劉攀博,黃英
(西北工業(yè)大學(xué)理學(xué)院應(yīng)用化學(xué)系,空間應(yīng)用物理與化學(xué)教育部重點(diǎn)實驗室,陜西西安 710129)
有序介孔碳-石墨烯復(fù)合材料的制備及其對銀納米粒子吸附性能的研究
劉攀博,黃英
(西北工業(yè)大學(xué)理學(xué)院應(yīng)用化學(xué)系,空間應(yīng)用物理與化學(xué)教育部重點(diǎn)實驗室,陜西西安 710129)
以溶劑揮發(fā)誘導(dǎo)有機(jī)-有機(jī)自組裝法制備了有序介孔碳-石墨烯(OMC-RGO)復(fù)合材料。結(jié)果表明:當(dāng)焙燒溫度為800℃時,所得的OMC-RGO復(fù)合材料與OMC相比,其電導(dǎo)率從0.76S/m增加到32.5S/m,提高到42.8倍;但BET比表面積和孔容分別從670m2/g和0.40cm3/g下降到361m2/g和0.23cm3/g,降低的比率分別為46.1%和42.5%。隨后,我們以O(shè)MC-RGO為載體,通過物理吸附制備了有序介孔碳-石墨烯-銀納米粒子(OMC-RGO-Ag)復(fù)合材料。結(jié)果表明:OMC-RGO表面上Ag納米粒子的粒徑在20~40nm之間;且OMC與RGO復(fù)合后,RGO表面上的含氧官能團(tuán)有利于吸附較多的Ag納米粒子。
有序介孔碳;石墨烯;銀納米粒子;復(fù)合材料
有序介孔碳(OMC)具有較高的比表面積、較大的孔容和良好的熱穩(wěn)定性和機(jī)械穩(wěn)定性,因此在吸附、分離、催化劑載體、電池電容和半導(dǎo)體等方面具有廣泛的應(yīng)用[1~4]。對其孔徑或比表面積進(jìn)行修飾還可以賦予其特殊的用途[5~7]。通常有序介孔碳材料的制備包括硬模板法[8~10]和軟模板法[11~16]。然而,有序介孔碳有兩個缺點(diǎn):一是導(dǎo)電性較差,二是其孔壁上具有較少的官能團(tuán),很難實現(xiàn)功能化而負(fù)載金屬粒子。通常是使用濃硫酸或濃硝酸作為氧化劑來增加其表面官能團(tuán)的數(shù)量,但是其氧化過程容易使其結(jié)構(gòu)的有序性遭到破壞[17,18]。石墨烯(RGO)是一種具有二維蜂窩納米結(jié)構(gòu)、由單一碳原子緊密排列組成的碳材料[19],因此可以用來提高OMC的導(dǎo)電性[20]。且其表面上具有較多的含氧官能團(tuán)[21],與OMC復(fù)合后有利于吸附更多的金屬粒子;同時,也不會破壞OMC的有序結(jié)構(gòu)[22]。
本文以溶劑揮發(fā)誘導(dǎo)有機(jī)-有機(jī)自組裝法制備了有序介孔碳-石墨烯(OMC-RGO)復(fù)合材料,并以此為載體,通過物理吸附制備了有序介孔碳-石墨烯-銀納米粒子(OMC-RGO-Ag)復(fù)合材料。通過XRD,N2吸附脫附,SEM和TEM等測試,研究了RGO對OMC結(jié)構(gòu)、導(dǎo)電性和Ag離子吸附的影響。
1.1 制備
氧化石墨(GO)的制備:以天然鱗片石墨作為前驅(qū)體,采用Hummers法合成GO[23]。
OMC-RGO的制備:1.0g F127溶于10.0g去離子水中攪拌10min,加入2.0g酚醛樹脂前驅(qū)體(50wt%)和50mLGO溶液攪拌10min,將該溶液轉(zhuǎn)移到培養(yǎng)皿中,室溫?fù)]發(fā)12h,再將培養(yǎng)皿轉(zhuǎn)置于100℃烘箱中內(nèi)放置24h,得到薄膜材料。將該薄膜材料從培養(yǎng)皿上刮下來,放入管式爐中,在Ar保護(hù)下,于800℃下焙燒3h。
OMC的制備:依照上述過程,不加GO溶液時制備OMC。
RGO的制備:將GO直接放入管式爐中,在Ar保護(hù)下,于800℃下焙燒3h。
OMC-RGO-Ag(RGO-Ag或OMC-Ag)的制備:將10mg OMC-RGO(RGO或OMC)加入5mL Ag納米粒子溶液中超聲2h,離心干燥。
1.2 性能測試
采用日本SHI-MADZU公司型號為XRD-7000X的X射線衍射儀測試樣品結(jié)構(gòu)。測試條件:采用Cu靶Kα輻射,入射波長λ=0.154060nm,電壓40.0kV,電流40.0mA,掃描速度0.5°/min,掃描步長0.002°。采用美國micromeritics公司型號為ASPS2020的N2吸附/脫附物理吸附儀測試樣品BET比表面積、孔容和孔徑。樣品在真空條件下于200℃預(yù)先脫氣12h。BET比表面積采用Barrett-Emmet-Teller法計算得到;孔容和孔徑由等溫吸附分支采用Barrett-Joyner-Halanda(BJH)模型計算,其中孔容以相對壓力P/P0=0.975處的吸附量計算。采用Gemini LEO1530型掃描電子顯微鏡(SEM)和Hitachi H800型透射電鏡對表觀形貌進(jìn)行分析。電導(dǎo)率采用公式:R=ρ×L/A,其中R代表電導(dǎo)率,ρ代表電阻率,A代表樣品與電極的接觸面積,L代表電極之間的距離。
2.1 XRD分析
由圖1可知,OMC在2θ=25°和43°分別顯示兩個明顯的衍射峰,對應(yīng)于碳材料的(002)和(10)衍射[24]。與RGO復(fù)合后,OMC-RGO在25°衍射峰的強(qiáng)度低于OMC,說明其結(jié)構(gòu)有一定程度的降低。對于OMC-Ag,在2θ=38.2°、44.5°、64.9°和77.9°處分別出現(xiàn)較不明顯的衍射峰,對應(yīng)于Ag納米粒子(111)、(200)、(220)和(311)的衍射,說明OMC上負(fù)載少量的Ag納米粒子。根據(jù)布拉格公式2dsinθ=nλ(n=1)(式中d為晶面間距離,θ為衍射角,n為衍射級數(shù),λ為X射線波長),Ag納米粒子(111)衍射峰對應(yīng)的晶面間距離d=0.24nm。與RGO-Ag相比,OMC-Ag衍射峰的強(qiáng)度明顯低于RGO-Ag,說明RGO上負(fù)載的Ag納米粒子比OMC上負(fù)載的Ag納米粒子多,這主要是因為RGO上具有含氧官能團(tuán),有利于吸附較多的金屬粒子。而OMC-RGO-Ag衍射峰的強(qiáng)度與RGO-Ag相當(dāng),說明OMC與RGO復(fù)合后,可以提高其負(fù)載Ag納米粒子的能力。
圖1 OMC,OMC-RGO,OMC-Ag,RGO-Ag和OMC-RGO-Ag的XRD譜圖Fig.1 XRDpatternsofOMC,OMC-RGO,OMC-Ag,RGO-Ag andOMC-RGO-Ag
2.2 N2吸附/脫附分析
從圖2a可知,OMC呈現(xiàn)典型的LangmuirⅣ型吸附,在相對壓力較低的區(qū)域,吸附層的厚度隨著壓力的增加而增加,在相對壓力較高的區(qū)域出現(xiàn)明顯的滯后環(huán),表現(xiàn)為介孔材料的特征。OMC和OMC-RGO均在相對壓力為0.5~0.6的范圍內(nèi)出現(xiàn)一個由毛細(xì)冷凝現(xiàn)象引起的明顯的突躍,暗示其具有較窄的孔徑分布,這與孔徑分布的結(jié)果相同(圖2b)。
圖2 OMC和OMC-RGO的N2吸附/脫附等溫線(a)和孔徑分布(b)。Fig.2 N2adsorption/desorption isotherms(a)and the pore size distributions(b)of OMC and OMC-RGO.
根據(jù)N2吸附/脫附結(jié)果計算,OMC和OMC-RGO的孔結(jié)構(gòu)參數(shù)如表1所示。
表1 OMC和OMC-RGO的孔結(jié)構(gòu)參數(shù)。Table 1 Pore parameters of OMC和OMC-RGO
由表1可知,OMC的BET比表面積、孔容和孔徑分別為670 m2/g,0.40 cm3/g和3.2nm。與RGO復(fù)合后,OMC-RGO的BET比表面積和孔容分別為361m2/g和0.23cm3/g,相對于OMC均有所降低,降低的比率分別為46.1%和42.5%。這可能是由于RGO覆蓋在OMC表面,因而使其BET比表面積和孔容有所降低。但其孔徑相對于OMC變化不大。
2.3形貌分析
圖3 RGO(a),OMC-RGO(b),RGO-Ag(c)和OMC-RGO-Ag(d)的SEM照片;RGO-Ag(e)和OMC-RGO-Ag(f)的EDS譜圖。Fig.3 SEM images of RGO(a),OMC-RGO(b),RGO-Ag(c)and OMC-RGO-Ag(d);EDS spectra of RGO-Ag(e)and OMC-RGO-Ag(f).
由圖3a可知,高溫加熱導(dǎo)致GO中的含氧官能團(tuán)發(fā)生分解,同時產(chǎn)生剝離,生成極薄的RGO納米片層。與OMC復(fù)合后,生成的RGO均勻地鋪在OMC的表面(圖3b)。圖3c和圖3d分別為RGO、OMC-RGO和Ag納米粒子復(fù)合之后的SEM圖。從圖中可以看出,大量的Ag納米粒子均勻地覆蓋在RGO和OMC-RGO的表面,這主要是因為RGO中的含氧官能團(tuán)能夠吸附較多的Ag納米粒子。RGO-Ag(圖3e)和OMC-RGO-Ag(圖3f)的EDS譜圖顯示,其表面上所負(fù)載的金屬粒子為Ag,進(jìn)一步說明RGO-Ag和OMC-RGO-Ag復(fù)合物的形成,這與XRD所以結(jié)果一致。
圖4 RGO(a),OMC-RGO(b),RGO-Ag(c),OMC-Ag(d),OMCRGO-Ag的TEM照片;Ag的HRTEM照片(f)。Fig.4 TEM images of RGO(a),OMC-RGO(b),RGO-Ag(c),OMCAg(d),OMC-RGO-Ag(e)and HRTEM image of Ag(f).
由圖4a可知,RGO具有典型的透明褶皺形態(tài),這主要是由于其具有較大的寬高比。由圖4b可以看出,RGO覆蓋在具有二維六方結(jié)構(gòu)的OMC的表面,說明所制備的復(fù)合物為OMC-RGO。圖4b中黃色方框為RGO的HRTEM照片,從RGO的邊緣可以看出其具有多層結(jié)構(gòu)。RGO的存在對提高OMC電導(dǎo)率有很大的影響。未復(fù)合RGO前,OMC的電導(dǎo)率為0.76 S/m;與RGO復(fù)合后,形成的OMC-RGO復(fù)合物的電導(dǎo)率增加到32.5 S/m,相比OMC提高到42.8倍。焙燒后,由于RGO上仍然存在一定數(shù)量的含氧官能團(tuán),有利于吸附較多的Ag金屬粒子,這與圖4c所示的結(jié)果一致。且Ag金屬粒子的粒徑處于20~40nm之間,這比以原位化學(xué)還原法制備的Ag納米粒子具有較大的粒徑[25]。而二維六方結(jié)構(gòu)OMC上具有較少的官能團(tuán),不利于Ag金屬粒子的吸附,因此形成的OMC-Ag上具有較少的Ag金屬粒子(圖4d)。當(dāng)OMC與RGO復(fù)合后,RGO的存在有利于吸附更多的Ag金屬粒子(圖4e),這與XRD所得的結(jié)果一致。由圖4f可以看出,形成的Ag納米粒子的晶格間距為0.24nm,對應(yīng)于Ag(111)晶面間距,這與XRD所計算的結(jié)果一致。
以溶劑揮發(fā)誘導(dǎo)有機(jī)-有機(jī)自組裝法制備了有序介孔碳-石墨烯(OMC-RGO)復(fù)合材料,其電導(dǎo)率相對于OMC提高到42.8倍,但BET比表面積和孔容相對于OMC分別降低了46.1%和42.5%。以所制備的OMC-RGO為載體,通過物理吸附制備了OMC-RGO-Ag復(fù)合材料,其Ag金屬粒子的粒徑在20~40nm之間,且RGO的存在有利于吸附較多的Ag金屬粒子。
[1]LEE J,KIM J,HYEON T.Recent Progress in the Synthesis of Porous Carbon Materials[J].Adv.Mater,2006,18(16):2073~2094.
[2]WAN Y,WANG H Y,ZHAO Q F,et al.Ordered Mesoporous Pd/ Silica Carbon as a Highly Active Heterogeneous Catalyst for Coupling Reaction of Chlorobenzene in Aqueous Media[J].J.Am.Chem.Soc,2009,131(12):4541~4550.
[3]ZHUANG X,WAN Y,FENG C M,et al.Highly Efficient Adsorption of Bulky Dye Molecules in Wastewater on Ordered Mesoporous Carbons[J].Chem.Mater,2009,21(4):706~716.
[4]LIANG C,LI Z,DAI S.Mesoporous Carbon Materials:Synthesis and Modification[J].Angew.Chem.Int.Ed,2008,47(20):3696~3717.
[5]SHIN Y S,FRYXELL G E,UM W,et al.Sulfur-Functionalized Mesoporous Carbon[J].Ad.Funct.Mater,2007,17(15):2897~2901.
[6]WANG X Q,JIANG D E,DAI S.Surface Modification of Ordered Mesoporous Carbons via 1,3-Dipolar Cycloaddition of A-zomethine Ylides[J].Chem.Mater,2008,20(15):4800~4802.
[7]STEIN A,WANG Z Y,FIERKE M A.Functionalization of Porous Carbon Materials with Designed Pore Architecture[J].Adv.Mater, 2009,21(3):265~293.
[8]LIU N N,YIN L W,WANG C X,et al.Adjusting the texture and nitrogen content of ordered mesoporous nitrogen-doped carbon materials prepared using SBA-15 silica as a template[J].Carbon,2010,48(12):3579~3591.
[9]KRUK M,DUFOUR B,CELER E B,et al.Adsorption and Structural Properties of Ordered Mesoporous Carbons Synthesized by Using Various Carbon Precursors and Ordered Siliceous P6mm and Ia3d Mesostructures as Templates[J].J.Phys.Chem.B, 2005,109(49):23263~23268.
[10]FAN J,YU C Z,LEI J,et al.Low-Temperature Strategy to Synthesize Highly Ordered Mesoporous Silicas with Very Large Pores[J].J.Am.Chem.Soc,2005,127(31):10794~10795.
[11]JIN J,NISHIYAMA N,EGASHIRA Y,et al.Pore structure and pore size controls of ordered mesoporous carbons prepared from resorcinol/formaldehyde/triblock polymers[J].Microporous and Mesoporous Materials,2009,118(1~3):218~223.
[12]SIMANJUNTAK F H,JIN J,NISHIYAMA N,et al.Ordered mesoporous carbon films prepared from 1,5-dihydroxynaphthalene/ triblock copolymer composites[J].Carbon,2009,47(10):2531~2533.
[13]TANAKA S,KATAYAMA Y,TATE M P,et al.Fabrication of continuous mesoporous carbon films with face-centered orthorhombic symmetry through a soft templating pathway[J].J.Mater.Chem,2007,17(34):3639~3645.
[14]ZHAO D Y,MENG Y,GU D,et al.A Family of Highly Ordered Mesoporous Polymer Resin and Carbon Structures from Organic-Organic Self-Assembly[J].Chem.Mater,2006,18(18): 4447~4464.
[15]ZHAO D Y,ZHANG F Q,MENG Y,et al.An Aqueous Cooperative Assembly Route To Synthesize Ordered Mesoporous Carbons with Controlled Structures and Morphology[J].Chem.Mater,2006,18(22):5279~5288.
[16]WANG X Q,LIANG C D,DAI S.Facile Synthesis of Ordered Mesoporous Carbons with High Thermal Stability by Self-Assembly of Resorcinol Formaldehyde and Block Copolymers under Highly Acidic Conditions[J].Langmuir,2008,24(14):7500~7505.
[17]RYOO R,JOO S H,JUN S,et al.Ordered mesoporous carbon molecular sieves by templating synthesis:the structural varieties[J].Stud.Surf.Sci.Catal,2001,135:1121~1128.
[18]LU A H,LI W C,MURATOVA N,et al.Evidence for C-C bond cleavage by H2O2in a mesoporous CMK-5 type carbon at room temperature[J].Chem.Commun,2005,47:5184~5186.
[19]NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric Field Effect in Atomically Thin Carbon Films[J].Science, 2004,306(22):666~669.
[20]WANG L,SUN L,TIAN C G,et al.A novel soft template strategy to fabricate mesoporous carbon/graphene composites as highperformance supercapacitor electrodes[J].RSC Advances,2012, 2:8359~8367.
[21]KUILA T,BOSE S,HONG C E,et al.Preparation of water-dispersible graphene by facile surface modification of graphite oxide[J].Nanotechnology,2011,22:1033~1037.
[22]SUN X,HE J P,TANG J,et al.Structural and electrochemical characterizationoforderedmesoporouscarbon-reduced graphene oxide nanocomposites[J].J.Mater.Chem,2012,22: 10900~10910.
[23]HUMMERS W S AND OFFEMAN R E.Preparation of Graphitic Oxide[J].J.Am.Chem.Soc,1958,80(6):1339~1339.
[24]Yang H F,Yan Y,Liu Y et al.A Simple Melt Impregnation Method to Synthesize Ordered Mesoporous Carbon and Carbon Nanofiber Bundles with Graphitized Structure from Pitches[J].J.Phys.Chem.B,2004,108(45):17320~17328.
[25]Liu S,Tian J Q,Wang L,et al.A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizingagentanditssubsequentdecorationwithAg nanoparticles for enzymeless hydrogen peroxide detection[J].Carbon,2011,49(10):3158~3164.
Preparation of Ordered Mesoporous Carbon-Reduced Graphene Oxide Composites and the Research on Adsorption of Ag Nanoparticles
LIU Pan-bo and HUANG Ying
(Key Laboratory of Space Applied Physics and Chemistry,Ministry of Education,Northwestern Polytechnical University,Xi'an 710129,China)
The ordered mesoporous carbon-reduced graphene oxide(OMC-RGO)composites were prepared through organic-organic selfassembly method.The results showed that the conductivity of OMC-RGO increased from 0.76S/m to 32.5S/m,which was about 23-fold in comparison with OMC,but the BET surface area and pore volume of OMC-RGO(361m2/g,0.23cm3/g)were lower than OMC(670m2/g,0.40cm3/g)by calcination at 800℃.Then the OMC-RGO-Ag nanocomposites were prepared by directly adsorption of Ag nanoparticles with using OMC-RGO as matrix,the results showed that the average diameter of Ag on the surface of RGO-OMC was between 20 and 40 nm,the presence of oxygen-containing groups on the surface of RGO was favorable to adsorb more Ag nanoparticles.
Ordered mesoporous carbon;reduced graphene oxide;Ag nanoparticles;composites
TQ 322.99
A
1001-0017(2013)02-0018-04
2012-12-20
劉攀博(1986-),男,陜西西安人,博士,主要從事石墨烯的研究。