• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Trivariate Polynomial Natural Spline for 3D Scattered Data Hermit Interpolation?

    2012-12-27 07:05:58XUYINGXIANGGUANTAIANDXUWEIZHI

    XU YING-XIANG,GUAN L-TAIAND XU WEI-ZHI

    (1.Department of Economics and Trade,Xinhua College of Sun Yat-sen University,

    Guangzhou,510275)

    (2.Department of Scienti fi c Computation and Computer Application,Sun Yat-sen University, Guangzhou,510275)

    Trivariate Polynomial Natural Spline for 3D Scattered Data Hermit Interpolation?

    XU YING-XIANG1,2,GUAN L-TAI2AND XU WEI-ZHI2

    (1.Department of Economics and Trade,Xinhua College of Sun Yat-sen University,

    Guangzhou,510275)

    (2.Department of Scienti fi c Computation and Computer Application,Sun Yat-sen University, Guangzhou,510275)

    Consider a kind of Hermit interpolation for scattered data of 3D by trivariate polynomial natural spline,such that the objective energy functional(with natural boundary conditions)is minimal.By the spline function methods in Hilbert space and variational theory of splines,the characters of the interpolation solution and how to construct it are studied.One can easily find that the interpolation solution is a trivariate polynomial natural spline.Its expression is simple and the coefficients can be decided by a linear system.Some numerical examples are presented to demonstrate our methods.

    scattered data,Hermit interpolation,natural spline

    1 Introduction

    Scattered data fi tting is used widely in many fields such as data compressing,automobile shape designing,ship lofting,aerofoil and airframe designing,fashion designing,geologic oreexploring,medical image processing and so on.So it is one of the most important problems (see[1–4]).Since 1960s,many researchers have been paying more attention to scattered data fi tting for curves and surfaces and have presented different methods.Moreover,point cloud data fi tting of 3D have been studied deeply and widely in recent years(see[5–7]).

    By the tensor product method of curves,the problem of scattered data interpolation can be solved when scattered points are located on some grid regularly.But generally,scattered data,which is obtained from sampling survey,is not regular and the tensor product methodof curves cannot be used.So non-tensor product methods need to be constructed for solving scattered data interpolation problems.Now,there are many different non-tensor product approaches for scattered data interpolation,such as natural neighbor methods,Shepard methods,Kriging methods,level B-spline methods,thin plane spline methods,radial basis function methods and so on(see[8]).Till now,many researchers still pay attention to the problem of scattered data fi tting,and some new methods have been given.Lai[9]and Wu[10]have done some works to sum up this methods in their literature.But unlike unvariate B-spline of degree three,which has a series good properties and can be used to solve unvariate scattered data interpolation perfectly,the solutions of the problem for large scattered data fi tting and multivariate interpolation are still not perfect.

    In 1972,Laurent[11]summed up unvariate polynomial natural spline interpolation for scattered data and proposed variational theory of spline in Hilbert spaces in 1D cases.Since 1980s,Liet al.[12]have studied in this fields.They tried to generalize the methods,which are used to solve unvariate scattered data interpolation by polynomial natural splines,to bivariate cases by variational theory of splines in Hilbert spaces.They provided bivariate polynomial natural splines for scattered data and studied optimal multivariate interpolation for scattered data problem with continuous boundary conditions and discrete boundary conditions on rectangle domain in general blending spline space.Chui and Guan[13]generalized the results of bivariate to general multivariate completely.Guan[14]also studied local supported basis which is similar to B-spline basis.In 2003,the computing methods for the properties of the local supported basis and interpolating natural spline were published in [15].However,since its objective functional is expressed with a series integral terms(see [16]),it is so complicated that cannot be used perfectly and the interpolation results are impacted by the number of interpolatory points on the boundary of the domain.In 2001, Bezhaev and Vasilenko[17]summed up the variational theory of spline in Hilbert spaces and their applications for scattered data fi tting in multi-dimensional cases,but the solutions are not explicit in most cases.Recently,Guanet al.[18]have improved the methods and presented a new kind of bi-cubic interpolating natural spline for 2D scattered data.Its objective functional is very simple,has no discrete boundary conditions and can be used perfectly. But this method is a simple interpolation,in other words,interpolating some functions only use their values on scattered points.

    In 3D animation,medical image precessing and some other fields,3D scattered data interpolation is used usually.So it is important to solve the interpolation problem for 3D scattered data.In order to make the interpolation function become smooth enough,for example,let the interpolation function belong to a C1(?)space,we need Hermit interpolation sometimes.But for scattered data Hermit interpolation,its construction is more difficult usually.

    In this paper,to deal with Hermit interpolation for 3D scattered data,a kind of trivariate polynomial natural splines method is presented.The interpolation solution σ is

    The remainder of this paper is organized as follows:In Section 2,we de fi ne trivariate polynomial natural spline Hermit interpolation for 3D scattered data.In Section 3,we discuss the existence,uniqueness and characterization of the interpolation problem.Then, how to construct the solution are considered in Section 4.In Section 5,we provide some numerical examples.Finally,we give some conclusions in Section 6.

    2 Trivariate Natural Spline Hermit Interpolation

    For a given 3D scattered data set{(xi,yi,zi)|i=1,2,···,N},suppose that the parallelepiped domain is?=[a1,b1]×[a2,b2]×[a3,b3].For given positive integers p1,p2and p3,let X=(?)be a Sobolev space with the standard embedding conditionto the space C(?),where p=p1+p2+p3.For simplicity,we denote dxdydz by dx in the following.

    Let Y=L2(?).T:X→Y is a linear operator from X to Y,which is de fi ned as

    with the natural boundary condition as follows:

    where ik=0,1,···,pk?1,k=1,2,3.Again let Z=Rrbe the r dimensional Euclidean space,A:X→Z be a linear continuous operator satisfying

    Problem PFind σ(x,y,z)∈X,such that

    and every cijkis a real number,then it is obvious thatusatis fies the boundary condition (2.2)and Tu=0,so u∈N(T).

    On the contrary,if u∈N(T)and satis fies the boundary condition(2.2),then fromit follows that there is

    3 Characterization,Existence and Uniqueness

    Let N(A)={u|Au=0,u∈X}be the null space of the operatorA.For given positive integers p1,p2,p3and all u∈X,denote

    Then we have the following characterization theorem.

    Theorem 3.1(Characterization Theorem) σ∈Xis a trivariate Hermit interpolating natural spline or the solution of the ProblemPif and only if

    with u∈X and Au=z.

    First,by the necessary conditions of functional minimum,if the functional J(σ+εu)get its minimum at σ,then its variation δJ=0 at σ.That is,

    We callSthe trivariate Hermit natural spline space.

    For a given z,let Az={u|Au=z,u∈X}be the collection of all functions which satis fies interpolation condition in X and assume that Az?.Then we have

    Theorem 3.2Suppose thatσ(x,y,z)is the solution of ProblemP,then for alls(x,y,z)∈Sandu(x,y,z)∈Az,one has

    Proof.According to Theorem 3.2,it is obvious.

    Corollary 3.3If the ProblemPonly has the zero solution in the spacePhp1,p2,p3iwhen the interpolating conditions are homogeneous,then the solution of the ProblemPis unique. Proof.Suppose that the Problem P have two solutions σ and?σ.Substituting σ for u andfor s in Theorem 3.2,we get immediately

    is closed in Y(see[17]).Moreover,by Theorem 2.1,the null space N(T)=Php1,p2,p3i of T is of finite dimension.From all above we know that the subspace

    with the natural boundary conditions(2.2)is closed in Y(see[17]).LetΘYbe the null vector of Y.Obviously,it belongs to TN(A).If we fi x an element u?∈Az,then it is easy to know that

    Hence,TAzis closed.For the Problem P,we can consider it as a variation problem which minimizes the distance betweenΘYand TAz.Since TAzis closed,the solution of the variation problem or the Problem P exists.In other words,trivariate Hermit interpolating natural spline σ(x,y,z)does always exist.

    4 Construction

    Denote by N(A)⊥the orthogonal complement of N(A)in X.Using the same methods as in [11],the following Lemma 4.1 can be proved easily.

    Lemma 4.1LetA?be the conjugate operator ofA,andR(A?)the rang ofA?.ThenR(A?)is anrdimensional space;moreover,N(A)⊥is also anrdimensional space.

    This completes the proof.

    We design x=x1,y=x2,z=x3,xi=x1i,yi=x2i,zi=x3i,i=1,···,N.Then we have the following theorem.

    Theorem 4.1(Construction Theorem)Trivariate Hermit interpolating natural splineσ(x,y,z)for scattered data of3Dhas explicit and compact expression as follows:

    where j is any nonnegative integer.Then,doing partial integration,from BTD=0 in the proof of Theorem 4.1,we can get

    Theorem 4.3The matrix of the linear system(4.5)of simple trivariate natural spline interpolation for scattered data of3D is symmetry.

    Proof.Obviously,it suffices to prove that the matrix Q is symmetry.To do this,let

    whereμk,αk=0,1,···,mk,mk6 pk?1,k=1,2,3,i=1,2,···,N,j=1,2,···,N.

    Without loss of generality,assume that xki>xkj.Then

    Hence,the elements of the matrix F satisfy

    which means that F is a symmetry matrix.

    Theorem 4.4IfBTD=0(D0),then the coefficient matrix of the linear system(4.5)is positive semi-de finite.

    Then take σ=u=η in Theorem 4.2.By a simple computation,there is

    By hTη,TηiY>0,we know DTFD>0.Thus from the arbitrariness of D and C,it is easy to know that the coefficient matrix J is positive semi-de finite.This completes the proof.

    5 Numeral Examples

    Example 5.1Take

    and?=[0.5,4]×[0.5,4]×[0.5,4].Interpolatory points(scattered data),which are produced by random functions,belong to[1.5,3]×[1.5,3]×[1.5,3].Using h4,4,6i order Hermit natural spline interpolation function to fi t the functionuin simple case.We present the cases for 500 and 3000 scattered data points as z=2.6.The interpolatory results are listed in Table 5.1. The order of Figures 5.1 and 5.2 is scattered data,interpolatory surface and error surface.

    Table 5.1 The error for z=2.6

    Fig.5.1 500 scattered data

    Fig.5.2 3000 scattered data

    Example 5.2Take

    and?=[?1,2]×[?1,2]×[?1,1.5].Interpolatory points(scattered data),which are produced by random functions,belong to[0,1]×[0,1]×[0,0.5].Using h4,4,4i order natural spline interpolation function σ to fi t the functionuwith Hermit interpolating conditions:

    We present the cases for 300,500,1000,2000,3000 and 4000 scattered data points as z=0.3.The results are listed in Table 5.2.The order of Figures 5.3–5.8 is scattered data, interpolatory surface and error surface.

    Table 5.2 The error for z=0.3

    Fig.5.3 300 scattered data

    Fig.5.4 500 scattered data

    Fig.5.5 1000 scattered data

    Fig.5.6 2000 scattered data

    Fig.5.7 3000 scattered data

    Fig.5.8 4000 scattered data

    6 Conclusions

    In this paper,we construct a new kind of trivariate Hermit natural spline to deal with the scattered data fi tting of 3D.We also study the existence,uniqueness,characterization of the solution.As we can see from the process of its construction,the new trivariate Hermit natural spline possesses the following favorite properties:

    (a)Need not constructing triangulation or any other multivariate simplex meshes,without using the reproducing kernel in the Hilbert spaces,it can be constructed by a simple way and has compact and explicit expression;

    (b)It is a piecewise polynomial and is a polynomial of 2pi?1 degree with respect to the variate xi,i=1,2,3.Furthermore,it can be constructed as a polynomial of different degree with respect to different variates,for example,we can do it as a polynomial of one degree for x,a polynomial of three degree for y and a polynomial of fi ve degree for z;

    (c)It is not a tensor product by un-variate polynomial.

    If we regard the variable z as time parameter t,then the tri-cubic natural spline can be showed by the way of 3D animation.But in this paper,we cannot do this,so we present the images of functions of two variables which come from fi xing some z in the numerical examples.From results in the numerical examples,we can find that the maximal error is mainly distributed on the boundary of the domain.

    [1]Tang Z S.Visualization of 3D Data Sets(in Chinese).Beijing:Tsinghua Univ.Press,1999.

    [2]Amidror I.Scattered data interpolation methods for electronic imaging systems:A survey.J. Electron.Imaging,2002,11(2):157–176.

    [3]Lai M J,Schumaker L L.Spline Functions Over Triangulations.London:Cambridge Univ. Press,2007.

    [4]Baraniuk R,Cohen A,Wagner R.Approximation and compression of scattered data by meshless multiscale decompositions.Appl.Comput.Harmon.Anal.,2008,25:133–147.

    [5]Lai M J.Multivarariate Splines for Data Fitting and Approximation.In:Neamtu M,Schumaker L L.Approximation Theory XII:San Antonio.Brentwood:Nashboro Press,2008.

    [6]Kersey S,Lai M J.Convergence of local variational spline interpolation.J.Math.Anal.Appl., 2008,341:398–415.

    [7]Zhou T H,Han D F,Lai M J.Energy minimization method for scattered data hermit interpolation.Appl.Numer.Math.,2008,58:646–659.

    [8]Johnsona M J,Shen Z,Xu Y.Scattered data reconstruction by regularization in B-spline and associated wavelet spaces,J.Approx.Theory,2009,159:197–223.

    [9]Chen G,Lai M J.Wavelets and Spline.Brentwood:Nashboro Press,2006.

    [10]Wu Z M.Models,Methods and Theories for Scattered Data Fitting(in Chinese).Beijing: Science Press,2007.

    [11]Laurent P J.Approximation et Optimization.Paris:Hermann,1972.

    [12]Li Y S,Guan L T.Bivariate polynomial natural spline interpolation to scattered data.J. Comput.Math.,1990,8(2):135–146.

    [13]Chui C K,Guan L T.Multivariate Polynomial Natural Spline for Interpolation of Scattered Data and Other Applications.In:Conte A,et al.Workship on Comurtational Geometry.World Scienti fi c,1993:77–98.

    [14]Guan L T.A Local Basis for Bivariate Polynomial Natural Splines of Scattered Data. Guangzhou International Symposium of Computational Mathematics,Guangzhou,1997:17–24.

    [15]Guan L T.Bivariate polynomial natural spline interpolation algorithms with local basis for scattered data.J.Comput.Anal.Appl.,2003,2(1):77–101.

    [16]Guan L T,Liu B.Surface design by natural splines over re fi ned grid points.J.Comput.Appl. Math.,2004,163(1):107–115.

    [17]Bezhaev A Y,Vasilenko V A.Variational Theory of Splines.New York:Kluwer Academic/Plenum Publishers,2001.

    [18]Guan L T,Xu W Z,Zhu Q Y.Interpolation for space scattered data by bicubic polynomial natural splines.Acta Sci.Natur.Univ.Sunyatseni,2008,47(5):1–4.

    [19]Xu Y Y,Guan L T,Xu W Z.Trivariate odd degree polynomial natural spline interpolation for scattered data,Math.Numer.Sinica.,2011,33(1):37–47.

    Communicated by Ma Fu-ming

    41A15,65D07,65D17

    A

    1674-5647(2012)02-0159-14

    date:Jan.19,2010.

    Ph.D.Programs Foundation(200805581022)of Ministry of Education of China.

    久久精品亚洲精品国产色婷小说| 一夜夜www| 成人av在线播放网站| 日韩欧美国产在线观看| 一级黄色大片毛片| 亚洲国产精品sss在线观看| 亚洲精品色激情综合| 91久久精品国产一区二区成人 | 国产亚洲av嫩草精品影院| 色综合欧美亚洲国产小说| 亚洲国产欧美网| 午夜福利在线观看免费完整高清在 | 99久久99久久久精品蜜桃| 亚洲一区二区三区色噜噜| 一进一出好大好爽视频| 十八禁人妻一区二区| www.精华液| 99国产精品一区二区三区| 午夜福利在线在线| 国产精品爽爽va在线观看网站| 麻豆国产av国片精品| 中文字幕最新亚洲高清| 欧美不卡视频在线免费观看| 久久久国产欧美日韩av| 日本免费a在线| 免费在线观看亚洲国产| 老司机深夜福利视频在线观看| 日韩精品青青久久久久久| 变态另类丝袜制服| 国产麻豆成人av免费视频| 啦啦啦观看免费观看视频高清| 亚洲中文字幕日韩| 国产欧美日韩一区二区三| a级毛片在线看网站| 精品久久久久久成人av| 久久国产精品影院| 亚洲av美国av| tocl精华| 真人做人爱边吃奶动态| 午夜福利18| a级毛片a级免费在线| 亚洲国产色片| 欧美高清成人免费视频www| 国内少妇人妻偷人精品xxx网站 | 日韩国内少妇激情av| 色在线成人网| 欧美激情在线99| 国产v大片淫在线免费观看| 欧美乱色亚洲激情| av欧美777| 久久久久久久精品吃奶| 亚洲欧洲精品一区二区精品久久久| 变态另类成人亚洲欧美熟女| 亚洲美女视频黄频| 禁无遮挡网站| 精品久久久久久久人妻蜜臀av| 欧美一区二区精品小视频在线| www.999成人在线观看| 嫁个100分男人电影在线观看| 精品久久久久久久久久久久久| 国产精品1区2区在线观看.| 日本 av在线| 成人午夜高清在线视频| 亚洲第一电影网av| 日本黄大片高清| 五月玫瑰六月丁香| 三级毛片av免费| 人人妻人人看人人澡| 男人舔奶头视频| 九九热线精品视视频播放| 一进一出抽搐动态| 一本综合久久免费| 欧美av亚洲av综合av国产av| 国产精品免费一区二区三区在线| 性色avwww在线观看| 99久久成人亚洲精品观看| 在线a可以看的网站| 少妇人妻一区二区三区视频| 国产成人精品久久二区二区91| 国产精品久久电影中文字幕| 日本黄色视频三级网站网址| 久久香蕉国产精品| 在线观看免费午夜福利视频| 特级一级黄色大片| 国产蜜桃级精品一区二区三区| 中国美女看黄片| 国产综合懂色| 日韩欧美 国产精品| 国产三级黄色录像| 日本黄色片子视频| h日本视频在线播放| 久久精品aⅴ一区二区三区四区| 亚洲五月天丁香| 午夜久久久久精精品| 成人特级黄色片久久久久久久| 亚洲,欧美精品.| 香蕉国产在线看| 窝窝影院91人妻| 97碰自拍视频| 男女之事视频高清在线观看| 午夜久久久久精精品| 欧美极品一区二区三区四区| 手机成人av网站| 九九久久精品国产亚洲av麻豆 | 欧美精品啪啪一区二区三区| 国产精品一及| 精品无人区乱码1区二区| 国产伦精品一区二区三区四那| 麻豆成人av在线观看| 成人三级黄色视频| 国产精品日韩av在线免费观看| 亚洲精品久久国产高清桃花| 亚洲av中文字字幕乱码综合| 此物有八面人人有两片| 99国产精品一区二区蜜桃av| 天堂影院成人在线观看| 大型黄色视频在线免费观看| 69av精品久久久久久| 精品99又大又爽又粗少妇毛片 | 99精品久久久久人妻精品| 成人精品一区二区免费| 五月伊人婷婷丁香| 欧美乱妇无乱码| 成人欧美大片| 国产成人系列免费观看| 嫁个100分男人电影在线观看| 精品国内亚洲2022精品成人| 夜夜看夜夜爽夜夜摸| 热99在线观看视频| 国产精品美女特级片免费视频播放器 | 免费av毛片视频| 亚洲色图 男人天堂 中文字幕| 一区二区三区国产精品乱码| 久久精品夜夜夜夜夜久久蜜豆| a在线观看视频网站| 成人欧美大片| 亚洲片人在线观看| 可以在线观看的亚洲视频| 韩国av一区二区三区四区| 午夜福利欧美成人| tocl精华| 欧美日韩瑟瑟在线播放| 变态另类丝袜制服| 精品久久久久久成人av| 亚洲中文字幕一区二区三区有码在线看 | 亚洲第一电影网av| 97碰自拍视频| 69av精品久久久久久| 久久热在线av| 在线视频色国产色| 欧美色视频一区免费| 亚洲av成人一区二区三| 久久久成人免费电影| 嫁个100分男人电影在线观看| 国产精品野战在线观看| 国产精品av视频在线免费观看| 男插女下体视频免费在线播放| 亚洲av中文字字幕乱码综合| 亚洲美女视频黄频| 午夜激情福利司机影院| 九九在线视频观看精品| 亚洲国产欧美人成| 99久久综合精品五月天人人| 亚洲中文字幕日韩| 一个人免费在线观看电影 | 国产精品日韩av在线免费观看| 国产成人欧美在线观看| 黄色 视频免费看| 香蕉丝袜av| 国产高清videossex| 男人舔女人的私密视频| 国产成人精品久久二区二区91| 国产高清三级在线| 亚洲欧美日韩无卡精品| 高清毛片免费观看视频网站| 国产午夜精品论理片| 国产蜜桃级精品一区二区三区| 别揉我奶头~嗯~啊~动态视频| 国产免费男女视频| 九色成人免费人妻av| 免费看日本二区| 亚洲中文字幕日韩| 亚洲七黄色美女视频| 最近最新中文字幕大全电影3| 好男人电影高清在线观看| 99国产精品一区二区蜜桃av| 人人妻人人看人人澡| 最好的美女福利视频网| 国产精品久久久av美女十八| 在线观看66精品国产| 亚洲美女黄片视频| 亚洲av成人av| 国产成人影院久久av| 国产激情久久老熟女| 天天一区二区日本电影三级| 午夜免费成人在线视频| 久久久久久久午夜电影| 欧美色视频一区免费| 99热这里只有是精品50| 国产视频一区二区在线看| 色综合亚洲欧美另类图片| а√天堂www在线а√下载| 国产97色在线日韩免费| 99久久99久久久精品蜜桃| 日韩欧美国产一区二区入口| 淫秽高清视频在线观看| 很黄的视频免费| 亚洲av中文字字幕乱码综合| 欧美午夜高清在线| 91麻豆av在线| 波多野结衣高清无吗| 免费人成视频x8x8入口观看| 精品久久久久久久人妻蜜臀av| 国产精品香港三级国产av潘金莲| 国产视频内射| 国产高清视频在线播放一区| 嫩草影院入口| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av日韩精品久久久久久密| 国产成人啪精品午夜网站| 好男人电影高清在线观看| 国产精品 国内视频| 真人做人爱边吃奶动态| 国产精品一区二区三区四区久久| 日本在线视频免费播放| 国产精品久久久av美女十八| 1024手机看黄色片| 国产亚洲av高清不卡| 俄罗斯特黄特色一大片| 国产1区2区3区精品| 久久婷婷人人爽人人干人人爱| x7x7x7水蜜桃| 999精品在线视频| 两个人视频免费观看高清| 成人一区二区视频在线观看| 国产精品香港三级国产av潘金莲| 国产成人aa在线观看| 国产精品1区2区在线观看.| 国产精品爽爽va在线观看网站| 午夜久久久久精精品| 亚洲乱码一区二区免费版| 久久午夜亚洲精品久久| 日本成人三级电影网站| 日韩av在线大香蕉| 亚洲无线观看免费| 久久精品综合一区二区三区| 人妻丰满熟妇av一区二区三区| 在线观看一区二区三区| 欧美丝袜亚洲另类 | 日日干狠狠操夜夜爽| 亚洲在线观看片| 一级a爱片免费观看的视频| 欧美色视频一区免费| 精品福利观看| av在线天堂中文字幕| av黄色大香蕉| 亚洲美女视频黄频| 亚洲第一欧美日韩一区二区三区| 最好的美女福利视频网| bbb黄色大片| 日韩中文字幕欧美一区二区| 亚洲五月天丁香| 欧美日韩国产亚洲二区| or卡值多少钱| 日日夜夜操网爽| 在线永久观看黄色视频| 人妻久久中文字幕网| 欧美又色又爽又黄视频| 成年人黄色毛片网站| 老熟妇乱子伦视频在线观看| 国产精品精品国产色婷婷| 精品国产乱子伦一区二区三区| av欧美777| 色视频www国产| 国产高清视频在线播放一区| 精品欧美国产一区二区三| 网址你懂的国产日韩在线| 极品教师在线免费播放| 在线国产一区二区在线| 欧美日韩中文字幕国产精品一区二区三区| 怎么达到女性高潮| 99精品欧美一区二区三区四区| 法律面前人人平等表现在哪些方面| 国产三级中文精品| 国产精品美女特级片免费视频播放器 | 嫩草影院精品99| 人妻丰满熟妇av一区二区三区| 国产蜜桃级精品一区二区三区| 久久精品国产99精品国产亚洲性色| 18禁观看日本| 日本一二三区视频观看| 精品不卡国产一区二区三区| 色精品久久人妻99蜜桃| 网址你懂的国产日韩在线| 免费观看人在逋| 中文字幕高清在线视频| 欧美日韩中文字幕国产精品一区二区三区| 国产av麻豆久久久久久久| 美女黄网站色视频| 九色国产91popny在线| 亚洲美女视频黄频| 日韩欧美在线二视频| 亚洲国产精品999在线| 女警被强在线播放| 日韩欧美 国产精品| 黄片大片在线免费观看| 日本黄色视频三级网站网址| 美女cb高潮喷水在线观看 | 国产精品美女特级片免费视频播放器 | 搡老妇女老女人老熟妇| 免费在线观看视频国产中文字幕亚洲| 91av网站免费观看| 无限看片的www在线观看| 久久久久久久午夜电影| 小蜜桃在线观看免费完整版高清| 欧美日韩中文字幕国产精品一区二区三区| 美女被艹到高潮喷水动态| 88av欧美| 中文字幕久久专区| 亚洲精品美女久久av网站| 黑人欧美特级aaaaaa片| 黄片小视频在线播放| 法律面前人人平等表现在哪些方面| 亚洲国产精品sss在线观看| 很黄的视频免费| 999久久久国产精品视频| 国产亚洲av嫩草精品影院| 麻豆成人av在线观看| 夜夜爽天天搞| 黄色日韩在线| 亚洲精品久久国产高清桃花| 在线a可以看的网站| 色播亚洲综合网| 欧美日韩瑟瑟在线播放| 色播亚洲综合网| 在线十欧美十亚洲十日本专区| 免费看美女性在线毛片视频| 老司机深夜福利视频在线观看| 国产精品精品国产色婷婷| 小蜜桃在线观看免费完整版高清| 露出奶头的视频| 麻豆一二三区av精品| 变态另类丝袜制服| 亚洲av中文字字幕乱码综合| 国产精品爽爽va在线观看网站| 国产激情偷乱视频一区二区| 久久久久久大精品| 嫩草影院入口| 亚洲av片天天在线观看| av国产免费在线观看| 嫩草影院入口| 国产在线精品亚洲第一网站| 91字幕亚洲| 色播亚洲综合网| 国产1区2区3区精品| 男人舔女人下体高潮全视频| 一级作爱视频免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美三级三区| 欧美丝袜亚洲另类 | 国产精品久久久久久精品电影| 亚洲人成伊人成综合网2020| 亚洲欧美精品综合一区二区三区| 国产三级黄色录像| 成人18禁在线播放| 最好的美女福利视频网| 真人一进一出gif抽搐免费| 国产毛片a区久久久久| 床上黄色一级片| 一级毛片女人18水好多| 久久久久久国产a免费观看| 成人欧美大片| 欧美性猛交黑人性爽| 成人精品一区二区免费| 一个人免费在线观看的高清视频| 欧美乱码精品一区二区三区| 黄频高清免费视频| 久久精品影院6| 日韩大尺度精品在线看网址| 国产三级黄色录像| 9191精品国产免费久久| 男女之事视频高清在线观看| 精品福利观看| 男人的好看免费观看在线视频| 黄色日韩在线| 日韩高清综合在线| 亚洲精品在线美女| 国产精品美女特级片免费视频播放器 | 日本 欧美在线| 一级黄色大片毛片| 久久久色成人| 此物有八面人人有两片| 久久精品国产99精品国产亚洲性色| 少妇人妻一区二区三区视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲,欧美精品.| 亚洲欧美日韩高清在线视频| 国产精品日韩av在线免费观看| 中文字幕高清在线视频| 一个人免费在线观看电影 | 麻豆国产av国片精品| 老熟妇仑乱视频hdxx| bbb黄色大片| 婷婷精品国产亚洲av在线| 国产亚洲欧美98| 久久久国产欧美日韩av| 欧美中文综合在线视频| 18禁国产床啪视频网站| 窝窝影院91人妻| or卡值多少钱| 成人高潮视频无遮挡免费网站| 免费搜索国产男女视频| 精品国产亚洲在线| 国产成人av教育| 午夜影院日韩av| 久久草成人影院| 国内揄拍国产精品人妻在线| 国产精品一区二区免费欧美| 欧美日韩中文字幕国产精品一区二区三区| 亚洲专区字幕在线| 亚洲五月天丁香| 亚洲 欧美 日韩 在线 免费| 99精品久久久久人妻精品| 国产三级中文精品| 精品日产1卡2卡| 巨乳人妻的诱惑在线观看| svipshipincom国产片| 丰满人妻一区二区三区视频av | 特级一级黄色大片| 国产精品久久视频播放| 国产极品精品免费视频能看的| 久99久视频精品免费| 亚洲真实伦在线观看| 成年女人毛片免费观看观看9| 亚洲片人在线观看| 淫妇啪啪啪对白视频| 久久精品综合一区二区三区| 免费看光身美女| 最近最新免费中文字幕在线| 1000部很黄的大片| 夜夜夜夜夜久久久久| 亚洲欧洲精品一区二区精品久久久| 香蕉av资源在线| 啦啦啦观看免费观看视频高清| 午夜福利免费观看在线| 久久久久国产精品人妻aⅴ院| 欧美成人一区二区免费高清观看 | 国产69精品久久久久777片 | 国产1区2区3区精品| 免费大片18禁| 亚洲专区国产一区二区| 99精品久久久久人妻精品| 日本五十路高清| 老司机福利观看| 免费电影在线观看免费观看| 看免费av毛片| 日韩欧美免费精品| 小说图片视频综合网站| av女优亚洲男人天堂 | 精品久久久久久久久久久久久| 十八禁网站免费在线| 99久久99久久久精品蜜桃| 亚洲欧美日韩卡通动漫| 国产极品精品免费视频能看的| 狂野欧美白嫩少妇大欣赏| 亚洲乱码一区二区免费版| 欧洲精品卡2卡3卡4卡5卡区| 免费高清视频大片| 欧美乱色亚洲激情| 18禁裸乳无遮挡免费网站照片| 一区二区三区高清视频在线| 亚洲精品456在线播放app | 欧美高清成人免费视频www| 狠狠狠狠99中文字幕| 熟女电影av网| 18禁黄网站禁片午夜丰满| 成人三级黄色视频| xxx96com| 亚洲性夜色夜夜综合| 国语自产精品视频在线第100页| 久久午夜亚洲精品久久| 亚洲美女黄片视频| 日韩欧美国产在线观看| 90打野战视频偷拍视频| 白带黄色成豆腐渣| 精品一区二区三区视频在线 | 18禁美女被吸乳视频| 九九在线视频观看精品| 国内精品久久久久久久电影| 男女做爰动态图高潮gif福利片| 一级毛片女人18水好多| 精品免费久久久久久久清纯| 动漫黄色视频在线观看| 国产视频内射| 亚洲激情在线av| 一区二区三区国产精品乱码| 啪啪无遮挡十八禁网站| 每晚都被弄得嗷嗷叫到高潮| 欧美一级毛片孕妇| 丰满人妻一区二区三区视频av | 亚洲精品一卡2卡三卡4卡5卡| 麻豆成人午夜福利视频| 97人妻精品一区二区三区麻豆| 制服人妻中文乱码| av在线天堂中文字幕| 三级男女做爰猛烈吃奶摸视频| 熟女人妻精品中文字幕| 最新中文字幕久久久久 | 一进一出好大好爽视频| 日韩欧美在线乱码| 欧美成人一区二区免费高清观看 | 精品久久久久久成人av| 床上黄色一级片| www日本在线高清视频| 一本一本综合久久| 亚洲成人中文字幕在线播放| 人妻丰满熟妇av一区二区三区| 免费观看人在逋| 亚洲中文字幕日韩| 国产97色在线日韩免费| 99热只有精品国产| 国产成+人综合+亚洲专区| 男人的好看免费观看在线视频| 免费看a级黄色片| 久久午夜综合久久蜜桃| 极品教师在线免费播放| 国产精品久久久久久久电影 | 99国产精品一区二区三区| 久久九九热精品免费| 精品久久久久久,| 国产aⅴ精品一区二区三区波| 舔av片在线| 国产亚洲av高清不卡| 欧美色欧美亚洲另类二区| 久久精品国产清高在天天线| 欧美高清成人免费视频www| 中国美女看黄片| 人人妻,人人澡人人爽秒播| 精品久久蜜臀av无| avwww免费| 国产人伦9x9x在线观看| 91麻豆精品激情在线观看国产| 亚洲欧洲精品一区二区精品久久久| 久久精品aⅴ一区二区三区四区| 日本三级黄在线观看| 国产高清激情床上av| 亚洲国产中文字幕在线视频| 久久精品国产亚洲av香蕉五月| 日韩欧美国产在线观看| 亚洲18禁久久av| 天堂av国产一区二区熟女人妻| 成在线人永久免费视频| 一个人看视频在线观看www免费 | 久久久久国内视频| 国产一级毛片七仙女欲春2| 午夜精品久久久久久毛片777| 嫩草影视91久久| 女人被狂操c到高潮| av欧美777| 国产又黄又爽又无遮挡在线| 亚洲av免费在线观看| 成人欧美大片| 最近视频中文字幕2019在线8| 天天一区二区日本电影三级| 亚洲国产欧美一区二区综合| 欧美三级亚洲精品| 在线观看免费午夜福利视频| 精品人妻1区二区| 国产又黄又爽又无遮挡在线| 黄频高清免费视频| 老熟妇仑乱视频hdxx| svipshipincom国产片| 听说在线观看完整版免费高清| 亚洲电影在线观看av| 99久久综合精品五月天人人| 女生性感内裤真人,穿戴方法视频| 婷婷精品国产亚洲av| 免费在线观看成人毛片| 88av欧美| 亚洲av五月六月丁香网| 很黄的视频免费| 88av欧美| 精品久久久久久久久久免费视频| 成人午夜高清在线视频| 国产三级中文精品| 久久热在线av| 欧美zozozo另类| 日韩欧美国产一区二区入口| 真实男女啪啪啪动态图| 亚洲av第一区精品v没综合| 老熟妇仑乱视频hdxx| 伦理电影免费视频| 一夜夜www| 亚洲 国产 在线| 国产综合懂色| 亚洲欧美日韩卡通动漫| 神马国产精品三级电影在线观看| 最近最新中文字幕大全电影3| а√天堂www在线а√下载| 大型黄色视频在线免费观看| 精品久久久久久成人av| av在线天堂中文字幕| 黄色 视频免费看| 国产精品永久免费网站| 免费看美女性在线毛片视频| 日韩欧美 国产精品| 亚洲欧洲精品一区二区精品久久久| 黄频高清免费视频| 欧美+亚洲+日韩+国产| 亚洲人成网站高清观看| 夜夜爽天天搞| 亚洲成人精品中文字幕电影| 成人欧美大片| 男人的好看免费观看在线视频| 午夜福利欧美成人|