• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability of Global Solution to Boltzmann-Enskog Equationwith External Force?

    2012-12-27 07:06:08JIANGZHENGLUMALIJUNANDYAOZHENGAN
    關(guān)鍵詞:明顯改善關(guān)節(jié)疼痛

    JIANG ZHENG-LU,MA LI-JUNAND YAO ZHENG-AN

    (1.Department of Mathematics,Sun Yat-Sen University,Guangzhou,510275)

    (2.School of Mathematics,Hebei University of Technology,Tianjin,300401)

    Stability of Global Solution to Boltzmann-Enskog Equation
    with External Force?

    JIANG ZHENG-LU1,MA LI-JUN2AND YAO ZHENG-AN1

    (1.Department of Mathematics,Sun Yat-Sen University,Guangzhou,510275)

    (2.School of Mathematics,Hebei University of Technology,Tianjin,300401)

    In the presence of external forces depending only on the time and space variables,the Boltzmann-Enskog equation formally conserves only the mass of the system,and its entropy functional is also nonincreasing.Corresponding to this type of equation,we first give some hypotheses of its bicharacteristic equations and then get some results about the stablity of its global solution with the help of two new Lyapunov functionals:one is to describe interactions between particles with different velocities and the other is to measure the L1distance between two mild solutions. The former Lyapunov functional yields the time-asymptotic convergence of global classical solutions to the collision free motion while the latter is applied into the verifi cation of the L1stability of global mild solutions to the Boltzmann-Enskog equation for a moderately or highly dense gas in the in fl uence of external forces.

    Boltzmann-Enskog equation,global solution,stability,Lyapunov functional

    1 Introduction

    We are interested in the time-asymptotic behaviour and the Lyapunov stability of the global classical solution to the Enskog equation for a moderately or highly dense gas in the in fl uence of external forces.As the generalization of the Boltzmann equation,the Enskog equation is a model first proposed by Enskog[1]in 1922 for a description of the dynamical behavior of the density of a moderately or highly dense gas.This is because the Boltzmann equation is no longer suitable for gases with high-density e ff ects although it models dilute gases successfully.The Enskog equation is a partial differential integral equation of the hyperbolic type.There are some different versions of the Enskog equation in order that they formally satisfy some properties,such as entropy bound and consistence with irreversible thermodynamics(see [2–3]).We now take into account the so-called Boltzmann-Enskog equation,in the presence of external forces E(t,x)depending on the time and space variables t∈R+and x∈R3,as follows:

    for a one-particle distribution function f=f(t,x,v)that depends on time t∈R+,the position x∈R3and the velocity v∈R3,where Q is the collision operator whose form will be addressed below.Here and throughout this paper,R+represents the positive side of the real axis including its origin andR3denotes the three-dimensional Euclidean space.

    The collision operator Q is expressed by the di ff erence between the gain and loss terms respectively,and de fi ned by

    In(1.2)-(1.3),S2+={ω∈S2:ω·(v?w)≥0}is a subset of a unit sphere surface S2inR3,a is a diameter of hard sphere,ω is a unit vector along the line passing through the centers of the spheres at their interaction,(v′,w′)are velocities after collision of two particles having precollisional velocities(v,w),and

    is the collision kernel.

    The Boltzmann-Enskog equation(1.1)is a modi fi cation of Enskog’s original work mentioned above and obeys only the conservation laws of mass in the presence of external forces.It is worth mentioning that the equation(1.1)still obeys the conservation laws of mass,momentum and energy under the assumption that E(t,x)=0,that is,in the absence of external forces(see[4]).

    As for the Boltzmann equation,two colliding particles obey the conservation laws of both kinetic momentum and energy as follows:

    This results in their velocity relations

    The two postcollisional velocities given by(1.5)also have another expression as follows(see [5–6]):

    There is a vast literature on the global existence and uniqueness of the solutions to the initial value problem for the Boltzmann and the Enskog equations without external forces. In the absence of external forces,a theorem about the existence and uniqueness of global solution was first given by Ukai[7]for the Boltzmann equation,and another global existence and uniqueness result was then shown by Illner and Shinbrot[8]about the solutions to the initial value problem for the Boltzmann equation with small initial data in the in finite vacuum,and after that,a global solution existence proof was given by DiPerna and Lions[9]for the Boltzmann equation with large data,but up to now,one cannot know whether the solution to the problem is unique or not.For the Enskog equation without external forces, one may find some solution existence results,together with the L1stability of solutions, which were given by Cercignani[10].At that time,with an analysis of the well-posedness of the initial value problem in unbounded domains,some global existence and uniqueness theorems were obtained by Toscani and Bellomo[11]about the solutions to the Enskog equation in the absence of external forces for small initial data with suitable decay to zero at in fi nity in the phase space,and the asymptotic stability of the solutions and the in fl uence of the external field was also discussed in this reference.After that,a global existence and uniqueness proof was given by Polewczak[3]for the Enskog equation with near-vaccum data and another one shown by Arkeryd[2]for the present Boltzmann-Enskog equation with large data.The time-asymptotic behaviour of solutions in the weighted L∞was also provided by Polewczak[3,12]for the Enskog equation in the absence of external forces.

    Two Lyapunov functionals were constructed by Ha[13]to show both the L1stability and the time-asymptotic behaviour for global classical solutions to the Boltzmann-Enskog equation without external forces.Recently,Jiang[14]found that two key inequalities do not hold mathematically in the proof given by Ha(see(3.1)and(3.2)in[13]),and then built two different Lyapunov functionals and showed their time-decay properties.When we use the new functionals to study the stability and the asymptotic behaviour,we can solve the problem of the inequalities mentioned above.The time-decay properties of our functionals not only yield the time-asymptotic behaviour in the L1norm but also recover the L1stability for global classical solutions to the Boltzmann-Enskog equation without external forces.On the other hand,in the case of having external forces in in finite vacuum,a global existence and uniqueness theorem of mild solutions was given by Duanet al.[5]for the Boltzmann equation,and a similar result was shown by Jiang[14]for the Boltzmann-Enskog equation. Now there is no yet this result about both the time-asymptotic behaviour and the stability of solutions to the Boltzmann-Enskog equation in the presence of external forces.The aim of this paper is to build new functionals to show this type of result in the case of the Boltzmann-Enskog equation with external forces.

    The rest of this paper is arranged as follows.In Section 2 some properties of the collision operator Q of the Boltzmann-Enskog equation(1.1)are introduced including both the entropy identity and the nonincreasing property of the system entropy functional.In Section 3 some hypotheses of the external forces are then given for the Boltzmann-Enskog equation(1.1).New functionals are constructed and the time-asymptotic behaviour of a small family of solutions to the Boltzmann-Enskog equation(1.1)with external forces is given in Section 4.different functionals are de fi ned and the Lyapunov stability of solution to the Boltzmann-Enskog equation with external forces is fi nally shown in Section 5.

    2 The Conservation of Mass and the Entropy Functional

    In this section,we first prove a property of the collision operator Q introduced above,in order to show formally the conservation law of mass for the Boltzmann-Enskog equation (1.1)in the presence of external forces,and then we derive the entropy identity to get the nonincreasing property of the system entropy functional.

    Note that

    For the collision operator Q of the Boltzmann-Enskog equation(1.1)with(1.2)and(1.3) we give the following lemma.

    Lemma 2.1Suppose thatQ=Q+?Q?is a collisional operator as de fi ned by(1.2)and(1.3).Letψ=ψ(x,v)andf=f(x,v)be two measurable functions onR3×R3.IfψQ±(f)∈L1(R3×R3),then

    Let us first consider the loss integral Il.We proceed one step by exchanging v and w and replacing ω with?ω in the integral on the right hand side of(2.4).Then we replace x with x+aω and use(2.4).Thus we get

    The gain integral Igwill be considered below.By using the properties that

    we first rechange(2.3)as an integral with respect to the variables of ω,w′,v′and x.Then we exchange v and v′,w and w′,and replace ω with?ω.Finally,by using the same kind of changes of the loss integral Il,we can get

    Inserting(2.6)and(2.7)into(2.5)gives(2.1).

    Similarly,we can get(2.2).

    We usually call HB(t)the Boltzmann entropy functional.It has the following property:Theorem 2.1Put

    whereHB(t)andI(t)are de fi ned as follows:

    Assume thatf=f(t,x,v)is a nonnegative classical solution to the Boltzmann-Enskog equation(1.1)inL1(R3×R3),and bothQ±(f)andln(f)Q±(f)belong toL1(R3×R3).

    By integrating over the variable x on the right hand side of(2.10),Lemma 2.1 and the fact that

    (2.12)is also called the entropy indentity.Since lnx≤x?1 for x>0,the estimation of the integral on the right hand side of the entropy indentity(2.12)reads as

    The proof of this theorem is finished.

    We usually call H(t)in Theorem 2.1 the entropy functional of the system.Theorem 2.1 shows that the entropy functional of the system is nonincreasing.

    3 Hypotheses of External Forces

    In this section some hypotheses of the external forces are made and a representation of the mild solution is given for the Boltzmann-Enskog equation(1.1).

    Let us begin with the bicharacteristic equations of the Boltzmann-Enskog eqaution(1.1):

    Suppose that such a vector-value force function E(t,x)allows the above system(3.1)to have a global-in-time smooth solution denoted by

    for any fixed(t,x,v)∈R+×R3×R3,and that there exist two functions αi(s;t,x,v) (i=1,2)such that the solution(3.2)satis fies the following conditions:

    for any s∈R+and(ξ,η)∈R3×R3with any point(t,x,v) fixed inR+×R3×R3,where α0,d0and e0are positive constants independent of s and(t,x,v),and(s;t,x,v)(i=1,2) represent the derivative with respect to s.

    We now give a representation of the mild solution to the Boltzmann-Enskog equation. Let us first introduce an operator U(s)de fi ned as follows:

    A function f(t,x,v)is called a global mild solution to the Boltzmann-Enskog equation (1.1)if f(t,x,v)satis fies(3.10)for almost every(t,x,v)∈R+×R3×R3.

    By(1.7)and(1.8),U(s)Q(f)(t,x,v)can be rewritten as the di ff erence between the gain and loss terms of two other forms:

    Remark 3.1We construct a subset M of a Banach space C(R+×R3×R3),which has the property that every element f=f(s,x,v)∈M if and only if there exists a positive constant c such that f satis fies

    for any fixed p and q in(0,+∞).It follows that M is a Banach space when it is equipped with a norm of the following form:

    The initial data f0≡f(0,x,v)is bounded in L1(R3×R3).This implies that the total mass is finite.This requires that the mean free path is sufficiently large if the finite total mass is sufficiently small(see[5]).This is exactly the requirement on the Boltzmann-Enskog equation with external forces in in finite vacuum,which is similar to one considered by Illner and Shinbrot[8]for the Boltzmann equation.It is worth mentioning that there are many different classes of functions which can be taken as the choice of h(X(0;t,x,v))and m(V(0;t,x,v))(see[5–6]).Suppose that the conditions(3.2)–(3.7)hold and that h(x)and m(v)are the same as in(3.15).It can be then known from[14]that the Boltzmann-Enskog equation(1.1)has a unique non-negative global mild solution f=f(t,x,v)∈M through a non-negative initial data f0=f0(x,v)when

    is sufficiently small.

    4 Asymptotic Behaviour

    In this section we build two new functionals and study their properties,and then show the time-asymptotic behaviour of a class of solutions to the Boltzmann-Enskog equation(1.1).

    Let us begin with two new functionals D=D++D?and F=F++F?,which are de fi ned as follows:

    where for clarity,X(s)and V(s)represent X(s;t,x,v)and V(s;t,x,v),respectively,from which the initial variables(t,x,v)are suppressed.Obviously,by(3.13)and(3.14),we know that

    For a special class of solutions f to the Boltzmann-Enskog equation,D[f](s)describes interactions between particles with various velocities.It can be found below that the timedecay property of D[f](s)for a special class of solutions f to the Boltzmann-Enskog equation leads directly to the time-asymptotic behaviour of these solutions in L1(R3×R3)and so D

    is called Lyapunov functional.To estimate the time decay of D[f](s),we first have to show the following lemma.

    Lemma 4.1[14]LetF(x)be an integrable function onR3andva vector inR3.Assume thatS2+={ω|v·ω≥0,ω∈S2}whereS2is a unit sphere surface inR3.Then

    Combining De fi nition(4.1)and Lemma 4.1,we can easily deduce that

    for a class of integrable function f=f(t,x,v).Furthermore,we also obtain a similar timedecay property of D[f](s)to that shown by Jiang[14]as follows.

    Theorem 4.1LetDandFbe de fi ned by(4.1)and(4.2).Assume thatf=f(t,x,v)is a nonnegative classical solution to the Boltzmann-Enskog equation(1.1)with(1.2)and(1.3)through an initial datumf0=f0(x,v),and that bothfandfQ±(f)belong toL1(R3×R3).Giving the hypothesis(3.8)of the external forcesE(t,x),and assuming the diametera>0,then we have

    Proof.The proof of this theorem is similar to that of Jiang[14].

    By Theorem 4.1,we then get

    Theorem 4.2Put

    Assume thatf=f(t,x,v)is a nonnegative classical solution to the Boltzmann-Enskog equation(1.1)with(1.2)and(1.3)through an initial datumf0=f0(x,v)satisfying

    and that bothfandfQ±(f)belong toL1(R3×R3).Giving the hypothesis(3.8)of the external forcesE(t,x),and assuming the diametera>0,thenf(t,x,v)converges inL1(R3×R3)tof∞(t,x,v)astgoes to+∞.

    Proof.By Theorem 4.1,we know that

    where D[f](s)and F[f](s)are the same as in Lemma 4.1.It follows that

    This completes our proof of Theorem 4.2.

    Remark 4.2In Theorem 4.2 the time-asymptotic behaviour of a class of solutions to the Boltzmann-Enskog equation is in fact the time-asymptotic convergence of this type of solutions in the L1norm to the free motion as t trends to in fi nity.The time-asymptotic convergence in the L∞norm for the Boltzmann-Enskog equation in the presence of external forces can be also shown by using the same method as given by Polewczak[3]for the Enskog equation in the absence of external forces.

    5 L1Stability

    In this section some new functionals are constructed for the L1stability of global classical solutions to the Boltzmann-Enskog equation(1.1)with(1.2)and(1.3).One of them is a Lyapunov functional and it is equivalent to the L1distance functional.The time-decay property of the Lyapunov functional is also shown for the L1stability.

    Let us begin with constructing two functionals L[f,g](s)and Fd[f,g](s)as follows. L[f,g](s)is de fi ned by

    where k1and k2are positive constants to be determined later,D is the same as given by (4.1),Ldis denoted by

    This functional L is here called a Lyapunov functional.

    We first have the following property of the equivalence between the Lyapunov functional and L1distance functionals L and Ld.

    Lemma 5.1LetLandLdbe de fi ned by(5.1)and(5.2),respectively.Suppose that the hypothesis(3.8)of the external forcesE(t,x)holds.Assume that

    本組20例患者隨訪1年以上,末次隨訪時(shí),所有患者無疼痛,關(guān)節(jié)活動明顯改善15例,關(guān)節(jié)活動部分改善3例,無改善的2例。

    are two nonnegative classical solutions to the Boltzmann-Enskog equation(1.1)with(1.2)and(1.3)through initial dataf0=f0(x,v)andg0=g0(x,v),respectively,and that all the functionsf,g,fQ±(f)andgQ±(g)are elements inL1(R3×R3).Then

    where

    and by(3.8)and Lemma 4.1 it can be found that W(s,X(s),V(s))is bounded by the L1norms of f0and g0as follows:

    (5.5)thus follows.Our proof of this lemma hence ends up.

    For a class of solutions f=f(t,x,v)and g=g(t,x,v)to the Boltzmann-Enskog equation (1.1)with(1.2)and(1.3),the time-decay properties of the two functionals Dd[f,g](s)and Ld[f,g](s)can be also obtained as follows.

    Lemma 5.2LetLandLdbe de fi ned by(5.1)and(5.2),respectively.Suppose that the hypothesis(3.8)of the external forcesE(t,x)holds.Assume thatf=f(t,x,v)andg= g(t,x,v)are two nonnegative classical solutions to the Boltzmann-Enskog equation(1.1)with(1.2)and(1.3)through initial dataf0=f0(x,v)andg0=g0(x,v)respectively,and that all the functionsf,g,fQ±(f)andgQ±(g)are elements inL1(R3×R3).Then

    It can be further shown that the functional L has the following time-decay property similar to that shown by Ha(see Theorem 1.4 in[13]).

    Theorem 5.1LetLandFdbe de fi ned by(5.1)and(5.4),respectively.Suppose that the hypothesis(3.8)of the external forcesE(t,x)holds and that the diametera>0.Assume thatf=f(t,x,v)andg=g(t,x,v)are two nonnegative classical solutions to the Boltzmann-Enskog equation(1.1)with(1.2)and(1.3)through initial dataf0=f0(x,v)andg0=g0(x,v)satisfyingrespectively,and that all thefunctionsf,g,fQ±(f)andgQ±(g)are elements inL1(R3×R3).Then there exists a positive constantsuch that

    for anys∈R+,whereCis a positive constant independent ofs.

    Proof.Similarly to the proof of Ha(see Theorem 1.4 in[13]).

    By Theorem 5.1,we further have

    Theorem 5.2Suppose that the hypothesis(3.8)of the external forcesE(t,x)holds and that the diametera>0.Assume that

    are two nonnegative classical solutions to the Boltzmann-Enskog equation(1.1)with(1.2)and(1.3)through initial dataf0=f0(x,v)andg0=g0(x,v)satisfying

    respectively,and all the functionsf,g,fQ±(f)andgQ±(g)are elements inL1(R3×R3).ThenZZ

    whereCis a positive constant independent oft.

    [1]Enskog D.Kinetiche Theorie der W`armeleitung,Reibung und Selbstdi ff usion in gewissen werdichteten Gasen und Flubigkeiten.Kungl.Sv.Vetenskapsakademiens Handl,1922,63: 3–44,English Transl.in Brush S G,Kinetic Theory.vol 3.New York:Pergamon,1972.

    [2]Arkeryd L.On the Enskog equation with large initial data.SIAM J.Math.Anal.,1990,21: 631–646.

    [3]Polewczak J.Global existence and asymptotic behavior for the nonlinear Enskog equation.SIAM J.Appl.Math.,1989,49:952–959.

    [4]Polewczak J.On some open problems in the revised Enskog equation for dense gases.In Proceedings“WASCOM 99”10th Conference on Waves and Stability in Continuous Media, Vulcano(Eolie Islands),Italy,June 7–12,1999.In:Ciancio V,Donato A,Oliveri F,Rionero S.London:World Scienti fi c Publishing,2001:382–396.

    [5]Duan R,Yang T,Zhu C.Global existence to Boltzmann equation with external force in in finite vacuum.J.Math.Phys.,2005,46:053307.

    [6]Guo Y.The Vlasov-Poisson-Bolzmann system near vacuum.Comm.Math.Phys.,2001,218: 293–313.

    [7]Ukai S.Les solutions globales de l’quation de Boltzmann dans l’espace tout entier et dans le demi-espace,C.R.Acad.Sci.Paris Sr.A/B,1976,282(6):A317-A320.

    [8]Illner R,Shinbrot M.The Boltzmann equation,global existence for a rare gas in an in finite vacuum.Comm.Math.Phys.,1984,95:217–226.

    [9]DiPerna R J,Lions P L.On the Cauchy problem for Boltzmann equations:Global existence and weak stability.Ann.Math.,1989,130:321–366.

    [10]Cercignani C.Existence of global solutions for the space inhomogeneous Enskog equation.Transport Theory Statist.Phys.,1987,16:213–221.

    [11]Toscani G,Bellomo N.The Enskog-Boltzmann equation in the whole space R3:Some global existence,uniqueness and stability results.Comput.Math.Appl.,1987,13:851–859.

    [12]Polewczak J.Global existence in L1for the modi fi ed nonlinear Enskog equation in R3.J. Statist.Phys.,1989,56:157–173.

    [13]Ha S.Lyapunov functionals for the Enskog-Boltzmann equation.Indiana Univ.Math.J.,2005, 54:997–1014.

    [14]Jiang Z.Global solution to Enskog equation with external force in in finite vacuum.Chinese J.Contemp.Math.,2009,30:49–62.

    Communicated by Yin Jing-xue

    76P05,35Q75

    A

    1674-5647(2012)02-0108-13

    date:March 3,2009.

    The NSF(11171356)of China and the Grant(09LGTY45)of Sun Yat-Sen University.

    猜你喜歡
    明顯改善關(guān)節(jié)疼痛
    疼痛不簡單
    被慢性疼痛折磨的你,還要“忍”多久
    疼在疼痛之外
    特別健康(2018年2期)2018-06-29 06:13:40
    疼痛也是病 有痛不能忍
    海峽姐妹(2017年11期)2018-01-30 08:57:43
    風(fēng)電:棄風(fēng)限電明顯改善 海上風(fēng)電如火如荼
    能源(2018年8期)2018-01-15 19:18:24
    膽寧片聯(lián)合阿托伐他汀鈣片治療非酒精性脂肪肝93療效觀察
    健康前沿(2017年2期)2017-08-13 18:40:48
    人民生活明顯改善
    用跟骨解剖鋼板內(nèi)固定術(shù)治療跟骨骨折合并跟距關(guān)節(jié)及跟骰關(guān)節(jié)損傷的效果探討
    控?zé)焻f(xié)會:北京禁煙實(shí)施一周年 無煙環(huán)境明顯改善
    人民周刊(2016年11期)2016-06-30 14:04:45
    miRNA-140、MMP-3在OA關(guān)節(jié)滑液中的表達(dá)及相關(guān)性研究
    国产成人欧美| 国产毛片在线视频| 中文字幕人妻丝袜制服| 国产极品粉嫩免费观看在线| 卡戴珊不雅视频在线播放| 一二三四在线观看免费中文在| 国产日韩欧美在线精品| 满18在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91| av国产久精品久网站免费入址| 婷婷成人精品国产| 久久久久精品人妻al黑| 日韩av在线免费看完整版不卡| 日韩三级伦理在线观看| 免费日韩欧美在线观看| 精品亚洲成a人片在线观看| 中文字幕人妻丝袜一区二区 | 久久99蜜桃精品久久| 国产男女内射视频| 欧美日韩精品网址| 精品国产一区二区三区四区第35| 国产成人精品无人区| 一级毛片 在线播放| 一二三四中文在线观看免费高清| 久久久久久久大尺度免费视频| 亚洲,欧美,日韩| 视频在线观看一区二区三区| 在线观看国产h片| 狂野欧美激情性bbbbbb| 午夜福利乱码中文字幕| 国产黄色免费在线视频| 成人影院久久| 国产无遮挡羞羞视频在线观看| 国产又色又爽无遮挡免| 国产精品无大码| av天堂久久9| 久久精品夜色国产| 免费在线观看完整版高清| 这个男人来自地球电影免费观看 | 九色亚洲精品在线播放| 午夜影院在线不卡| 91午夜精品亚洲一区二区三区| 午夜激情久久久久久久| 九色亚洲精品在线播放| 人妻一区二区av| 国产极品天堂在线| 中文字幕最新亚洲高清| 婷婷色av中文字幕| 伦理电影大哥的女人| 男人操女人黄网站| 嫩草影院入口| 天天影视国产精品| 久久免费观看电影| 人人妻人人添人人爽欧美一区卜| 999久久久国产精品视频| 国产一区二区激情短视频 | 丁香六月天网| 国产福利在线免费观看视频| 亚洲欧洲精品一区二区精品久久久 | 久久久精品94久久精品| 九色亚洲精品在线播放| 99re6热这里在线精品视频| 国产福利在线免费观看视频| 男女高潮啪啪啪动态图| 人妻系列 视频| 欧美激情 高清一区二区三区| freevideosex欧美| 日本爱情动作片www.在线观看| 久久精品久久久久久久性| 欧美老熟妇乱子伦牲交| 99热国产这里只有精品6| 久久精品久久精品一区二区三区| 国产爽快片一区二区三区| 看十八女毛片水多多多| 性少妇av在线| 欧美精品亚洲一区二区| 成人午夜精彩视频在线观看| 汤姆久久久久久久影院中文字幕| 午夜免费鲁丝| 成年av动漫网址| 久久女婷五月综合色啪小说| 久久久久国产一级毛片高清牌| 99久国产av精品国产电影| 少妇精品久久久久久久| 婷婷色麻豆天堂久久| 搡老乐熟女国产| 免费看av在线观看网站| 波野结衣二区三区在线| 精品午夜福利在线看| 亚洲国产色片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国语对白做爰xxxⅹ性视频网站| 黑人巨大精品欧美一区二区蜜桃| 国产成人精品久久久久久| 啦啦啦在线观看免费高清www| 女性被躁到高潮视频| 亚洲精品久久成人aⅴ小说| 这个男人来自地球电影免费观看 | 国产成人欧美| 精品视频人人做人人爽| 欧美在线黄色| 大片免费播放器 马上看| 亚洲欧美清纯卡通| 久久人妻熟女aⅴ| 欧美精品人与动牲交sv欧美| 在线观看免费日韩欧美大片| 亚洲成国产人片在线观看| 婷婷色综合www| 亚洲第一av免费看| 男女下面插进去视频免费观看| 久久久精品94久久精品| 老汉色∧v一级毛片| 日韩,欧美,国产一区二区三区| 人人妻人人澡人人看| 国语对白做爰xxxⅹ性视频网站| 天天影视国产精品| 国产精品无大码| 美女xxoo啪啪120秒动态图| 国产精品久久久久久久久免| 亚洲国产精品一区二区三区在线| 久久综合国产亚洲精品| 亚洲精品国产av蜜桃| 成人亚洲欧美一区二区av| 精品午夜福利在线看| 少妇人妻精品综合一区二区| 五月开心婷婷网| 少妇人妻久久综合中文| 国产老妇伦熟女老妇高清| 久久久欧美国产精品| 日本色播在线视频| 男人爽女人下面视频在线观看| 久久狼人影院| 欧美人与性动交α欧美精品济南到 | 一本久久精品| 热99久久久久精品小说推荐| 波多野结衣一区麻豆| 亚洲国产欧美网| 少妇精品久久久久久久| 亚洲精品久久久久久婷婷小说| 精品少妇久久久久久888优播| 国产深夜福利视频在线观看| 电影成人av| 人人妻人人添人人爽欧美一区卜| 极品少妇高潮喷水抽搐| 视频在线观看一区二区三区| 性色avwww在线观看| 成年女人在线观看亚洲视频| 69精品国产乱码久久久| 亚洲婷婷狠狠爱综合网| 日韩在线高清观看一区二区三区| 性少妇av在线| 少妇 在线观看| 国产探花极品一区二区| 国产男人的电影天堂91| 国产精品一二三区在线看| 欧美激情极品国产一区二区三区| 日日撸夜夜添| 国产亚洲一区二区精品| 欧美日韩一区二区视频在线观看视频在线| 久久影院123| 久久人人97超碰香蕉20202| 一级毛片黄色毛片免费观看视频| 国产综合精华液| 精品人妻一区二区三区麻豆| 欧美精品一区二区免费开放| 超碰成人久久| 人妻一区二区av| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久成人av| 热99久久久久精品小说推荐| 免费不卡的大黄色大毛片视频在线观看| 777久久人妻少妇嫩草av网站| 亚洲在久久综合| 成人国语在线视频| 国产亚洲一区二区精品| 亚洲成人av在线免费| 男女边吃奶边做爰视频| 高清在线视频一区二区三区| av在线观看视频网站免费| 卡戴珊不雅视频在线播放| 精品一区二区三卡| 两性夫妻黄色片| 欧美日韩国产mv在线观看视频| 久久婷婷青草| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美一区二区三区国产| 国产精品一区二区在线观看99| www.精华液| 999精品在线视频| 美女脱内裤让男人舔精品视频| 国产亚洲午夜精品一区二区久久| 高清在线视频一区二区三区| 日产精品乱码卡一卡2卡三| 久久午夜福利片| 久久精品aⅴ一区二区三区四区 | 日韩一区二区三区影片| 国产高清不卡午夜福利| 国产成人av激情在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 少妇被粗大猛烈的视频| 狂野欧美激情性bbbbbb| 欧美日韩一区二区视频在线观看视频在线| 91在线精品国自产拍蜜月| 亚洲三级黄色毛片| 日韩制服骚丝袜av| 国产精品久久久久久久久免| 亚洲av国产av综合av卡| 春色校园在线视频观看| 九草在线视频观看| 国产亚洲午夜精品一区二区久久| 免费黄频网站在线观看国产| 婷婷色综合大香蕉| 黄色视频在线播放观看不卡| 黑丝袜美女国产一区| 中文字幕最新亚洲高清| 青春草视频在线免费观看| 日本午夜av视频| 国产精品久久久久久精品电影小说| 岛国毛片在线播放| 人人澡人人妻人| 久久久久久久亚洲中文字幕| 亚洲av成人精品一二三区| 久久精品夜色国产| 寂寞人妻少妇视频99o| 啦啦啦中文免费视频观看日本| 国产成人精品一,二区| 日本av免费视频播放| 夜夜骑夜夜射夜夜干| 国产毛片在线视频| 丰满乱子伦码专区| 国产精品久久久av美女十八| 少妇人妻 视频| 国产成人aa在线观看| 午夜福利在线免费观看网站| 人人澡人人妻人| 亚洲三级黄色毛片| 亚洲成国产人片在线观看| 久热久热在线精品观看| 1024视频免费在线观看| 色婷婷久久久亚洲欧美| 国产av精品麻豆| 综合色丁香网| 国产精品不卡视频一区二区| 欧美中文综合在线视频| 国产亚洲av片在线观看秒播厂| 国产精品成人在线| 黄色视频在线播放观看不卡| 亚洲国产精品一区二区三区在线| 咕卡用的链子| 色94色欧美一区二区| 青春草亚洲视频在线观看| av在线老鸭窝| 精品国产一区二区久久| 晚上一个人看的免费电影| 日韩人妻精品一区2区三区| 热re99久久国产66热| 亚洲第一青青草原| 多毛熟女@视频| 热99国产精品久久久久久7| 不卡视频在线观看欧美| 中文字幕最新亚洲高清| 成人午夜精彩视频在线观看| 久久久久国产一级毛片高清牌| 成年av动漫网址| 汤姆久久久久久久影院中文字幕| 热99国产精品久久久久久7| 国产在线免费精品| 青青草视频在线视频观看| 成年女人在线观看亚洲视频| av片东京热男人的天堂| 韩国精品一区二区三区| 欧美日韩精品成人综合77777| 97精品久久久久久久久久精品| 亚洲第一区二区三区不卡| 青青草视频在线视频观看| 国产精品香港三级国产av潘金莲 | 如日韩欧美国产精品一区二区三区| 久久久久网色| 亚洲经典国产精华液单| av国产精品久久久久影院| 少妇的逼水好多| 少妇的丰满在线观看| 自线自在国产av| 中文欧美无线码| 国产精品99久久99久久久不卡 | 中文精品一卡2卡3卡4更新| 久久久久久人妻| 国产精品成人在线| 丰满饥渴人妻一区二区三| 男女下面插进去视频免费观看| 午夜91福利影院| 亚洲男人天堂网一区| 日本猛色少妇xxxxx猛交久久| 精品亚洲成a人片在线观看| 精品国产乱码久久久久久小说| 三级国产精品片| 精品福利永久在线观看| 亚洲四区av| 色网站视频免费| 啦啦啦视频在线资源免费观看| 18+在线观看网站| 2018国产大陆天天弄谢| 精品视频人人做人人爽| 免费不卡的大黄色大毛片视频在线观看| 免费黄网站久久成人精品| av在线观看视频网站免费| 黄色视频在线播放观看不卡| 欧美精品人与动牲交sv欧美| 黄色视频在线播放观看不卡| 精品人妻偷拍中文字幕| 欧美国产精品va在线观看不卡| 波野结衣二区三区在线| 好男人视频免费观看在线| 欧美激情极品国产一区二区三区| 精品第一国产精品| 久久久欧美国产精品| 国产亚洲欧美精品永久| 一级爰片在线观看| 最近最新中文字幕免费大全7| 在线亚洲精品国产二区图片欧美| 欧美bdsm另类| 18禁观看日本| 国产国语露脸激情在线看| 国产精品久久久久久久久免| 美女主播在线视频| 另类精品久久| 街头女战士在线观看网站| 免费黄色在线免费观看| 亚洲精品日韩在线中文字幕| 一级a爱视频在线免费观看| 国产免费福利视频在线观看| 老司机影院成人| 精品国产乱码久久久久久男人| 色播在线永久视频| 亚洲成人av在线免费| 99久久综合免费| 亚洲中文av在线| 91在线精品国自产拍蜜月| 欧美人与善性xxx| 成人漫画全彩无遮挡| 久久精品aⅴ一区二区三区四区 | 美女午夜性视频免费| 亚洲综合色惰| 欧美av亚洲av综合av国产av | 我要看黄色一级片免费的| 最近中文字幕2019免费版| 日日摸夜夜添夜夜爱| 国产一区二区三区综合在线观看| 日日摸夜夜添夜夜爱| 亚洲国产日韩一区二区| 亚洲精品av麻豆狂野| 亚洲久久久国产精品| 黄片播放在线免费| 老汉色av国产亚洲站长工具| 久久精品久久精品一区二区三区| 五月开心婷婷网| 卡戴珊不雅视频在线播放| 精品酒店卫生间| 日日摸夜夜添夜夜爱| 黄色配什么色好看| 美女福利国产在线| 午夜福利在线免费观看网站| 亚洲综合精品二区| 免费女性裸体啪啪无遮挡网站| 最近手机中文字幕大全| 国产福利在线免费观看视频| 国产精品免费视频内射| 婷婷色麻豆天堂久久| 99热全是精品| 久久精品亚洲av国产电影网| 亚洲国产欧美日韩在线播放| 日韩不卡一区二区三区视频在线| 国产日韩欧美亚洲二区| 777米奇影视久久| 国产精品麻豆人妻色哟哟久久| 亚洲一级一片aⅴ在线观看| 一个人免费看片子| 日韩av免费高清视频| 国产又爽黄色视频| 国产精品免费大片| kizo精华| 免费观看性生交大片5| 黄色一级大片看看| 久久韩国三级中文字幕| 国产av码专区亚洲av| 亚洲欧美清纯卡通| 精品福利永久在线观看| 国产老妇伦熟女老妇高清| 久久国产精品大桥未久av| 日韩成人av中文字幕在线观看| av国产精品久久久久影院| 男人爽女人下面视频在线观看| 亚洲精品美女久久av网站| 一级片'在线观看视频| www.自偷自拍.com| 亚洲色图 男人天堂 中文字幕| 曰老女人黄片| 亚洲少妇的诱惑av| 成人毛片a级毛片在线播放| 久久韩国三级中文字幕| 国产不卡av网站在线观看| 亚洲国产av新网站| 一级a爱视频在线免费观看| 国产熟女欧美一区二区| 亚洲色图综合在线观看| 久久国产精品男人的天堂亚洲| 亚洲国产精品一区二区三区在线| 精品一区二区免费观看| 国产欧美日韩一区二区三区在线| 伊人亚洲综合成人网| 亚洲婷婷狠狠爱综合网| 免费大片黄手机在线观看| 欧美日韩视频高清一区二区三区二| 久热这里只有精品99| 中国三级夫妇交换| 久热久热在线精品观看| 日本av免费视频播放| 国产日韩欧美视频二区| 日韩av在线免费看完整版不卡| 国产精品99久久99久久久不卡 | 老司机影院毛片| 91精品伊人久久大香线蕉| av视频免费观看在线观看| 少妇人妻 视频| 最近的中文字幕免费完整| 黑丝袜美女国产一区| 亚洲情色 制服丝袜| 欧美av亚洲av综合av国产av | 色婷婷av一区二区三区视频| 人妻少妇偷人精品九色| 久久久久国产网址| 91久久精品国产一区二区三区| 国产成人精品一,二区| 丝瓜视频免费看黄片| 美女高潮到喷水免费观看| 激情五月婷婷亚洲| 久久久久久人人人人人| 亚洲av欧美aⅴ国产| 日韩成人av中文字幕在线观看| 宅男免费午夜| 高清av免费在线| 国产乱人偷精品视频| 26uuu在线亚洲综合色| 秋霞在线观看毛片| 免费观看在线日韩| 日日摸夜夜添夜夜爱| 亚洲精品一二三| 成人影院久久| 两个人免费观看高清视频| 亚洲国产av新网站| 午夜精品国产一区二区电影| 国产有黄有色有爽视频| 精品少妇久久久久久888优播| 欧美老熟妇乱子伦牲交| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕亚洲精品专区| av网站免费在线观看视频| 中文字幕精品免费在线观看视频| 尾随美女入室| 国产精品一区二区在线不卡| 十八禁高潮呻吟视频| 两性夫妻黄色片| 一区二区三区激情视频| 亚洲精品视频女| a 毛片基地| 中文字幕人妻丝袜制服| 精品久久久精品久久久| 伦理电影大哥的女人| 有码 亚洲区| 国产乱人偷精品视频| 免费高清在线观看视频在线观看| 婷婷色综合www| 国产探花极品一区二区| 国产精品欧美亚洲77777| 精品视频人人做人人爽| 777米奇影视久久| 日本欧美视频一区| 爱豆传媒免费全集在线观看| 亚洲av综合色区一区| 男女边摸边吃奶| av女优亚洲男人天堂| 欧美精品一区二区大全| www日本在线高清视频| 国产精品一区二区在线观看99| 观看美女的网站| 国产精品二区激情视频| 高清av免费在线| 精品国产一区二区三区四区第35| 一本色道久久久久久精品综合| 久久久a久久爽久久v久久| 女人精品久久久久毛片| 久久久久久久国产电影| 婷婷色综合大香蕉| 国产日韩欧美视频二区| 免费高清在线观看视频在线观看| 美女国产高潮福利片在线看| 寂寞人妻少妇视频99o| 久久久久精品性色| 精品国产露脸久久av麻豆| 亚洲色图综合在线观看| 欧美激情极品国产一区二区三区| 久久影院123| 在线精品无人区一区二区三| 国产人伦9x9x在线观看 | 日本猛色少妇xxxxx猛交久久| 精品一区二区三卡| av又黄又爽大尺度在线免费看| 国产日韩欧美在线精品| 亚洲综合色网址| 日韩一区二区视频免费看| 一边亲一边摸免费视频| 国产淫语在线视频| 亚洲一级一片aⅴ在线观看| av在线app专区| 色吧在线观看| 久久久久久人人人人人| 婷婷色综合大香蕉| 在线亚洲精品国产二区图片欧美| 国产精品秋霞免费鲁丝片| 韩国精品一区二区三区| 在线观看免费日韩欧美大片| 婷婷成人精品国产| 亚洲国产av影院在线观看| 香蕉精品网在线| av在线观看视频网站免费| 国产精品久久久久久精品古装| 婷婷色麻豆天堂久久| 日韩中文字幕欧美一区二区 | 丝袜喷水一区| 桃花免费在线播放| 精品亚洲成国产av| 可以免费在线观看a视频的电影网站 | 日韩欧美精品免费久久| 欧美最新免费一区二区三区| 男男h啪啪无遮挡| 黄色一级大片看看| 午夜免费鲁丝| 欧美激情 高清一区二区三区| www.精华液| 18禁国产床啪视频网站| 日韩av免费高清视频| 亚洲国产精品999| 色播在线永久视频| 满18在线观看网站| 国产日韩欧美视频二区| 亚洲av国产av综合av卡| 久久久久久久国产电影| 搡女人真爽免费视频火全软件| 狠狠精品人妻久久久久久综合| 人体艺术视频欧美日本| 国产综合精华液| 欧美激情极品国产一区二区三区| 欧美少妇被猛烈插入视频| 久久人人97超碰香蕉20202| 最新中文字幕久久久久| 久久精品国产a三级三级三级| 国产成人免费观看mmmm| 日本欧美视频一区| 国产亚洲午夜精品一区二区久久| 国产又色又爽无遮挡免| 久久综合国产亚洲精品| 久久鲁丝午夜福利片| 在线观看免费高清a一片| 久久久国产精品麻豆| 国产精品久久久久久av不卡| 叶爱在线成人免费视频播放| 亚洲精品日本国产第一区| 麻豆av在线久日| 国产日韩欧美视频二区| 波多野结衣一区麻豆| 亚洲av在线观看美女高潮| 一本—道久久a久久精品蜜桃钙片| 男女无遮挡免费网站观看| 成人18禁高潮啪啪吃奶动态图| 捣出白浆h1v1| 丝袜美足系列| 视频在线观看一区二区三区| 一个人免费看片子| av国产精品久久久久影院| 精品人妻偷拍中文字幕| 女人高潮潮喷娇喘18禁视频| 人人妻人人添人人爽欧美一区卜| 精品福利永久在线观看| 97在线人人人人妻| 黄色怎么调成土黄色| 亚洲av欧美aⅴ国产| 伊人久久国产一区二区| 精品第一国产精品| 男女下面插进去视频免费观看| 国产深夜福利视频在线观看| 美女xxoo啪啪120秒动态图| 满18在线观看网站| 乱人伦中国视频| 在线观看美女被高潮喷水网站| 人成视频在线观看免费观看| 久久精品国产a三级三级三级| 久久综合国产亚洲精品| 精品福利永久在线观看| 新久久久久国产一级毛片| 国产一区二区 视频在线| 男女下面插进去视频免费观看| 亚洲国产欧美日韩在线播放| 国产成人91sexporn| 婷婷色av中文字幕| 80岁老熟妇乱子伦牲交| 成人18禁高潮啪啪吃奶动态图| 精品少妇黑人巨大在线播放| 热re99久久国产66热| 日本-黄色视频高清免费观看| 国产精品嫩草影院av在线观看| 久久ye,这里只有精品| 国产在线视频一区二区| 毛片一级片免费看久久久久| 高清黄色对白视频在线免费看| 亚洲欧美中文字幕日韩二区|