function of frequency is displayed in Fig.5.Two reflectivity minimums around 0.45 THz and 0.92 THz are clearly observed, confirming that the dual-band absorption is realized in our as-fabricated MA.Both reflective peaks are strong with the low-frequency minimum of 0.192 and the high-frequency minimum approaching 0.366, giving rise to strong absorption of 80.8% and 63.4%, respectively.The slight red-shift of the absorption frequency from the simulation is reasonably ascribed to the broadening of metal wires or split gaps of the eSRR structure, as indicated in Fig.4.

    Fig.4.Dual-band terahertz metamaterial absorbers.(a) designed electric split ring resonator with a=60, b=120, d=4, h=55, l=28.6,t1=6, t2=4, t3=14, and t4=13, (b) perspective view of the designed absorbers, (c) a unit cell of the experimentally realized absorbers with eSRR size of a=61.8, b=119.6, d=4.4, h=54.6, l=28.2, t1=6.4,t2=4.2, t3=15.4, and t4≈13, all number denotes the size in unit of micrometers, and (d) photograph of a portion of the fabricated absorber.The period for the absorber unit is 140 μm×124 μm.

    Fig.5.Measured reflection curve of the absorber (line+symbol)and the simulated transmission curve of the eSRR (smooth line).

    4.Broadband THz MM Absorbers

    The development of dual-band THz MM absorber paves the way to a broadband THz absorber since the absorption band can be expanded by merging several closely positioned resonant peaks in the absorption spectrum.In this section, we experimentally demonstrated a THz broadband absorber using a SiO2dielectric spacer.SiO2has excellent thermal, mechanical, and dielectric properties[17].Based on an SiO2layer, a narrow-band THz absorber has been previously studied[18].But a SiO2based broadband THz absorber has never been reported.As to the broadband MM absorber derived from combining multiple absorption peaks, the thickness of the dielectric layer is essentially important to the bandwidth.It is well know that the fabrication of SiO2films is a typical CMOS process.The film thickness can be precisely controlled and the large-area uniformity can also be warranted.All these features make SiO2very suitable for a broadband THz MM absorber.

    The MM absorber is a three-layered device with the structure depicted in Fig.6.A Pt ground layer was separated from the top Al squares by a SiO2spacer.Specially, a structural unit of the absorber is composed of two mixed-size squares, as schematically illustrated in Fig.6 (c).The refractive index of SiO2is 2.0+0.025i at THz frequencies[19],[20].The conductivity of the Al and Pt is 1×107S/m and 9.43×106S/m, respectively.The periodic boundary conditions are set along the x and y axes directions, as indicated in Fig.6 (a).A plane wave vertically impacts on the front face of the structure, and as the excitation source, the electric field is polarized parallels to the x direction.Utilizing the CST Microwave Studio, the structure of the broadband absorber was optimized(simulating radiation at normal incidence) and the obtained size parameters were listed in the caption of Fig.6 (b)and (c).

    Fig.6.Schematic diagram of the broadband THz metamaterial absorber: (a) top viewm, (b) the section view of a portion of the designed absorber with h1=100 nm, h2=2 μm, h3=100 nm, (c) a simulated unit cell of the mixed-size square resonators with a=36.9 μm, b=34.2 μm, p=80 μm, (d) micrograph of a portion of the fabricated absorber, and (e) a cell structure of the fabricated absorber with a=36.6 μm, b=34 μm and p=81.1 μm.

    Such a three-layered integrated structure was fabricated using microfabrication techniques.Firstly, a 200-nm-thick Pt/Ti film was E-beam evaporated on Si to form the bottom layer.The SiO2dielectric spacer with a thickness of 2 μm was deposited on Pt using plasma enhanced chemical vapor deposition (PECVD).Then a 200-nm-thick Al film was deposited on top of the SiO2film by e-beam deposition.Ultimately, mixed-size Al square arrays were patterned by wet etching with the size parameters defined in Fig.6 (a).A micrograph of a unit cell and a portion of the fabricated absorber are shown in Fig.6 (d) and (e).The size parameters are measured and listed in the caption of Fig.6(e).However, there are still some deviations due to the fabrication tolerances.For example, both squares are slightly smaller while the period is a little larger as compared to the designed structure.

    The absorption characteristic of the sample was tested using a Fourier transform infrared spectrometer (FTIR) in a reflection geometry.The reflection coefficient measurement was taken with THz beam in reflection mode at 30°incidence angle from the normal direction, using a blank Pt coated substrate as the reference.A detailed description of this system can be found in [21].The total sample area for measurement was 1.5×1.5 cm2to prevent beam clipping.Measurements were conducted in a dry-air environment to mitigate the effects of water vapor absorption.The absorptivity was calculated byThe measured absorption as a function of the frequency is displa yed in Fig.7.Two absorption maximums around 2.58THzand2.65THz are clearly observed with absorption of 99.8% and 98.7%, respectively,between which the minimum absorptivity in the dip is still high to 91.8%.The width of the absorption top is 210 GHz if a strict criterion of 90% of the maximum absorption is defined, confirming that broadband absorption was realized in our fabricated absorber.

    Fig.7.Measured (solid curve) and simulated (dash curve)absorption spectra curves of the MM absorber.

    5.Future Development Trends of Metamaterial Absorbers

    It is a few years time since the metamaterial absorber was first proposed until now, but the research has made great progress.The future development of metamaterial absorbers will move along the following direction.

    Broadband absorber: narrowband absorber has important applications in the THz detection, but for absorbing, invisible, thermal emission and energy conversion, broadband absorbers have more useful values.Currently, the coverage of broadband absorbers based metamaterials is still relatively less, so the research of the broadband metamaterial absorbers will become a hot issue in the future.

    Frequency tunable absorber: the frequency tunable absorber can absorb different frequencies of electromagnetic waves flexibility to achieve broadband absorption.In addition, the frequency tunable absorber can control the absorption level of specific frequency flexibility,and plays a similar role as a switch or invisible window.The frequency tunable absorber will be the important development trend of metamaterial absorbers in the future.

    Absorber combined with functional materials: absorbers combined with functional materials will be another development trend of metamaterial absorbers, so a variety of different functions can be achieved.After electromagnetic wave is absorbed, it is usually transformed into heat in the middle dielectric layer.If the middle dielectric layer is replaced by other functional materials, it is possible to achieve a number of special performances.For example, the use of thermoelectric materials can transform the electromagnetic waves into electric energy in the specific area, which is an important application in the detection of electromagnetic waves.In addition, it will display many new features to combine with nonlinear materials, optical materials, piezoelectric materials, and phase change materials, etc.

    [1]N.I.Landy, S.Sajuyigbe, J.J.Mock, D.R.Smith, and W.J.Padilla, “Perfect metamaterial absorber,” Phys.Rev.Lett.,2008, doi: 10.1103/PhysRevLett.100.207402.

    [2]H.Tao, C.M.Bingham, A.C.Strikwerda, D.Pilon, D.Shrekenhamer, N.I.Landy, K.Fan, X.Zhang, W.J.Padilla,and R.D.Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys.Rev.B, 2008, doi:10.1103/PhysRevB.78.241103.

    [3]H.Tao, N.I.Landy, C.M.Bingham, X.Zhang, R.D.Averitt,and W.J.Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt.Express, 2008, doi: 10.1364/OE.16.007181.

    [4]Y.Avitzour, Y.A.Urzhumov, and G.Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys.Rev.B, 2009, doi:10.1103/PhysRevB.79.045131.

    [5]N.I.Landy, C.-M.Bingham, T.Tyler, N.Jokerst, D.R.Smith, and W.J.Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,”Phys.Rev.B, 2009, doi: 10.1103/PhysRevB.79.125104.

    [6]R.Huang, Z.-W.Li, L.B.Kong, L.Liu, and S.Matitsine,“Analysis and design of an ultra-thin metamaterial absorber,”Progress in Electromagnetic Research B, 2009, doi:10.2528/PIERB09040902.

    [7]B.Wang, T.Koschny, and C.M.Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,”Phys.Rev.B, 2009, doi: 10.1103/PhysRevB.80.033108.

    [8]Y.-Q.Ye, Y.Jin, and S.-L.He, “Omnidirectional,polarization-insensitive and broadband thin absorber in the terahertz regime,” J.Opt.Soc.Am.B, vol.27, no.3, pp.498-504, 2010.

    [9]Q.-Y.Wen, H.-W.Zhang, Y.-S.Xie, Q.-H.Yang, and Y.-L.Liu, “Dual band terahertz metamaterial absorber: design,fabrication, and characterization,” Appl.Phys.Lett., vol.95,no.24, pp.241111-241111-3, 2009.

    [10]H.Tao, C.M.Bingham, D.Pilon, K.Fan, A.C.Strikwerda,D.Shrekenhamer, W.J.Padilla, X.Zhang, and R.D.Averitt,“A dual band terahertz metamaterial absorber,” J.Phys.D:Appl.Phys., 2010, doi:10.1088/0022-3727/43/22/225102.

    [11]X.-P.Shen, T.-J.Cui, J.-M.Zhao, H.-F.Ma, W.-X.Jiang,and H.Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt.Express, vol.19, no.10, pp.9401-9407, 2011.

    [12]A.C.Caloz and T.Itoh, Electromagnetic Metamaterial:Transmission Line Theory and Microwave Applications, New York: John wiley & Sons, 2005.

    [13]Y.-X.Li, Y.-S.Xie, H.-W.Zhang, Y.-L.Liu, Q.-Y.Wen, and W.-W.Lin, “The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modelling,” J.Phys.D: Appl.Phys., 2009, doi:10.1088/0022-3727/42/9/095408.

    [14]Q.-Y.Wen, Y.-S.Xie, H.-W.Zhang, Q.-H.Yang, Y.-X.Li,and Y.-L.Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt.Express,vol.17, no.22, pp.20256-20265, 2009.

    [15]A.K.Azad, A.J.Taylor, E.Smirnova, and J.F.O'Hara,“Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl.Phys.Lett.,vol.92, no.1, pp.011119-011119-3, 2008.

    [16]L.Fu, H.Schweizer, H.Guo, N.Liu, and H.Giessen,“ Synthesis of transmission line models for metamaterial slabs at optical frequencies,” Phys.Rev.B, 2008, doi:10.1103/PhysRevB.78.115110.

    [17]D.Grbovic, N.V.Lavrik, S.Rajic, and P.G.Datskos,“Arrays of SiO2substrate-free micromechanical uncooled infrared and terahertz detectors,” J.Appl.Phys., vol.104, no.5, pp.054508-054508-7, 2008.

    [18]F.Alves, B.Kearney, D.Grbovic, N.V.Lavrik, and G.Karunasiri, “Strong terahertz absorption using SiO2/Al based metamaterial structures,” Appl.Phys.Lett., vol.100, no.11,pp.111104-111104-3, 2012.

    [19]M.K.Gunde and M.Macek, “Infrared optical constants and dielectric response functions of silicon nitride and oxynitride films,” Phys.Status Solidi A, vol.183, no.2, pp.439-449,2001.

    [20]D.Y.Smith, E.Shiles, and M.Inokuti, “The optical properties of metallic aluminum,” in Handbook of Optical Constants of Solids, E.D.Palik, Ed.San Diego: Academic Press, 1998.

    [21]C.Bolakis, D.Grbovic, N.V.Lavrik, and G.Karunasiri,“Design and characterization of terahertz-absorbing nano-Iaminates of dielectric and metal thin films,” Opt.Express, vol.18, no.14, pp.14488-14495, 2010.

    亚洲欧洲精品一区二区精品久久久| 最近最新免费中文字幕在线| 国产色视频综合| 欧美亚洲 丝袜 人妻 在线| 视频在线观看一区二区三区| 久久午夜亚洲精品久久| 在线观看免费午夜福利视频| 美女 人体艺术 gogo| 午夜久久久在线观看| 国产高清国产精品国产三级| 久久人人爽av亚洲精品天堂| 9191精品国产免费久久| 国产精品国产高清国产av | 欧美精品人与动牲交sv欧美| 国产精品偷伦视频观看了| 亚洲国产精品合色在线| 欧美性长视频在线观看| 国产精品久久久久成人av| 国产成+人综合+亚洲专区| 国产亚洲精品一区二区www | 99在线人妻在线中文字幕 | 正在播放国产对白刺激| 制服人妻中文乱码| 人人妻人人添人人爽欧美一区卜| 国产免费男女视频| 久热爱精品视频在线9| 久久婷婷成人综合色麻豆| 乱人伦中国视频| 搡老岳熟女国产| 两个人免费观看高清视频| 欧美激情 高清一区二区三区| 日韩三级视频一区二区三区| 天堂中文最新版在线下载| 亚洲aⅴ乱码一区二区在线播放 | 欧美日韩亚洲综合一区二区三区_| 国产有黄有色有爽视频| 亚洲五月婷婷丁香| aaaaa片日本免费| 欧美中文综合在线视频| 久久 成人 亚洲| 两性午夜刺激爽爽歪歪视频在线观看 | 校园春色视频在线观看| 亚洲综合色网址| 啦啦啦视频在线资源免费观看| 亚洲av片天天在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品中文字幕在线视频| 亚洲国产精品sss在线观看 | 日本五十路高清| 午夜福利一区二区在线看| 91成年电影在线观看| 夜夜爽天天搞| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久国产一区二区| 免费观看精品视频网站| 国产精品一区二区精品视频观看| 大型黄色视频在线免费观看| 国产又色又爽无遮挡免费看| 国产精品一区二区在线观看99| a级毛片在线看网站| 中文字幕人妻熟女乱码| 777米奇影视久久| 中文字幕最新亚洲高清| 亚洲一区中文字幕在线| 手机成人av网站| 身体一侧抽搐| 搡老岳熟女国产| 少妇裸体淫交视频免费看高清 | 午夜免费成人在线视频| 亚洲av美国av| 亚洲黑人精品在线| 欧美日韩一级在线毛片| 国内久久婷婷六月综合欲色啪| av电影中文网址| 老司机深夜福利视频在线观看| 久久久久久人人人人人| 免费黄频网站在线观看国产| 国产一区有黄有色的免费视频| 久久亚洲精品不卡| 最新的欧美精品一区二区| 正在播放国产对白刺激| 丰满饥渴人妻一区二区三| 久久中文看片网| 嫁个100分男人电影在线观看| 制服人妻中文乱码| 日韩欧美国产一区二区入口| 狠狠狠狠99中文字幕| 一级片'在线观看视频| 美女国产高潮福利片在线看| 黄片小视频在线播放| 亚洲五月婷婷丁香| 亚洲国产欧美网| 亚洲成人免费av在线播放| 极品教师在线免费播放| 高清av免费在线| 欧美精品亚洲一区二区| 丰满的人妻完整版| 99热国产这里只有精品6| 成人精品一区二区免费| 搡老岳熟女国产| 夜夜爽天天搞| 脱女人内裤的视频| 村上凉子中文字幕在线| 一边摸一边抽搐一进一小说 | 欧美激情极品国产一区二区三区| 精品一区二区三区四区五区乱码| 女性被躁到高潮视频| 久久精品熟女亚洲av麻豆精品| 欧美精品人与动牲交sv欧美| 免费观看精品视频网站| 老熟女久久久| 日本a在线网址| 午夜久久久在线观看| 女同久久另类99精品国产91| 国产成人精品在线电影| 校园春色视频在线观看| 飞空精品影院首页| а√天堂www在线а√下载 | 国产一区二区三区在线臀色熟女 | 国产成+人综合+亚洲专区| 久久国产精品男人的天堂亚洲| 一级片免费观看大全| 丰满人妻熟妇乱又伦精品不卡| 大香蕉久久成人网| 窝窝影院91人妻| 国产深夜福利视频在线观看| 狠狠狠狠99中文字幕| 国产精品永久免费网站| 亚洲 国产 在线| 91av网站免费观看| 国产高清国产精品国产三级| 99国产极品粉嫩在线观看| 一夜夜www| 国产精品 欧美亚洲| 国产亚洲一区二区精品| 精品国产一区二区三区久久久樱花| 99久久综合精品五月天人人| 国产无遮挡羞羞视频在线观看| 美女高潮到喷水免费观看| 99热网站在线观看| 手机成人av网站| 人妻一区二区av| 国产成人av教育| 在线十欧美十亚洲十日本专区| 精品国产美女av久久久久小说| 欧美日韩视频精品一区| 王馨瑶露胸无遮挡在线观看| 国产蜜桃级精品一区二区三区 | av天堂在线播放| 日本a在线网址| 搡老乐熟女国产| 老熟妇仑乱视频hdxx| 国产精品av久久久久免费| 亚洲avbb在线观看| 国产欧美日韩一区二区三区在线| 欧美精品人与动牲交sv欧美| 亚洲中文日韩欧美视频| 日韩 欧美 亚洲 中文字幕| 久久久久国内视频| 一级毛片高清免费大全| 日韩欧美一区二区三区在线观看 | 在线观看免费视频日本深夜| 国产有黄有色有爽视频| 夜夜躁狠狠躁天天躁| 国产在线一区二区三区精| 久久99一区二区三区| av天堂久久9| 中文字幕制服av| а√天堂www在线а√下载 | 在线看a的网站| 国内久久婷婷六月综合欲色啪| 12—13女人毛片做爰片一| 99国产综合亚洲精品| 法律面前人人平等表现在哪些方面| 激情视频va一区二区三区| 色94色欧美一区二区| 国产男女内射视频| 亚洲 国产 在线| 天天操日日干夜夜撸| 精品一区二区三区av网在线观看| 亚洲第一av免费看| 别揉我奶头~嗯~啊~动态视频| 免费在线观看视频国产中文字幕亚洲| 中文字幕人妻丝袜一区二区| 成熟少妇高潮喷水视频| 久久人人97超碰香蕉20202| 男女免费视频国产| 真人做人爱边吃奶动态| 日韩欧美三级三区| 精品久久蜜臀av无| 久久久久久久国产电影| 桃红色精品国产亚洲av| 又黄又爽又免费观看的视频| 亚洲av日韩精品久久久久久密| 亚洲精品国产一区二区精华液| 精品少妇一区二区三区视频日本电影| 久久中文字幕一级| 免费观看精品视频网站| 欧美在线黄色| 精品一区二区三区四区五区乱码| 国产99白浆流出| 大陆偷拍与自拍| 国产精品永久免费网站| 亚洲av成人不卡在线观看播放网| 成人手机av| netflix在线观看网站| 国产精品久久久人人做人人爽| 99热国产这里只有精品6| 老熟妇乱子伦视频在线观看| 日韩视频一区二区在线观看| 亚洲欧美日韩高清在线视频| 欧美黑人精品巨大| 女人精品久久久久毛片| 老司机靠b影院| 天堂中文最新版在线下载| 9色porny在线观看| 精品一区二区三卡| 精品久久久久久电影网| 999精品在线视频| 99国产精品一区二区蜜桃av | 黄色视频,在线免费观看| 午夜成年电影在线免费观看| 波多野结衣av一区二区av| 男人的好看免费观看在线视频 | 伊人久久大香线蕉亚洲五| 久久99一区二区三区| 久久青草综合色| 精品一区二区三卡| 亚洲免费av在线视频| 超碰97精品在线观看| 亚洲七黄色美女视频| 中文字幕精品免费在线观看视频| 中文字幕人妻丝袜一区二区| 免费久久久久久久精品成人欧美视频| 天天躁夜夜躁狠狠躁躁| 欧美乱妇无乱码| 岛国在线观看网站| 亚洲精品国产精品久久久不卡| 高清av免费在线| 伊人久久大香线蕉亚洲五| 久久久久国内视频| 欧美日韩精品网址| 久久精品国产亚洲av高清一级| 国产精品一区二区免费欧美| 国产精品香港三级国产av潘金莲| 操美女的视频在线观看| 亚洲专区中文字幕在线| 久久性视频一级片| 国产精品98久久久久久宅男小说| 国产伦人伦偷精品视频| 黄色毛片三级朝国网站| 高清视频免费观看一区二区| 免费久久久久久久精品成人欧美视频| 亚洲国产精品sss在线观看 | 法律面前人人平等表现在哪些方面| 欧美 日韩 精品 国产| 天天操日日干夜夜撸| netflix在线观看网站| 高清视频免费观看一区二区| 成人影院久久| 亚洲片人在线观看| 老司机午夜福利在线观看视频| 悠悠久久av| 亚洲精品自拍成人| 欧美精品亚洲一区二区| 免费女性裸体啪啪无遮挡网站| 国产精品电影一区二区三区 | 午夜免费鲁丝| 欧美午夜高清在线| 美女扒开内裤让男人捅视频| 国产真人三级小视频在线观看| 久久这里只有精品19| 国产无遮挡羞羞视频在线观看| av网站免费在线观看视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品美女久久久久99蜜臀| 久久久国产一区二区| 天天影视国产精品| 女警被强在线播放| 欧美成人午夜精品| a级毛片在线看网站| 亚洲自偷自拍图片 自拍| 啦啦啦 在线观看视频| 国产高清国产精品国产三级| 日韩欧美一区二区三区在线观看 | 免费在线观看影片大全网站| 视频在线观看一区二区三区| 国产精品免费视频内射| 国产成人精品无人区| 在线国产一区二区在线| 女人久久www免费人成看片| 制服人妻中文乱码| 国产一卡二卡三卡精品| 搡老乐熟女国产| 成年动漫av网址| 两人在一起打扑克的视频| 婷婷成人精品国产| 久久九九热精品免费| 国产精品一区二区精品视频观看| 免费人成视频x8x8入口观看| 老司机亚洲免费影院| 人人妻人人澡人人爽人人夜夜| 黑人欧美特级aaaaaa片| 丰满的人妻完整版| 亚洲精品国产色婷婷电影| 国产又爽黄色视频| 成人三级做爰电影| 午夜福利欧美成人| 成人三级做爰电影| av在线播放免费不卡| 十分钟在线观看高清视频www| 好男人电影高清在线观看| 久久性视频一级片| 国产无遮挡羞羞视频在线观看| 在线观看午夜福利视频| 女同久久另类99精品国产91| 最新的欧美精品一区二区| 精品福利观看| 一级片免费观看大全| www日本在线高清视频| 成在线人永久免费视频| netflix在线观看网站| 亚洲中文av在线| 亚洲欧美日韩高清在线视频| 国产一区二区三区综合在线观看| 黄色怎么调成土黄色| 在线免费观看的www视频| 欧美国产精品一级二级三级| 另类亚洲欧美激情| 制服人妻中文乱码| 欧美黄色片欧美黄色片| 久久久久久久久免费视频了| 男女床上黄色一级片免费看| 精品久久久久久久久久免费视频 | 成人亚洲精品一区在线观看| 国精品久久久久久国模美| 99热只有精品国产| 黑人欧美特级aaaaaa片| 精品人妻熟女毛片av久久网站| 国产高清国产精品国产三级| 精品乱码久久久久久99久播| 亚洲欧美日韩高清在线视频| 日韩三级视频一区二区三区| 日日夜夜操网爽| 日本黄色日本黄色录像| 免费一级毛片在线播放高清视频 | 久久精品熟女亚洲av麻豆精品| 成年女人毛片免费观看观看9 | 日韩大码丰满熟妇| 国产在线一区二区三区精| 国产黄色免费在线视频| 一级毛片女人18水好多| 亚洲少妇的诱惑av| 视频在线观看一区二区三区| 亚洲,欧美精品.| 欧美成狂野欧美在线观看| av网站在线播放免费| 每晚都被弄得嗷嗷叫到高潮| 黑丝袜美女国产一区| 国产精品久久电影中文字幕 | 国产成+人综合+亚洲专区| 一进一出抽搐gif免费好疼 | 精品国产一区二区三区久久久樱花| 亚洲情色 制服丝袜| 精品久久久久久,| 亚洲精品自拍成人| 亚洲va日本ⅴa欧美va伊人久久| 久久亚洲精品不卡| 精品国产一区二区久久| 精品少妇一区二区三区视频日本电影| 五月开心婷婷网| 多毛熟女@视频| 亚洲精品国产区一区二| 精品免费久久久久久久清纯 | 亚洲精品美女久久久久99蜜臀| 免费在线观看黄色视频的| 精品福利观看| 欧美日韩亚洲综合一区二区三区_| √禁漫天堂资源中文www| 国产精品综合久久久久久久免费 | 制服人妻中文乱码| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品粉嫩美女一区| 99久久国产精品久久久| av免费在线观看网站| 人人妻人人澡人人爽人人夜夜| 99热网站在线观看| 91精品国产国语对白视频| 自线自在国产av| 俄罗斯特黄特色一大片| 欧美另类亚洲清纯唯美| 999精品在线视频| 久久天躁狠狠躁夜夜2o2o| 久久久久久久久免费视频了| 大型黄色视频在线免费观看| 久久精品亚洲av国产电影网| 亚洲成人手机| 一a级毛片在线观看| 国产色视频综合| 黄色成人免费大全| 叶爱在线成人免费视频播放| 中文字幕色久视频| 久久精品亚洲熟妇少妇任你| www.999成人在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲精品在线美女| 中文字幕人妻丝袜制服| 亚洲avbb在线观看| 国产精品影院久久| 一级,二级,三级黄色视频| 黑人操中国人逼视频| 人人妻人人爽人人添夜夜欢视频| 在线av久久热| 日韩免费av在线播放| 成人手机av| av免费在线观看网站| 免费女性裸体啪啪无遮挡网站| 丁香六月欧美| 丰满的人妻完整版| 精品欧美一区二区三区在线| 国产深夜福利视频在线观看| 麻豆国产av国片精品| 亚洲欧美激情在线| 交换朋友夫妻互换小说| 一本大道久久a久久精品| 欧美激情极品国产一区二区三区| 国产片内射在线| 天天影视国产精品| 操美女的视频在线观看| 久久国产精品影院| 亚洲熟妇中文字幕五十中出 | 精品福利观看| 人人妻人人爽人人添夜夜欢视频| 美女 人体艺术 gogo| 丝袜在线中文字幕| 黄频高清免费视频| 国产亚洲精品一区二区www | 中文字幕最新亚洲高清| 国产一区有黄有色的免费视频| 欧美激情高清一区二区三区| 国产精品电影一区二区三区 | 9色porny在线观看| 两个人免费观看高清视频| 精品午夜福利视频在线观看一区| 国产亚洲精品第一综合不卡| 国产欧美日韩综合在线一区二区| 精品国产超薄肉色丝袜足j| 最新的欧美精品一区二区| 国产精品98久久久久久宅男小说| 大型av网站在线播放| 国产亚洲精品一区二区www | 757午夜福利合集在线观看| 久久中文字幕人妻熟女| 天天躁日日躁夜夜躁夜夜| 人成视频在线观看免费观看| 一区二区三区激情视频| 国产成人影院久久av| 一级a爱视频在线免费观看| 大香蕉久久网| 久久精品91无色码中文字幕| 国产免费男女视频| 俄罗斯特黄特色一大片| 男女高潮啪啪啪动态图| 成年动漫av网址| 亚洲综合色网址| 国产精品久久久av美女十八| 欧美黄色淫秽网站| 悠悠久久av| 成人黄色视频免费在线看| 999久久久精品免费观看国产| 久久久久国内视频| 亚洲专区国产一区二区| 男女之事视频高清在线观看| 午夜91福利影院| 黄色视频不卡| 亚洲 欧美一区二区三区| 亚洲成av片中文字幕在线观看| 亚洲精品国产色婷婷电影| 黄色女人牲交| 国产精品国产av在线观看| 久久人人爽av亚洲精品天堂| 99国产综合亚洲精品| 啦啦啦视频在线资源免费观看| 男女之事视频高清在线观看| 精品国产亚洲在线| 女人精品久久久久毛片| 一进一出好大好爽视频| 色播在线永久视频| 最近最新免费中文字幕在线| 天天躁夜夜躁狠狠躁躁| 免费久久久久久久精品成人欧美视频| 国产一区二区三区综合在线观看| 超碰成人久久| tocl精华| 免费少妇av软件| 黄片播放在线免费| 精品国产乱码久久久久久男人| 国产精品亚洲一级av第二区| 亚洲欧美激情综合另类| 热99久久久久精品小说推荐| 中文字幕高清在线视频| 母亲3免费完整高清在线观看| 身体一侧抽搐| 大码成人一级视频| 中文字幕人妻丝袜一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 国产高清视频在线播放一区| 亚洲第一欧美日韩一区二区三区| 亚洲第一青青草原| 久久精品国产综合久久久| 电影成人av| 999久久久国产精品视频| 久久久久国产一级毛片高清牌| 美女高潮喷水抽搐中文字幕| 搡老熟女国产l中国老女人| 一边摸一边抽搐一进一小说 | 免费av中文字幕在线| 99在线人妻在线中文字幕 | 欧美乱妇无乱码| 无遮挡黄片免费观看| 亚洲情色 制服丝袜| 丝袜美腿诱惑在线| 精品国产超薄肉色丝袜足j| 首页视频小说图片口味搜索| 深夜精品福利| 高清欧美精品videossex| 国产色视频综合| 天天躁狠狠躁夜夜躁狠狠躁| 50天的宝宝边吃奶边哭怎么回事| 少妇裸体淫交视频免费看高清 | 亚洲美女黄片视频| 黑人欧美特级aaaaaa片| 天堂中文最新版在线下载| 国产一区二区三区视频了| 老司机午夜福利在线观看视频| 亚洲久久久国产精品| 亚洲va日本ⅴa欧美va伊人久久| tocl精华| 精品视频人人做人人爽| 91精品国产国语对白视频| 日韩人妻精品一区2区三区| 精品电影一区二区在线| svipshipincom国产片| 亚洲中文av在线| 午夜激情av网站| 欧美人与性动交α欧美精品济南到| 亚洲国产精品sss在线观看 | 色婷婷久久久亚洲欧美| 精品熟女少妇八av免费久了| 国产精品香港三级国产av潘金莲| 一区二区三区国产精品乱码| 色精品久久人妻99蜜桃| 国产日韩欧美亚洲二区| 久久国产精品男人的天堂亚洲| 欧美日韩亚洲国产一区二区在线观看 | 久久亚洲真实| 热re99久久国产66热| 国产免费现黄频在线看| 亚洲av成人一区二区三| 黑丝袜美女国产一区| 美国免费a级毛片| 69av精品久久久久久| 亚洲五月色婷婷综合| 成人黄色视频免费在线看| 国产精品影院久久| 大码成人一级视频| 国产欧美日韩一区二区三| 亚洲在线自拍视频| 美女高潮到喷水免费观看| 咕卡用的链子| 免费女性裸体啪啪无遮挡网站| 国产精品国产高清国产av | 久热爱精品视频在线9| 欧美成狂野欧美在线观看| 自线自在国产av| 中文字幕色久视频| 日韩欧美一区二区三区在线观看 | 伊人久久大香线蕉亚洲五| 久久久久久亚洲精品国产蜜桃av| 国产不卡一卡二| 欧美大码av| 女性生殖器流出的白浆| 国产成+人综合+亚洲专区| 99riav亚洲国产免费| tube8黄色片| 亚洲精品av麻豆狂野| 1024视频免费在线观看| 亚洲成人免费av在线播放| 国产99久久九九免费精品| 1024视频免费在线观看| 精品久久久久久,| 国精品久久久久久国模美| 视频在线观看一区二区三区| tube8黄色片| 国产成人免费无遮挡视频| 最新的欧美精品一区二区| 搡老岳熟女国产| 久久 成人 亚洲| 欧美日韩成人在线一区二区| 国产一区在线观看成人免费| 看片在线看免费视频| 亚洲五月婷婷丁香| 久久精品熟女亚洲av麻豆精品| 午夜91福利影院| 一区在线观看完整版| 日韩欧美一区视频在线观看| 成人永久免费在线观看视频| 欧美日韩福利视频一区二区| 国产91精品成人一区二区三区| 女性被躁到高潮视频| 国产精品秋霞免费鲁丝片| 男女床上黄色一级片免费看| 国产精品99久久99久久久不卡| 免费在线观看黄色视频的| 亚洲,欧美精品.|