• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability of Global Solution to Boltzmann-Enskog Equationwith External Force?

    2012-12-27 07:06:08JIANGZHENGLUMALIJUNANDYAOZHENGAN
    關(guān)鍵詞:明顯改善關(guān)節(jié)疼痛

    JIANG ZHENG-LU,MA LI-JUNAND YAO ZHENG-AN

    (1.Department of Mathematics,Sun Yat-Sen University,Guangzhou,510275)

    (2.School of Mathematics,Hebei University of Technology,Tianjin,300401)

    Stability of Global Solution to Boltzmann-Enskog Equation
    with External Force?

    JIANG ZHENG-LU1,MA LI-JUN2AND YAO ZHENG-AN1

    (1.Department of Mathematics,Sun Yat-Sen University,Guangzhou,510275)

    (2.School of Mathematics,Hebei University of Technology,Tianjin,300401)

    In the presence of external forces depending only on the time and space variables,the Boltzmann-Enskog equation formally conserves only the mass of the system,and its entropy functional is also nonincreasing.Corresponding to this type of equation,we first give some hypotheses of its bicharacteristic equations and then get some results about the stablity of its global solution with the help of two new Lyapunov functionals:one is to describe interactions between particles with different velocities and the other is to measure the L1distance between two mild solutions. The former Lyapunov functional yields the time-asymptotic convergence of global classical solutions to the collision free motion while the latter is applied into the verifi cation of the L1stability of global mild solutions to the Boltzmann-Enskog equation for a moderately or highly dense gas in the in fl uence of external forces.

    Boltzmann-Enskog equation,global solution,stability,Lyapunov functional

    1 Introduction

    We are interested in the time-asymptotic behaviour and the Lyapunov stability of the global classical solution to the Enskog equation for a moderately or highly dense gas in the in fl uence of external forces.As the generalization of the Boltzmann equation,the Enskog equation is a model first proposed by Enskog[1]in 1922 for a description of the dynamical behavior of the density of a moderately or highly dense gas.This is because the Boltzmann equation is no longer suitable for gases with high-density e ff ects although it models dilute gases successfully.The Enskog equation is a partial differential integral equation of the hyperbolic type.There are some different versions of the Enskog equation in order that they formally satisfy some properties,such as entropy bound and consistence with irreversible thermodynamics(see [2–3]).We now take into account the so-called Boltzmann-Enskog equation,in the presence of external forces E(t,x)depending on the time and space variables t∈R+and x∈R3,as follows:

    for a one-particle distribution function f=f(t,x,v)that depends on time t∈R+,the position x∈R3and the velocity v∈R3,where Q is the collision operator whose form will be addressed below.Here and throughout this paper,R+represents the positive side of the real axis including its origin andR3denotes the three-dimensional Euclidean space.

    The collision operator Q is expressed by the di ff erence between the gain and loss terms respectively,and de fi ned by

    In(1.2)-(1.3),S2+={ω∈S2:ω·(v?w)≥0}is a subset of a unit sphere surface S2inR3,a is a diameter of hard sphere,ω is a unit vector along the line passing through the centers of the spheres at their interaction,(v′,w′)are velocities after collision of two particles having precollisional velocities(v,w),and

    is the collision kernel.

    The Boltzmann-Enskog equation(1.1)is a modi fi cation of Enskog’s original work mentioned above and obeys only the conservation laws of mass in the presence of external forces.It is worth mentioning that the equation(1.1)still obeys the conservation laws of mass,momentum and energy under the assumption that E(t,x)=0,that is,in the absence of external forces(see[4]).

    As for the Boltzmann equation,two colliding particles obey the conservation laws of both kinetic momentum and energy as follows:

    This results in their velocity relations

    The two postcollisional velocities given by(1.5)also have another expression as follows(see [5–6]):

    There is a vast literature on the global existence and uniqueness of the solutions to the initial value problem for the Boltzmann and the Enskog equations without external forces. In the absence of external forces,a theorem about the existence and uniqueness of global solution was first given by Ukai[7]for the Boltzmann equation,and another global existence and uniqueness result was then shown by Illner and Shinbrot[8]about the solutions to the initial value problem for the Boltzmann equation with small initial data in the in finite vacuum,and after that,a global solution existence proof was given by DiPerna and Lions[9]for the Boltzmann equation with large data,but up to now,one cannot know whether the solution to the problem is unique or not.For the Enskog equation without external forces, one may find some solution existence results,together with the L1stability of solutions, which were given by Cercignani[10].At that time,with an analysis of the well-posedness of the initial value problem in unbounded domains,some global existence and uniqueness theorems were obtained by Toscani and Bellomo[11]about the solutions to the Enskog equation in the absence of external forces for small initial data with suitable decay to zero at in fi nity in the phase space,and the asymptotic stability of the solutions and the in fl uence of the external field was also discussed in this reference.After that,a global existence and uniqueness proof was given by Polewczak[3]for the Enskog equation with near-vaccum data and another one shown by Arkeryd[2]for the present Boltzmann-Enskog equation with large data.The time-asymptotic behaviour of solutions in the weighted L∞was also provided by Polewczak[3,12]for the Enskog equation in the absence of external forces.

    Two Lyapunov functionals were constructed by Ha[13]to show both the L1stability and the time-asymptotic behaviour for global classical solutions to the Boltzmann-Enskog equation without external forces.Recently,Jiang[14]found that two key inequalities do not hold mathematically in the proof given by Ha(see(3.1)and(3.2)in[13]),and then built two different Lyapunov functionals and showed their time-decay properties.When we use the new functionals to study the stability and the asymptotic behaviour,we can solve the problem of the inequalities mentioned above.The time-decay properties of our functionals not only yield the time-asymptotic behaviour in the L1norm but also recover the L1stability for global classical solutions to the Boltzmann-Enskog equation without external forces.On the other hand,in the case of having external forces in in finite vacuum,a global existence and uniqueness theorem of mild solutions was given by Duanet al.[5]for the Boltzmann equation,and a similar result was shown by Jiang[14]for the Boltzmann-Enskog equation. Now there is no yet this result about both the time-asymptotic behaviour and the stability of solutions to the Boltzmann-Enskog equation in the presence of external forces.The aim of this paper is to build new functionals to show this type of result in the case of the Boltzmann-Enskog equation with external forces.

    The rest of this paper is arranged as follows.In Section 2 some properties of the collision operator Q of the Boltzmann-Enskog equation(1.1)are introduced including both the entropy identity and the nonincreasing property of the system entropy functional.In Section 3 some hypotheses of the external forces are then given for the Boltzmann-Enskog equation(1.1).New functionals are constructed and the time-asymptotic behaviour of a small family of solutions to the Boltzmann-Enskog equation(1.1)with external forces is given in Section 4.different functionals are de fi ned and the Lyapunov stability of solution to the Boltzmann-Enskog equation with external forces is fi nally shown in Section 5.

    2 The Conservation of Mass and the Entropy Functional

    In this section,we first prove a property of the collision operator Q introduced above,in order to show formally the conservation law of mass for the Boltzmann-Enskog equation (1.1)in the presence of external forces,and then we derive the entropy identity to get the nonincreasing property of the system entropy functional.

    Note that

    For the collision operator Q of the Boltzmann-Enskog equation(1.1)with(1.2)and(1.3) we give the following lemma.

    Lemma 2.1Suppose thatQ=Q+?Q?is a collisional operator as de fi ned by(1.2)and(1.3).Letψ=ψ(x,v)andf=f(x,v)be two measurable functions onR3×R3.IfψQ±(f)∈L1(R3×R3),then

    Let us first consider the loss integral Il.We proceed one step by exchanging v and w and replacing ω with?ω in the integral on the right hand side of(2.4).Then we replace x with x+aω and use(2.4).Thus we get

    The gain integral Igwill be considered below.By using the properties that

    we first rechange(2.3)as an integral with respect to the variables of ω,w′,v′and x.Then we exchange v and v′,w and w′,and replace ω with?ω.Finally,by using the same kind of changes of the loss integral Il,we can get

    Inserting(2.6)and(2.7)into(2.5)gives(2.1).

    Similarly,we can get(2.2).

    We usually call HB(t)the Boltzmann entropy functional.It has the following property:Theorem 2.1Put

    whereHB(t)andI(t)are de fi ned as follows:

    Assume thatf=f(t,x,v)is a nonnegative classical solution to the Boltzmann-Enskog equation(1.1)inL1(R3×R3),and bothQ±(f)andln(f)Q±(f)belong toL1(R3×R3).

    By integrating over the variable x on the right hand side of(2.10),Lemma 2.1 and the fact that

    (2.12)is also called the entropy indentity.Since lnx≤x?1 for x>0,the estimation of the integral on the right hand side of the entropy indentity(2.12)reads as

    The proof of this theorem is finished.

    We usually call H(t)in Theorem 2.1 the entropy functional of the system.Theorem 2.1 shows that the entropy functional of the system is nonincreasing.

    3 Hypotheses of External Forces

    In this section some hypotheses of the external forces are made and a representation of the mild solution is given for the Boltzmann-Enskog equation(1.1).

    Let us begin with the bicharacteristic equations of the Boltzmann-Enskog eqaution(1.1):

    Suppose that such a vector-value force function E(t,x)allows the above system(3.1)to have a global-in-time smooth solution denoted by

    for any fixed(t,x,v)∈R+×R3×R3,and that there exist two functions αi(s;t,x,v) (i=1,2)such that the solution(3.2)satis fies the following conditions:

    for any s∈R+and(ξ,η)∈R3×R3with any point(t,x,v) fixed inR+×R3×R3,where α0,d0and e0are positive constants independent of s and(t,x,v),and(s;t,x,v)(i=1,2) represent the derivative with respect to s.

    We now give a representation of the mild solution to the Boltzmann-Enskog equation. Let us first introduce an operator U(s)de fi ned as follows:

    A function f(t,x,v)is called a global mild solution to the Boltzmann-Enskog equation (1.1)if f(t,x,v)satis fies(3.10)for almost every(t,x,v)∈R+×R3×R3.

    By(1.7)and(1.8),U(s)Q(f)(t,x,v)can be rewritten as the di ff erence between the gain and loss terms of two other forms:

    Remark 3.1We construct a subset M of a Banach space C(R+×R3×R3),which has the property that every element f=f(s,x,v)∈M if and only if there exists a positive constant c such that f satis fies

    for any fixed p and q in(0,+∞).It follows that M is a Banach space when it is equipped with a norm of the following form:

    The initial data f0≡f(0,x,v)is bounded in L1(R3×R3).This implies that the total mass is finite.This requires that the mean free path is sufficiently large if the finite total mass is sufficiently small(see[5]).This is exactly the requirement on the Boltzmann-Enskog equation with external forces in in finite vacuum,which is similar to one considered by Illner and Shinbrot[8]for the Boltzmann equation.It is worth mentioning that there are many different classes of functions which can be taken as the choice of h(X(0;t,x,v))and m(V(0;t,x,v))(see[5–6]).Suppose that the conditions(3.2)–(3.7)hold and that h(x)and m(v)are the same as in(3.15).It can be then known from[14]that the Boltzmann-Enskog equation(1.1)has a unique non-negative global mild solution f=f(t,x,v)∈M through a non-negative initial data f0=f0(x,v)when

    is sufficiently small.

    4 Asymptotic Behaviour

    In this section we build two new functionals and study their properties,and then show the time-asymptotic behaviour of a class of solutions to the Boltzmann-Enskog equation(1.1).

    Let us begin with two new functionals D=D++D?and F=F++F?,which are de fi ned as follows:

    where for clarity,X(s)and V(s)represent X(s;t,x,v)and V(s;t,x,v),respectively,from which the initial variables(t,x,v)are suppressed.Obviously,by(3.13)and(3.14),we know that

    For a special class of solutions f to the Boltzmann-Enskog equation,D[f](s)describes interactions between particles with various velocities.It can be found below that the timedecay property of D[f](s)for a special class of solutions f to the Boltzmann-Enskog equation leads directly to the time-asymptotic behaviour of these solutions in L1(R3×R3)and so D

    is called Lyapunov functional.To estimate the time decay of D[f](s),we first have to show the following lemma.

    Lemma 4.1[14]LetF(x)be an integrable function onR3andva vector inR3.Assume thatS2+={ω|v·ω≥0,ω∈S2}whereS2is a unit sphere surface inR3.Then

    Combining De fi nition(4.1)and Lemma 4.1,we can easily deduce that

    for a class of integrable function f=f(t,x,v).Furthermore,we also obtain a similar timedecay property of D[f](s)to that shown by Jiang[14]as follows.

    Theorem 4.1LetDandFbe de fi ned by(4.1)and(4.2).Assume thatf=f(t,x,v)is a nonnegative classical solution to the Boltzmann-Enskog equation(1.1)with(1.2)and(1.3)through an initial datumf0=f0(x,v),and that bothfandfQ±(f)belong toL1(R3×R3).Giving the hypothesis(3.8)of the external forcesE(t,x),and assuming the diametera>0,then we have

    Proof.The proof of this theorem is similar to that of Jiang[14].

    By Theorem 4.1,we then get

    Theorem 4.2Put

    Assume thatf=f(t,x,v)is a nonnegative classical solution to the Boltzmann-Enskog equation(1.1)with(1.2)and(1.3)through an initial datumf0=f0(x,v)satisfying

    and that bothfandfQ±(f)belong toL1(R3×R3).Giving the hypothesis(3.8)of the external forcesE(t,x),and assuming the diametera>0,thenf(t,x,v)converges inL1(R3×R3)tof∞(t,x,v)astgoes to+∞.

    Proof.By Theorem 4.1,we know that

    where D[f](s)and F[f](s)are the same as in Lemma 4.1.It follows that

    This completes our proof of Theorem 4.2.

    Remark 4.2In Theorem 4.2 the time-asymptotic behaviour of a class of solutions to the Boltzmann-Enskog equation is in fact the time-asymptotic convergence of this type of solutions in the L1norm to the free motion as t trends to in fi nity.The time-asymptotic convergence in the L∞norm for the Boltzmann-Enskog equation in the presence of external forces can be also shown by using the same method as given by Polewczak[3]for the Enskog equation in the absence of external forces.

    5 L1Stability

    In this section some new functionals are constructed for the L1stability of global classical solutions to the Boltzmann-Enskog equation(1.1)with(1.2)and(1.3).One of them is a Lyapunov functional and it is equivalent to the L1distance functional.The time-decay property of the Lyapunov functional is also shown for the L1stability.

    Let us begin with constructing two functionals L[f,g](s)and Fd[f,g](s)as follows. L[f,g](s)is de fi ned by

    where k1and k2are positive constants to be determined later,D is the same as given by (4.1),Ldis denoted by

    This functional L is here called a Lyapunov functional.

    We first have the following property of the equivalence between the Lyapunov functional and L1distance functionals L and Ld.

    Lemma 5.1LetLandLdbe de fi ned by(5.1)and(5.2),respectively.Suppose that the hypothesis(3.8)of the external forcesE(t,x)holds.Assume that

    本組20例患者隨訪1年以上,末次隨訪時(shí),所有患者無疼痛,關(guān)節(jié)活動明顯改善15例,關(guān)節(jié)活動部分改善3例,無改善的2例。

    are two nonnegative classical solutions to the Boltzmann-Enskog equation(1.1)with(1.2)and(1.3)through initial dataf0=f0(x,v)andg0=g0(x,v),respectively,and that all the functionsf,g,fQ±(f)andgQ±(g)are elements inL1(R3×R3).Then

    where

    and by(3.8)and Lemma 4.1 it can be found that W(s,X(s),V(s))is bounded by the L1norms of f0and g0as follows:

    (5.5)thus follows.Our proof of this lemma hence ends up.

    For a class of solutions f=f(t,x,v)and g=g(t,x,v)to the Boltzmann-Enskog equation (1.1)with(1.2)and(1.3),the time-decay properties of the two functionals Dd[f,g](s)and Ld[f,g](s)can be also obtained as follows.

    Lemma 5.2LetLandLdbe de fi ned by(5.1)and(5.2),respectively.Suppose that the hypothesis(3.8)of the external forcesE(t,x)holds.Assume thatf=f(t,x,v)andg= g(t,x,v)are two nonnegative classical solutions to the Boltzmann-Enskog equation(1.1)with(1.2)and(1.3)through initial dataf0=f0(x,v)andg0=g0(x,v)respectively,and that all the functionsf,g,fQ±(f)andgQ±(g)are elements inL1(R3×R3).Then

    It can be further shown that the functional L has the following time-decay property similar to that shown by Ha(see Theorem 1.4 in[13]).

    Theorem 5.1LetLandFdbe de fi ned by(5.1)and(5.4),respectively.Suppose that the hypothesis(3.8)of the external forcesE(t,x)holds and that the diametera>0.Assume thatf=f(t,x,v)andg=g(t,x,v)are two nonnegative classical solutions to the Boltzmann-Enskog equation(1.1)with(1.2)and(1.3)through initial dataf0=f0(x,v)andg0=g0(x,v)satisfyingrespectively,and that all thefunctionsf,g,fQ±(f)andgQ±(g)are elements inL1(R3×R3).Then there exists a positive constantsuch that

    for anys∈R+,whereCis a positive constant independent ofs.

    Proof.Similarly to the proof of Ha(see Theorem 1.4 in[13]).

    By Theorem 5.1,we further have

    Theorem 5.2Suppose that the hypothesis(3.8)of the external forcesE(t,x)holds and that the diametera>0.Assume that

    are two nonnegative classical solutions to the Boltzmann-Enskog equation(1.1)with(1.2)and(1.3)through initial dataf0=f0(x,v)andg0=g0(x,v)satisfying

    respectively,and all the functionsf,g,fQ±(f)andgQ±(g)are elements inL1(R3×R3).ThenZZ

    whereCis a positive constant independent oft.

    [1]Enskog D.Kinetiche Theorie der W`armeleitung,Reibung und Selbstdi ff usion in gewissen werdichteten Gasen und Flubigkeiten.Kungl.Sv.Vetenskapsakademiens Handl,1922,63: 3–44,English Transl.in Brush S G,Kinetic Theory.vol 3.New York:Pergamon,1972.

    [2]Arkeryd L.On the Enskog equation with large initial data.SIAM J.Math.Anal.,1990,21: 631–646.

    [3]Polewczak J.Global existence and asymptotic behavior for the nonlinear Enskog equation.SIAM J.Appl.Math.,1989,49:952–959.

    [4]Polewczak J.On some open problems in the revised Enskog equation for dense gases.In Proceedings“WASCOM 99”10th Conference on Waves and Stability in Continuous Media, Vulcano(Eolie Islands),Italy,June 7–12,1999.In:Ciancio V,Donato A,Oliveri F,Rionero S.London:World Scienti fi c Publishing,2001:382–396.

    [5]Duan R,Yang T,Zhu C.Global existence to Boltzmann equation with external force in in finite vacuum.J.Math.Phys.,2005,46:053307.

    [6]Guo Y.The Vlasov-Poisson-Bolzmann system near vacuum.Comm.Math.Phys.,2001,218: 293–313.

    [7]Ukai S.Les solutions globales de l’quation de Boltzmann dans l’espace tout entier et dans le demi-espace,C.R.Acad.Sci.Paris Sr.A/B,1976,282(6):A317-A320.

    [8]Illner R,Shinbrot M.The Boltzmann equation,global existence for a rare gas in an in finite vacuum.Comm.Math.Phys.,1984,95:217–226.

    [9]DiPerna R J,Lions P L.On the Cauchy problem for Boltzmann equations:Global existence and weak stability.Ann.Math.,1989,130:321–366.

    [10]Cercignani C.Existence of global solutions for the space inhomogeneous Enskog equation.Transport Theory Statist.Phys.,1987,16:213–221.

    [11]Toscani G,Bellomo N.The Enskog-Boltzmann equation in the whole space R3:Some global existence,uniqueness and stability results.Comput.Math.Appl.,1987,13:851–859.

    [12]Polewczak J.Global existence in L1for the modi fi ed nonlinear Enskog equation in R3.J. Statist.Phys.,1989,56:157–173.

    [13]Ha S.Lyapunov functionals for the Enskog-Boltzmann equation.Indiana Univ.Math.J.,2005, 54:997–1014.

    [14]Jiang Z.Global solution to Enskog equation with external force in in finite vacuum.Chinese J.Contemp.Math.,2009,30:49–62.

    Communicated by Yin Jing-xue

    76P05,35Q75

    A

    1674-5647(2012)02-0108-13

    date:March 3,2009.

    The NSF(11171356)of China and the Grant(09LGTY45)of Sun Yat-Sen University.

    猜你喜歡
    明顯改善關(guān)節(jié)疼痛
    疼痛不簡單
    被慢性疼痛折磨的你,還要“忍”多久
    疼在疼痛之外
    特別健康(2018年2期)2018-06-29 06:13:40
    疼痛也是病 有痛不能忍
    海峽姐妹(2017年11期)2018-01-30 08:57:43
    風(fēng)電:棄風(fēng)限電明顯改善 海上風(fēng)電如火如荼
    能源(2018年8期)2018-01-15 19:18:24
    膽寧片聯(lián)合阿托伐他汀鈣片治療非酒精性脂肪肝93療效觀察
    健康前沿(2017年2期)2017-08-13 18:40:48
    人民生活明顯改善
    用跟骨解剖鋼板內(nèi)固定術(shù)治療跟骨骨折合并跟距關(guān)節(jié)及跟骰關(guān)節(jié)損傷的效果探討
    控?zé)焻f(xié)會:北京禁煙實(shí)施一周年 無煙環(huán)境明顯改善
    人民周刊(2016年11期)2016-06-30 14:04:45
    miRNA-140、MMP-3在OA關(guān)節(jié)滑液中的表達(dá)及相關(guān)性研究
    精品一区二区三区av网在线观看| 国产亚洲精品久久久久久毛片| 久久精品91蜜桃| 日韩成人在线观看一区二区三区| 视频区欧美日本亚洲| 老鸭窝网址在线观看| 少妇的丰满在线观看| 最近最新中文字幕大全电影3 | 一级毛片精品| 日韩中文字幕欧美一区二区| 久久久国产欧美日韩av| 性色av乱码一区二区三区2| 精品熟女少妇八av免费久了| 亚洲 欧美一区二区三区| 亚洲中文字幕日韩| 99热只有精品国产| 真人一进一出gif抽搐免费| 亚洲精品国产色婷婷电影| 色婷婷久久久亚洲欧美| 国产真人三级小视频在线观看| 成在线人永久免费视频| 美女 人体艺术 gogo| 啦啦啦韩国在线观看视频| 亚洲熟女毛片儿| avwww免费| 性色av乱码一区二区三区2| 欧美黄色淫秽网站| 国产成+人综合+亚洲专区| 97碰自拍视频| 十八禁网站免费在线| 国产成人影院久久av| 亚洲免费av在线视频| 免费一级毛片在线播放高清视频 | tocl精华| 麻豆一二三区av精品| 丝袜在线中文字幕| 亚洲av日韩精品久久久久久密| 后天国语完整版免费观看| xxx96com| 12—13女人毛片做爰片一| 亚洲视频免费观看视频| tocl精华| 中文字幕久久专区| 亚洲 欧美 日韩 在线 免费| 变态另类丝袜制服| 国产成人av教育| 日日摸夜夜添夜夜添小说| 老司机靠b影院| 亚洲av美国av| 99香蕉大伊视频| 欧美另类亚洲清纯唯美| 午夜免费鲁丝| 精品久久蜜臀av无| 精品国产一区二区三区四区第35| 一区二区三区激情视频| 欧美成人午夜精品| 日本五十路高清| 久久狼人影院| 欧美日本中文国产一区发布| av在线天堂中文字幕| 一个人观看的视频www高清免费观看 | 欧美日韩中文字幕国产精品一区二区三区 | 亚洲美女黄片视频| 丝袜在线中文字幕| 天天一区二区日本电影三级 | 色在线成人网| 亚洲成人免费电影在线观看| 黄色a级毛片大全视频| 黄色视频不卡| 国产精品免费一区二区三区在线| 国产真人三级小视频在线观看| 91成人精品电影| 日本精品一区二区三区蜜桃| av视频免费观看在线观看| 精品久久久久久,| 午夜a级毛片| 久久香蕉国产精品| 亚洲黑人精品在线| 国产精品美女特级片免费视频播放器 | 亚洲精品一区av在线观看| 最近最新中文字幕大全电影3 | av免费在线观看网站| 人妻丰满熟妇av一区二区三区| 久久久久久久久久久久大奶| 午夜久久久久精精品| 色av中文字幕| 国产极品粉嫩免费观看在线| 亚洲精品中文字幕一二三四区| 国内毛片毛片毛片毛片毛片| 亚洲一码二码三码区别大吗| 国产欧美日韩一区二区三| 精品人妻在线不人妻| 一个人观看的视频www高清免费观看 | 91在线观看av| 亚洲精品av麻豆狂野| 男女做爰动态图高潮gif福利片 | 成人av一区二区三区在线看| 午夜激情av网站| 欧美乱色亚洲激情| 精品久久久久久久人妻蜜臀av | 精品久久久精品久久久| 精品国内亚洲2022精品成人| 久久久久精品国产欧美久久久| 国产成人欧美在线观看| 一级作爱视频免费观看| 久久精品成人免费网站| 精品国产乱码久久久久久男人| 亚洲av美国av| 久久精品aⅴ一区二区三区四区| 午夜福利高清视频| 老熟妇仑乱视频hdxx| 麻豆成人av在线观看| 欧美国产精品va在线观看不卡| 丝袜美足系列| 久久国产亚洲av麻豆专区| av天堂久久9| 九色国产91popny在线| 欧美中文综合在线视频| 亚洲av电影不卡..在线观看| 十分钟在线观看高清视频www| 无人区码免费观看不卡| 亚洲成av人片免费观看| 大香蕉久久成人网| 老鸭窝网址在线观看| 搡老妇女老女人老熟妇| 搡老妇女老女人老熟妇| 91av网站免费观看| 亚洲av成人av| 宅男免费午夜| 久久久国产欧美日韩av| 亚洲伊人色综图| ponron亚洲| 一进一出抽搐gif免费好疼| 欧美日韩精品网址| 香蕉久久夜色| 真人做人爱边吃奶动态| 精品一区二区三区av网在线观看| 久久久久精品国产欧美久久久| 多毛熟女@视频| 亚洲av电影不卡..在线观看| 操美女的视频在线观看| 99香蕉大伊视频| 别揉我奶头~嗯~啊~动态视频| 欧美乱妇无乱码| 国产成人一区二区三区免费视频网站| 中文字幕另类日韩欧美亚洲嫩草| 黄频高清免费视频| 一边摸一边做爽爽视频免费| 在线国产一区二区在线| 看免费av毛片| 国产1区2区3区精品| 91精品国产国语对白视频| 热re99久久国产66热| 精品国产国语对白av| 欧美不卡视频在线免费观看 | 亚洲无线在线观看| 99在线人妻在线中文字幕| av网站免费在线观看视频| 亚洲欧洲精品一区二区精品久久久| 国产一级毛片七仙女欲春2 | 成人三级做爰电影| 99久久久亚洲精品蜜臀av| 亚洲狠狠婷婷综合久久图片| 亚洲成av人片免费观看| 午夜福利成人在线免费观看| av片东京热男人的天堂| 一进一出好大好爽视频| 伊人久久大香线蕉亚洲五| 韩国精品一区二区三区| 日韩欧美国产一区二区入口| www.自偷自拍.com| avwww免费| 欧美日韩中文字幕国产精品一区二区三区 | 精品欧美国产一区二区三| av在线天堂中文字幕| 日韩欧美免费精品| 国产97色在线日韩免费| 亚洲第一电影网av| 国产亚洲精品一区二区www| 亚洲精品一卡2卡三卡4卡5卡| 美女大奶头视频| 日韩三级视频一区二区三区| 国产精品自产拍在线观看55亚洲| 又大又爽又粗| 亚洲男人的天堂狠狠| 国产激情欧美一区二区| 成人精品一区二区免费| 国产熟女xx| 国产视频一区二区在线看| 国产一区在线观看成人免费| 在线观看免费视频网站a站| 国产精品二区激情视频| 啪啪无遮挡十八禁网站| 中文字幕人妻熟女乱码| 国产麻豆成人av免费视频| 亚洲精品国产一区二区精华液| 性欧美人与动物交配| 精品国内亚洲2022精品成人| 超碰成人久久| 亚洲专区国产一区二区| 亚洲精品一区av在线观看| 久久久国产精品麻豆| 给我免费播放毛片高清在线观看| 级片在线观看| 欧美乱色亚洲激情| 97人妻精品一区二区三区麻豆 | 美国免费a级毛片| 一进一出抽搐gif免费好疼| 精品国产一区二区三区四区第35| 女性生殖器流出的白浆| 91国产中文字幕| 成人18禁高潮啪啪吃奶动态图| 日韩国内少妇激情av| 国产精品影院久久| 久久欧美精品欧美久久欧美| 欧美黑人精品巨大| 免费人成视频x8x8入口观看| 夜夜夜夜夜久久久久| 日日夜夜操网爽| 亚洲专区国产一区二区| 久久狼人影院| 亚洲狠狠婷婷综合久久图片| 国产麻豆69| 狂野欧美激情性xxxx| 黄色丝袜av网址大全| 精品久久久久久久人妻蜜臀av | 久久国产精品影院| 成人av一区二区三区在线看| 日本欧美视频一区| 久久久久久国产a免费观看| 国产精品美女特级片免费视频播放器 | 久久午夜综合久久蜜桃| 男男h啪啪无遮挡| 日韩国内少妇激情av| e午夜精品久久久久久久| 国产亚洲欧美精品永久| 级片在线观看| 亚洲色图综合在线观看| 男男h啪啪无遮挡| 国产熟女xx| 在线观看66精品国产| 老司机靠b影院| 亚洲精品在线观看二区| 女人被躁到高潮嗷嗷叫费观| 国产精品久久久久久亚洲av鲁大| 国产成人系列免费观看| 免费av毛片视频| 成人免费观看视频高清| 俄罗斯特黄特色一大片| 男女之事视频高清在线观看| 亚洲色图 男人天堂 中文字幕| 老司机午夜十八禁免费视频| 亚洲国产中文字幕在线视频| 高潮久久久久久久久久久不卡| 搡老熟女国产l中国老女人| 757午夜福利合集在线观看| 欧美激情久久久久久爽电影 | 两人在一起打扑克的视频| 九色国产91popny在线| 在线十欧美十亚洲十日本专区| 免费在线观看影片大全网站| 国产在线观看jvid| 搡老妇女老女人老熟妇| 免费久久久久久久精品成人欧美视频| 9热在线视频观看99| 国产高清激情床上av| 亚洲黑人精品在线| 国产精品乱码一区二三区的特点 | 欧美 亚洲 国产 日韩一| 国产午夜精品久久久久久| 色尼玛亚洲综合影院| 精品人妻1区二区| 91国产中文字幕| 亚洲色图av天堂| av在线天堂中文字幕| 啦啦啦韩国在线观看视频| 一进一出好大好爽视频| 国产精品永久免费网站| 亚洲片人在线观看| 大码成人一级视频| 国产亚洲精品第一综合不卡| 三级毛片av免费| 国产一区二区三区视频了| 久久久久久久精品吃奶| 国产免费男女视频| 大陆偷拍与自拍| 啦啦啦韩国在线观看视频| 国产一卡二卡三卡精品| √禁漫天堂资源中文www| av中文乱码字幕在线| 久久午夜亚洲精品久久| 亚洲精品在线美女| 国产亚洲av嫩草精品影院| 国产精品一区二区精品视频观看| 狠狠狠狠99中文字幕| 91在线观看av| 天天添夜夜摸| 国产亚洲精品综合一区在线观看 | 久热这里只有精品99| 欧美色欧美亚洲另类二区 | 人人妻人人澡人人看| 精品卡一卡二卡四卡免费| 亚洲成人国产一区在线观看| 欧美中文日本在线观看视频| 激情视频va一区二区三区| 午夜亚洲福利在线播放| 91九色精品人成在线观看| 长腿黑丝高跟| 国产成人av激情在线播放| 国产成人系列免费观看| 日本 欧美在线| 国产高清videossex| 亚洲国产精品合色在线| 国产男靠女视频免费网站| 99在线人妻在线中文字幕| 桃红色精品国产亚洲av| 午夜久久久久精精品| 日韩中文字幕欧美一区二区| 精品免费久久久久久久清纯| 国产亚洲精品av在线| 亚洲成av片中文字幕在线观看| www.熟女人妻精品国产| 一区二区日韩欧美中文字幕| svipshipincom国产片| 亚洲成人精品中文字幕电影| 国产成人欧美在线观看| 免费少妇av软件| 97超级碰碰碰精品色视频在线观看| 亚洲全国av大片| 午夜精品久久久久久毛片777| 精品一区二区三区视频在线观看免费| 欧美成狂野欧美在线观看| 亚洲熟女毛片儿| 免费看十八禁软件| 亚洲成人免费电影在线观看| 91国产中文字幕| 亚洲人成网站在线播放欧美日韩| www.www免费av| 成人国产综合亚洲| 亚洲成av片中文字幕在线观看| 国产麻豆69| 亚洲欧美激情综合另类| 99久久精品国产亚洲精品| 美女国产高潮福利片在线看| 色综合亚洲欧美另类图片| tocl精华| 人妻丰满熟妇av一区二区三区| 村上凉子中文字幕在线| 国产高清有码在线观看视频 | 国产1区2区3区精品| 好男人电影高清在线观看| 国产一区二区三区在线臀色熟女| 精品日产1卡2卡| 少妇熟女aⅴ在线视频| 色综合亚洲欧美另类图片| 精品久久久久久成人av| 国产免费av片在线观看野外av| 操美女的视频在线观看| 一边摸一边做爽爽视频免费| 成人亚洲精品一区在线观看| 岛国视频午夜一区免费看| 亚洲国产欧美一区二区综合| 狂野欧美激情性xxxx| 日韩国内少妇激情av| 国产xxxxx性猛交| 少妇裸体淫交视频免费看高清 | 自拍欧美九色日韩亚洲蝌蚪91| 在线十欧美十亚洲十日本专区| 国产不卡一卡二| 亚洲精品中文字幕一二三四区| 亚洲免费av在线视频| 国产亚洲精品av在线| 亚洲美女黄片视频| 少妇裸体淫交视频免费看高清 | 亚洲午夜理论影院| 91字幕亚洲| 国产精品九九99| 日韩有码中文字幕| 亚洲色图综合在线观看| 999久久久国产精品视频| 日韩三级视频一区二区三区| av福利片在线| 国产亚洲精品综合一区在线观看 | 别揉我奶头~嗯~啊~动态视频| 国产精品电影一区二区三区| 老熟妇仑乱视频hdxx| 亚洲精品粉嫩美女一区| 在线观看免费午夜福利视频| 国产成人免费无遮挡视频| 久久欧美精品欧美久久欧美| 国产精品精品国产色婷婷| 精品一区二区三区四区五区乱码| 99久久99久久久精品蜜桃| 亚洲少妇的诱惑av| 手机成人av网站| 韩国精品一区二区三区| 桃红色精品国产亚洲av| 日日夜夜操网爽| 国产男靠女视频免费网站| 一个人免费在线观看的高清视频| 欧美丝袜亚洲另类 | 51午夜福利影视在线观看| 日本三级黄在线观看| 欧美日韩黄片免| 国产精品爽爽va在线观看网站 | 俄罗斯特黄特色一大片| 久久久久久久久免费视频了| 久久国产精品男人的天堂亚洲| 麻豆国产av国片精品| av免费在线观看网站| 亚洲九九香蕉| 日日爽夜夜爽网站| 90打野战视频偷拍视频| 欧美性长视频在线观看| 免费看十八禁软件| 少妇粗大呻吟视频| 性少妇av在线| 一级a爱片免费观看的视频| 成年女人毛片免费观看观看9| 搡老岳熟女国产| 法律面前人人平等表现在哪些方面| 国产蜜桃级精品一区二区三区| 正在播放国产对白刺激| 中文字幕人妻丝袜一区二区| 在线国产一区二区在线| 欧美成人性av电影在线观看| 欧美成人午夜精品| 99精品久久久久人妻精品| 国产精品影院久久| 欧美日韩亚洲国产一区二区在线观看| 在线永久观看黄色视频| 欧美最黄视频在线播放免费| 亚洲av电影在线进入| 搡老熟女国产l中国老女人| 两个人视频免费观看高清| 久久国产精品影院| 99精品久久久久人妻精品| 国产精品影院久久| 欧美另类亚洲清纯唯美| 国产成年人精品一区二区| 脱女人内裤的视频| 日韩欧美免费精品| 一级黄色大片毛片| 日韩有码中文字幕| 国产精品久久久av美女十八| 久久伊人香网站| 国产精品二区激情视频| 欧美日本视频| 欧美在线一区亚洲| 成人特级黄色片久久久久久久| 一级作爱视频免费观看| 亚洲欧美日韩无卡精品| 国产av一区在线观看免费| 国产欧美日韩综合在线一区二区| 国产午夜福利久久久久久| 在线观看免费日韩欧美大片| 久久欧美精品欧美久久欧美| 美女扒开内裤让男人捅视频| 国产精品二区激情视频| 久久精品国产综合久久久| 51午夜福利影视在线观看| 亚洲欧美日韩另类电影网站| 国产熟女午夜一区二区三区| 免费看a级黄色片| 亚洲欧美精品综合久久99| 国产一卡二卡三卡精品| 热re99久久国产66热| 国产高清有码在线观看视频 | 91老司机精品| 国产成人精品在线电影| 免费无遮挡裸体视频| 一区二区三区精品91| 此物有八面人人有两片| 国产成人啪精品午夜网站| 中文字幕人妻丝袜一区二区| 美国免费a级毛片| 色精品久久人妻99蜜桃| 日本免费一区二区三区高清不卡 | 日本 av在线| 亚洲av电影不卡..在线观看| 巨乳人妻的诱惑在线观看| 亚洲精品美女久久久久99蜜臀| 18禁裸乳无遮挡免费网站照片 | 精品国产一区二区久久| 国产乱人伦免费视频| 这个男人来自地球电影免费观看| 亚洲五月色婷婷综合| 午夜福利视频1000在线观看 | 午夜老司机福利片| 老熟妇仑乱视频hdxx| 好男人在线观看高清免费视频 | 99久久久亚洲精品蜜臀av| 国产亚洲av嫩草精品影院| 亚洲 欧美 日韩 在线 免费| 亚洲性夜色夜夜综合| 欧美乱色亚洲激情| 免费看美女性在线毛片视频| 女人爽到高潮嗷嗷叫在线视频| 美女高潮到喷水免费观看| 黄色a级毛片大全视频| 国产xxxxx性猛交| 国产单亲对白刺激| 亚洲美女黄片视频| 亚洲成a人片在线一区二区| 久久久国产欧美日韩av| 在线av久久热| 亚洲全国av大片| 极品人妻少妇av视频| 悠悠久久av| 国产欧美日韩综合在线一区二区| 久热爱精品视频在线9| 精品国产乱码久久久久久男人| 国产精品一区二区在线不卡| 亚洲,欧美精品.| 91大片在线观看| 久久狼人影院| 日韩欧美在线二视频| 日本 av在线| 欧美国产日韩亚洲一区| 国产精品久久久久久精品电影 | 真人做人爱边吃奶动态| 极品教师在线免费播放| 丝袜美足系列| 日本免费a在线| 99国产精品一区二区三区| 国产高清有码在线观看视频 | 久久久久久久精品吃奶| 亚洲色图av天堂| 国产成人影院久久av| 成人av一区二区三区在线看| av福利片在线| 国产男靠女视频免费网站| 可以免费在线观看a视频的电影网站| 最好的美女福利视频网| 免费在线观看黄色视频的| 日韩免费av在线播放| 免费在线观看亚洲国产| 亚洲国产精品sss在线观看| 欧美黄色淫秽网站| 美女免费视频网站| 日本在线视频免费播放| 少妇被粗大的猛进出69影院| xxx96com| 国产精品九九99| 精品高清国产在线一区| 亚洲精品国产精品久久久不卡| av免费在线观看网站| 电影成人av| 一二三四在线观看免费中文在| 成人手机av| 亚洲专区中文字幕在线| 久久久国产成人精品二区| 男女做爰动态图高潮gif福利片 | 在线十欧美十亚洲十日本专区| 18美女黄网站色大片免费观看| 一边摸一边做爽爽视频免费| 中亚洲国语对白在线视频| 亚洲成人免费电影在线观看| 欧美日韩一级在线毛片| 老汉色∧v一级毛片| 国产亚洲欧美98| 在线观看免费视频网站a站| 我的亚洲天堂| 精品乱码久久久久久99久播| 怎么达到女性高潮| 香蕉丝袜av| 99国产精品一区二区三区| 国产精品久久久久久人妻精品电影| 在线观看66精品国产| 人人妻人人澡人人看| 久久久国产欧美日韩av| 成熟少妇高潮喷水视频| 欧美老熟妇乱子伦牲交| 亚洲欧洲精品一区二区精品久久久| 19禁男女啪啪无遮挡网站| 欧美日本视频| 免费搜索国产男女视频| 国产精品综合久久久久久久免费 | 亚洲自偷自拍图片 自拍| 男女下面插进去视频免费观看| 夜夜看夜夜爽夜夜摸| 人人妻人人澡人人看| 日韩精品青青久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利,免费看| 国产熟女xx| 这个男人来自地球电影免费观看| 好男人电影高清在线观看| 亚洲欧美精品综合久久99| 18禁国产床啪视频网站| 黄色毛片三级朝国网站| 免费女性裸体啪啪无遮挡网站| 亚洲欧美激情在线| 亚洲人成伊人成综合网2020| 日韩 欧美 亚洲 中文字幕| 国产在线精品亚洲第一网站| 亚洲视频免费观看视频| 中文字幕av电影在线播放| 高清黄色对白视频在线免费看| 亚洲中文字幕日韩| aaaaa片日本免费| 国产免费av片在线观看野外av| 一级毛片高清免费大全| 老鸭窝网址在线观看| 日韩免费av在线播放| 成人三级做爰电影| 男女床上黄色一级片免费看| 可以在线观看毛片的网站| 亚洲九九香蕉| 在线观看免费视频日本深夜| 免费在线观看黄色视频的| 免费少妇av软件| 欧洲精品卡2卡3卡4卡5卡区| 久久精品影院6| 一本综合久久免费|