• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Co3O4納米線的丙三醇輔助合成及其電化學(xué)性質(zhì)

    2012-12-21 06:32:52張國梁郭培志位忠斌趙修松
    物理化學(xué)學(xué)報 2012年2期
    關(guān)鍵詞:丙三醇納米線充放電

    張國梁 趙 丹 郭培志,* 位忠斌 趙修松,2

    (1青島大學(xué)化學(xué)化工與環(huán)境學(xué)院,纖維新材料與現(xiàn)代紡織國家重點實驗室培育基地,山東青島266071; 2School of Chemical Engineering,The University of Queensland,St Lucia,QLD 4072,Australia)

    Co3O4納米線的丙三醇輔助合成及其電化學(xué)性質(zhì)

    張國梁1趙 丹1郭培志1,*位忠斌1趙修松1,2

    (1青島大學(xué)化學(xué)化工與環(huán)境學(xué)院,纖維新材料與現(xiàn)代紡織國家重點實驗室培育基地,山東青島266071;2School of Chemical Engineering,The University of Queensland,St Lucia,QLD 4072,Australia)

    以硝酸鈷和丙三醇為反應(yīng)物通過反應(yīng)條件的改變控制制備出Co3O4納米線.利用粉末X射線衍射(XRD),掃描電子顯微鏡(SEM)和透射電子顯微鏡(TEM)對產(chǎn)物的形貌與結(jié)構(gòu)進行了表征.實驗發(fā)現(xiàn),在低掃描速率下,Co3O4納米線電極的循環(huán)伏安(CV)曲線呈現(xiàn)出兩對氧化還原峰.恒電流充放電實驗中,氧化鈷納米線電極在1A·g-1電流密度下的電容為163 F·g-1;在1和4 A·g-1條件下,其容量隨循環(huán)次數(shù)的增加先上升后下降, 1000次充放電循環(huán)后容量保持率分別在98%和80%以上,繼續(xù)增加循環(huán)次數(shù)則容量下降比較明顯.鋰離子電池性質(zhì)測試中,氧化鈷納米線的放電容量為1124 mAh·g-1,然而放電容量隨循環(huán)次數(shù)增加下降較快.基于實驗結(jié)果,對Co3O4納米線的形成機理及其結(jié)構(gòu)與電化學(xué)性質(zhì)之間的關(guān)系進行了探討.

    電極;電容量;Co3O4;納米線;丙三醇

    1 Introduction

    When the material dimensions fall into the nanometer scale, the so-called nanostructured materials may display unique magnetic,optical,catalytic,and electrochemical properties compared with those of the corresponding bulk counterparts.1-3Many methods,including the hydrothermal synthesis,template method,thermolysis,electrochemical route,and chemical vapour deposition,and so on,have been developed to synthesize various nanomaterials with controlled morphologies and architectures,such as nanocrystals,nanorods,nanowires,nanobelts, complex and hierarchical assemblages.3-9For instance,metal nanocrystals that display excellent electrocatalytic properties have been synthesized using an effective electrodeposition method.3

    With the critical demand of advanced functional nanomaterials for electrochemical energy conversion and storage,nanostructures of transition metal oxides have received increasing interest due to their easy synthesis,excellent properties,and non-expensive nature.Among the inorganic oxide nanomaterials synthesized,cobalt oxide nanomaterials have been prepared due to their important applications in gas sensors,catalysts,supercapacitor,and lithium-ion batteries.10-21For example,Co3O4nanotubes that were synthesized using anodic aluminum oxide membranes as the templates showed high discharge capacity and superior cycling reversibility as well as excellent sensitivity to hydrogen and alcohol.10Mesoporous cobalt oxide aerogels displayed excellent supercapacitive properties with high specific capacitances and cycle stability.11Mesoporous Co3O4nanowire arrays can be used as anodes in lithium-ion batteries which show high capacity and rate capability.15In the solutionbased synthesis of nanostructured materials,various liquids,including water,alcohol,ethylene glycol,and glycerol have usually been used as the solvent.1,4-6,22-25In this paper,however, glycerol has been selected as the reagent to synthesize Co3O4nanostructures22-24because hydroxyl groups in the molecules can react with metal ions.It is found that the molar ratio of Co(NO3)2to glycerol in the synthesis system plays an important role in the formation of desired products.The electrochemical properties of the samples are characterized by cyclic voltammetry(CV),galvanic charge-discharge,and cycling experiments either in three-electrode systems and lithium-ion batteries.

    2 Experimental

    Alcohols(≥99.7%),Co(NO3)2·6H2O(≥99.0%),glycerol(≥99.0%),and KOH(≥85.0%)were purchased from Sinopharm Chemical Reagent Company.Acetylene black(99.99%,Strem Chemicals,USA),polytetrafluorothylene latex(PTFE,60%) and polyvinylidene fluoride(PVDF)were purchased from Sigma-Aldrich,USA.Double distilled water was used in all the experiments.In a typical synthesis,aqueous Co(NO3)2solution (0.2 mol·L-1,15 mL)was dropped into aqueous glycerol solution(0.6 mol·L-1,15 mL)under stirring.The mixed solution was then transferred to a 40 mL teflon-lined autoclave.Hydrothermal process was carried out in an oven at 200°C for 24 h. The solid was collected and washed thoroughly with distilled water and ethanol each,and then dried in an oven at 60°C for 6 h.Co3O4nanowires were obtained after calcination of the collected solid in a tube furnace at 500°C for 2 h in air.

    X-ray diffraction(XRD)patterns were recorded on a Bruker D8 Advance X-ray diffractometer(German)equipped with graphite monochromatized Cu Kαradiation(λ=0.15418 nm) from 10°to 80°(2θ)using a solid detector.Scanning electron microscopy(SEM)images were taken with a JSM-6390LV scanning electron microscope(Japan)operated at 20 kV.Transmission electron microscopy(TEM)images were obtained with a JEM-2000EX transmission electron microscope(Japan) operated at 160 kV.Electrochemical measurements were performed on a CHI760C electrochemical workstation using a three-electrode cell with platinum wire as counter electrode and Hg/HgO electrode as reference electrode in aqueous KOH (3 mol·L-1)solutions.Electrodes for electrochemical studies were prepared by mixing Co3O4samples with acetylene carbon black and PTFE in a mass ratio of 75:20:5 and was blended to achieve a homogeneous mixture.The resulting slurry was then pressed onto a nickel foam grid(1 cm×1 cm)at 1.5×107Pa. The typical mass load of each electrode material was about 5 mg.Before measurements,the working electrodes were dipped into KOH(3 mol·L-1)solutions overnight.

    The performance of Co3O4nanowires as the cathode was also evaluated by a fastener cell with a lithium metal anode.To prepare positive electrodes,a homogeneous mixture of 75% (w)Co3O4with 20%(w)acetylene black and 5%(w)PVDF was cast onto an Al foil.After placed in a vacuum oven at 120°C for 12 h,fastener cells were assembled in an argon filled glove box.The assembled cells consisted of Co3O4based composites fabricated onto Al foil,Li metal foil as the negative electrode,and Celgard 2400 separator saturated with a 1 mol· L-1LiPF6electrolytic solution in 1:1 volume ratio of ethylene carbonate to dimethyl carbonate.The galvanostatic charge/discharge experiment was performed between 3.0 and 0.1 V.

    3 Results and discussion

    Fig.1 shows the XRD patterns of the as-made samples.As depicted in Fig.1a,the XRD pattern of the hydrothermal precipitate can be mainly indexed to Co(OH)2phase(JCPDS No. 03-0913).If the precipitate is undergone heat treated in air,the corresponding XRD pattern(Fig.1b)can be well indexed to the pure cubic Co3O4phase(JCPDS No.74-2120).Furthermore, the peaks in Fig.1b are very sharp,indicating the existence of well crystalline Co3O4phase in the calcinated sample.

    Fig.1 XRD patterns of the hydrothermal precipitate(a)and the calcinated sample(b)prepared from the systems with the Co2+/ glycerol molar ratio of 1:3 in the raw materials

    The morphology and structure of the as-made samples have been characterized by SEM and TEM,as shown in Fig.2.It can be seen from Fig.2a that needle-like nanowires of Co(OH)2are obtained with the length scales more than 10 μm.TEM image of sample Co(OH)2further confirms the formation of nearly uniform wire-like nanostructures with the width of about 20 nm(Fig.2b).The inset in Fig.2b shows the selected area electron diffraction(SAED)pattern of a single Co(OH)2nanowire, indicating the polycrystalline nature of the nanowires.Clearly, wire-like nanostructures are maintained for sample Co3O4(Fig.2c)after the heat treatments of sample Co(OH)2.As can be verified by the TEM image(Fig.2d),the contour of sample Co3O4is similar to that of the precursor,which exhibits the formation of moniliform nanowires with nanoparticle decorated. The average size of Co3O4nanoparticles is about 20 nm.The SAED pattern of the sample shown in the inset of Fig.2d approves that Co3O4nanowires are not single crystalline.

    In order to study the formation mechanism of sample Co(OH)2,the intermediates obtained from early stages of the hydrothermal process were investigated by SEM.It should be pointed out that no product can be obtained when the reaction time is less than 120 min.As depicted in Fig.3a,wire-like nanostructures as well as spherical aggregates are formed if the reaction time was 140 min.When the synthesis time prolonged to 160 min,disperse nanowires or bundles of nanowires can be observed except the existence of few particles as depicted in Fig.3b.With the time further up to 3 h,pure nanowire structures can be gained(Fig.3c).Finally,uniform nanowires are obtained with the reaction time extended to 24 h(Fig.2a).

    It is interesting to find that no product can be obtained when glycerol was not involved in the synthesis systems at similar conditions.This indicates that Co2+ions and glycerol are indeed reacted in the hydrothermal synthesis conditions.21Our results confirm that the molar ratio between Co2+and glycerol play a key role in the formation of cobalt hydroxide.21These can be verified by the XRD and SEM results of the samples prepared with different Co2+/glycerol molar ratios of the reactants. As depicted in Fig.4a,mainly cubic phase of Co3O4(JCPDS No.74-2120)can be obtained when the Co2+/glycerol molar ratio is 1:1.Furthermore,a weak peak at 2θ of 32.5°appeared, ascribed to the(100)peak of Co(OH)2(JCPDF No.74-1057), indicating the existence of a small amount of Co(OH)2in the sample.If the Co2+/glycerol molar ratio changes to 1:1.2,besides Co3O4phase,as derived from Fig.4b,two peaks at 14.7° and 17.1°attributed to the(100)and(101)peaks of β-Co(OH)2(JCPDS No.45-0031),respectively,and one peak at 23.9°attributed to the(001)peak of Co(OH)2(JCPDS No.03-0913) are observed.With the Co2+/glycerol molar ratio increased to 1: 1.5,main β-Co(OH)2and Co(OH)2phases are gained concomitant a small amount of cubic Co3O4phase(Fig.4c).When the molar ratios are further up to 1:2,as shown in Fig.4d,the diffraction peaks of the sample are similar to those shown in Fig.1a and Co(OH)2phases are predominant in the product.

    Fig.2 SEM(a,c)and TEM(b,d)images of samples Co(OH)2(a,b)and Co3O4(c,d)

    Fig.3 SEM images of the intermediates after hydrothermal processes for 140 min(a),160 min(b),and 180 min(c)

    Fig.5 shows the SEM images of the above samples.It is clear that the Co2+/glycerol molar ratios in the raw materials have strong effects on the shapes,and sizes of the products.As depicted in Fig.5a,micro-scale aggregates composed of irregular structures are formed with the molar ratio of 1:1.Two types of structures with micron size,namely flower and aggregate structures,can be observed when the Co2+/glycerol molar ratio is 1:1.2(Fig.5b).More micro-scale flower structures composed of nanosheets with the thickness of 20-40 nm can be seen from Fig.5c when the sample synthesized with the molar ratio of 1:1.5.However,wire-like nanostructures are observed (Fig.5d)when the Co2+/glycerol molar ratio is further increased to 1:2,of which the widths of the nanowires are much larger than the sample shown in Fig.2a.Based on these experimental results,it is suggested that at the early stage of the synthesis one Co2+ion coordinates with one glycerol molecule when the Co2+/glycerol molar ratio is 1:1.However,the Co2+-glycerol coordinated complex can be formed from one Co2+ion and two glycerol molecules when the Co2+/glycerol molar ratio is 1:2 or 1:3.Thereafter,Co(OH)2nanowires can be obtained ultimately after the proper reaction time.

    Fig.4 XRD patterns of the products synthesized from the systems with the Co2+/glycerol molar ratios of(a)1:1,(b)1:1.2, (c)1:1.5,(d)1:2 in the raw materials

    The electrochemical properties of Co3O4nanowires were investigated while micro-scale aggregates of Co3O4obtained from the system with the Co2+/glycerol molar ratio of 1:1 were not involved due to the existence of impurity in the sample. Fig.6 shows the CV curves of Co3O4nanowires in aqueous KOH electrolytes.It can be concluded from Fig.6a that two pairs of peaks in CV curves of Co3O4electrodes are mainly associated with the redox process,which should be attributed to cubic Co3O4phase.4,11,26The redox reactions derived from CV curves can be indexed to the following reactions:27Based on the average value of peak potential(Ep)of p1 versus p2,peak p1 appears prior to oxygen evolution due to the oxidation of Co2+to Co3+and peak p2 is for the reverse process as shown in reaction(1).27-30However,peak p3 occurs due to oxidation Co3+to Co4+and peak p4 is therefore attributed to the reduction of Co4+to Co3+as shown in reaction(2).22,27The ΔEpvalues of p1 versus p2 and p3 versus p4 are increased from 80 and 9.1 mV to 119 and 64 mV,respectively,with the scan rates varied from 2 to 20 mV·s-1.It is well-known that the theoretic ΔEpvalue for a reversible single-electron transfer process is 58 mV. These results indicate that the reaction occurs as a quasi-reversible process at a lower scan rate during the anodic potential sweep of the electrode.If the scan rate is 0.3 V·s-1or larger, the shape of CV curves for the sample changes largely due to the irreversibility of electrochemical reactions(Fig.6b).

    Fig.5 SEM images of the products synthesized from the systems with the Co2+/glycerol molar ratios of(a)1:1,(b)1:1.2,(c)1:1.5,(d)1:2 in the raw materials

    Fig.6 CV curves of Co3O4nanowire-based electrodes at different scan rates

    It can also be derived from Fig.6 that the capacitive charac-teristic of Co3O4nanowire electrodes is mainly based on the redox mechanism.Fig.7 shows the galvanostatic charge-discharge curves of nanowire-based electrodes at different current densities under the potential range of 0-0.47 V in a three-electrode system.The specific capacitance can be calculated from the equation,C=Itd/(mΔv),31where I is the current in the charge-discharge measurement,m is the mass of the active materials,tdis the variance metric of charge or discharge time, and Δv is the variance metric of charge or discharge.It can be calculated that the capacitance of the nanowire is 163 F·g-1at a current density of 1 A·g-1.The capacitances are gradually decreased to 136,121,and 119 F·g-1at current densities of 2,3, and 4 A·g-1,respectively.These results were in good agreement with those of the CV experiments.

    Fig.7 Galvanostatic charge-discharge curves of Co3O4 nanowire-based electrodes at different current densities i/(A·g-1):(a)1,(b)2,(c)3,(d)4

    The cycle stability of the active material was investigated by galvanostatic charge-discharge measurements.Fig.8 displays the variations of specific capacitances at 1 and 4 A·g-1with the cycle number.It can be seen that the capacitance increases slightly at the first cycle,indicating that more active substance were excited.31When the current density is 1 A·g-1,the specific capacitance increases from 120 F·g-1at the first cycle to 135 F·g-1at the 50th cycle,retains more than 98%after 1000 cycles and then decreases rapidly to 78 F·g-1after 1600 cycles.If the current density increases to 4 A·g-1,the change of the specific capacitance is similar to that obtained at 1 A·g-1.The specific capacitance increases at the first cycle and then decreases with the cycles larger than 50.After 1000 cycles,the capacitance retains more than 80%of the origin and then reduces rapidly to 85 F·g-1after 1600 cycles.Furthermore,long-term cycle test could lead to distinctly irreversible electrochemical reactions and morphology change,14explaining similar capacity behavior of these electrodes after 1100 cycles.

    Fig.8 Specific capacitances of Co3O4nanowires-based electrodes at 1A·g-1(a)and 4A·g-1(b)

    The performance of Co3O4nanowires as lithium-ion battery positive electrodes is evaluated by the cell configuration Co3O4/ Li at room temperature.Fig.9 displays both the discharge curves(i.e.,voltage vs capacity)and cycle performance of the sample.The first discharge capacity at the rate of 0.1C(1C= 890 mA·g-1)is 1124 mAh·g-1(Fig.9a),with the first cycle irreversible loss of 410 mAh·g-1(Fig.9b).Furthermore,the voltage plateaus at around 1.0 V in discharge curves for these samples can be ascribed to the formation of metallic Co embedding in the Li2O matrix.15The large first discharge capacity is normally ascribed to irreversible reactions(e.g.,decomposition of electrolyte)occurring during the first discharge.The first discharge capacity of the sample decreased drastically to 631 and 368 mAh·g-1at 0.5C and 1C rates,respectively.It can also be observed from Fig.9b that the capacity decreases slowly after the second cycle similar to other reports.32-34The reason is that with the Li+insertion and extraction process,its large volume expansion/contraction and severe particle result in electrode pulverization and loss of interparticle contact and,conse-quently lead to a large irreversible capacity loss and poor cycling stability.15,35,36

    Fig.9 The first discharge curves(a)and specific capacity(b)of Co3O4nanowires at different rates

    4 Conclusions

    Co3O4nanowires were controllable synthesized by a glycerol-assisted synthesis method using Co(NO3)2and glycerol as the reactants.The CV curves of Co3O4nanowire electrodes display two pairs of redox reactions at scan rates less than 0.2 V· s-1.Galvanostatic charge-discharge measurements in the threeelectrode system showed that specific capacitances of Co3O4nanowire electrodes were 163 F·g-1at a current density of 1 A· g-1.The electrodes showed higher cycle stability at a lower current density based on the cycle-capacitance relationship under current densities of 1 and 4 A·g-1.In lithium-ion battery measurements,Co3O4nanowire electrodes showed a discharge capacitance of 1124 mAh·g-1.The formation mechanism of Co3O4structures and the relationship between their structures and electrochemical properties were discussed based on the experimental results.

    (1) Burda,C.;Chen,X.;Narayanan,R.;El-Sayed,M.A.Chem. Rev.2005,105,1025.

    (2)Xia,Y.;Yang,P.;Sun,Y.;Wu,Y.;Mayers,B.;Gates,B.;Yin,Y.; Kim,F.;Yan,H.Adv.Mater.2003,15,353.

    (3)Tian,N.;Zhou,Z.Y.;Sun,S.G.;Ding,Y.;Wang,Z.L.Science 2007,316,732.

    (4) Xiong,S.L.;Yuan,C.Z.;Zhang,X.G.;Xi,B.J.;Qian,Y.T.

    Chem.Eur.J.2009,15,5320.

    (5)Guo,P.Z.;Wei,Z.B.;Wang,B.Y.;Ding,Y.H.;Li,H.L.;

    Zhang,G.L.;Zhao,X.S.Colloids Surf.A 2011,380,237.

    (6) Chen,C.H.;Abbs,S.F.;Morey,A.;Sithambaram,S.;Xu,L.P.; Garces,H.F.;Hines,W.A.;Suib,S.L.Adv.Mater.2008,20, 1205.

    (7)Li,Y.G.;Tan,B.;Wu,Y.Y.J.Am.Chem.Soc.2006,128, 14258.

    (8) Cong,H.P.;Yu,S.H.Cryst.Growth Des.2009,9,210.

    (9)Chen,Y.C.;Hu,L.;Wang,M.;Min,Y.L.;Zhang,Y.G.

    Colloids Surf.A 2009,336,64.

    (10) Li,W.Y.;Xu,L.N.;Chen,J.Adv.Funct.Mater.2005,15,851.

    (11)Wei,T.Y.;Chen,C.H.;Chang,K.H.;Lu,S.Y.;Hu,C.C.

    Chem.Mater.2009,21,3228.

    (12)Zhao,Z.G.;Geng,F.X.;Bai,J.B.;Cheng,H.M.J.Phys.

    Chem.C 2007,111,3848.

    (13) Hu,L.H.;Peng,Q.;Li,Y.D.J.Am.Chem.Soc.2008,130, 16136.

    (14) Lou,X.W.;Deng,D.;Lee,J.Y.;Archer,L.A.J.Mater.Chem. 2008,18,4397.

    (15) Li,Y.G.;Tan,B.;Wu,Y.Y.Nano Lett.2008,8,265.

    (16)Mekhemer,G.A.H.;Abd-Allah,H.M.M.;Mansour,S.A.A. Colloids Surf.A 1999,160,251.

    (17) Salabas,E.L.;Rumplecker,A.;Kleitz,F.;Radu,F.;Schueth,F. Nano Lett.2006,6,2977.

    (18)Nam,K.T.;Kim,D.W.;Yoo,P.J.;Chiang,C.Y.;Meethong, N.;Hammond,P.T.;Chiang,Y.M.;Belcher,A.M.Science 2006,312,885.

    (19) Li,T.;Yang,S.;Huang,L.;Gu,B.;Du,Y.Nanotechnology 2004,15,1479.

    (20)Kang,Y.M.;Song,M.S.;Kim,J.H.;Kim,H.S.;Park,M.S.; Lee,J.Y.;Liu,K.H.;Dou,S.X.Electrochim.Acta 2005,50, 3667.

    (21)Yang,L.X.;Zhu,Y.J.;Li,L.;Zhang,L.;Tong,H.;Wang,W. W.;Cheng,G.F.;Zhu,J.F.Eur.J.Inorg.Chem.2006,4787.

    (22)Xiu,S.N.;Shahbazi,A.;Shirley,V.;Mims,M.R.;Wallace,C. W.J.Anal.Appl.Pyrol.2010,87,194.

    (23)Yao,J.F.;Yu,L.;Zhang,L.X.;Wang,H.T.Mater.Lett.2011, 65,2304.

    (24) Li,X.H.;Zhang,D.H.;Chen,J.S.J.Am.Chem.Soc.2006, 128,8382.

    (25)Guo,P.Z.;Han,G.T.;Wang,B.Y.;Zhao,X.S.Acta Phys.-Chim.Sin.2010,26,2557.[郭培志,韓光亭,王寶燕,趙修松.物理化學(xué)學(xué)報,2010,26,2557.]

    (26) Zheng,M.;Cao,J.;Liao,S.;Liu,J.;Chen,H.;Zhao,Y.;Dai, W.;Ji,G.;Cao,J.;Tao,J.J.Phys.Chem.C 2009,113,3887.

    (27) Gao,Y.Y.;Chen,S.L.;Cao,D.X.;Wang,G.L.;Yin,J.L. J.Power Sources 2010,195,1757.

    (28) Lin,C.;Ritter,J.A.;Popov,B.N.J.Electrochem.Soc.1998, 145,4097.

    (29) Barbero,C.;Planes,G.A.;Miras,M.C.Electrochem.Commun. 2001,3,113.

    (30) Xu,J.;Gao,L.;Cao,J.Y.;Wang,W.C.;Chen.Z.D. Electrochim.Acta 2010,56,732.

    (31)Ye,X.G.;Zhang,X.G.;Mi,H.Y.;Yang,S.D.Acta Phys.-Chim.Sin.2008,24,1105. [葉向果,張校剛,米紅宇,楊蘇東.物理化學(xué)學(xué)報,2008,24,1105.]

    (32) Lou,X.W.;Deng,D.;Lee,J.Y.;Feng,J.;Archer,L.A.Adv. Mater.2008,20,258.

    (33)Kang,J.G.;Ko,Y.D.;Park,J.G.;Kim,D.W.Nanoscale Res. Lett.2008,3,390.

    (34) Binotto,G.;Larcher,D.;Prakash,A.S.;Urbina,R.H.;Hegde, M.S.;Tarascon,J.M.Chem.Mater.2007,19,3032.

    (35)Yao,W.L.;Wang,J.L.;Yang,J.;Du,G.D.J.Power Sources 2008,176,369.

    (36)Wu,Z.S.;Ren,W.C.;Wen,L.;Gao,L.B.;Zhao,J.P.;Chen,Z. P.;Zhou,G.M.;Li,F.;Cheng H.M.ACS Nano 2010,4,3187.

    October 11,2011;Revised:November 18,2011;Published on Web:November 24,2011.

    Glycerol-Assisted Synthesis and Electrochemical Properties of Co3O4Nanowires

    ZHANG Guo-Liang1ZHAO Dan1GUO Pei-Zhi1,*WEI Zhong-Bin1ZHAO Xiu-Song1,2
    (1Laboratory of New Fiber Materials and Modern Textile,the Growing Base for State Key Laboratory,School of Chemistry, Chemical Engineering and Environmental Sciences,Qingdao University,Qingdao 266071,Shandong Province,P.R.China;2School of Chemical Engineering,The University of Queensland,St Lucia,QLD 4072,Australia)

    Cobalt oxide(Co3O4)nanowires were controllably synthesized using glycerol and Co(NO3)2as reagents and adjustment of the experimental parameters.The morphology and structure of the asprepared products were characterized by a series of techniques such as X-ray podwer diffraction(XRD), scanning electron microscopy(SEM),and transmission electron microscopy(TEM).Electrochemical performance of the nanowires was studied by cyclic voltammetry(CV)and galvanostatic charge-discharge measurements.It was found that two pairs of redox peaks appeared in the CV curves of Co3O4nanowire electrodes at low scan rates.The specific capacitance of the Co3O4nanowire electrodes was 163 F·g-1at a current density of 1 A·g-1,according to the galvanostatic charge-discharge measurements.Cycle stability tests showed that the specific capacitance increased over the first tens of cycles and then reduced slowly. After 1000 cycles,the capacitance retention was over 98%at 1 A·g-1and 80%at 4 A·g-1;it then decreased obviously with further increase in cycle number.In Li-ion battery measurements,Co3O4nanowire electrodes showed a discharge capacitance of 1124 mAh·g-1which decreased rapidly during the cycle test. The formation mechanism and the relationship between the structure and electrochemical properties of Co3O4nanowires were discussed based on the experimental results.

    Electrode;Capacitance;Co3O4;Nanowire;Glycerol

    10.3866/PKU.WHXB201111241

    *Corresponding author.Email:pzguo@qdu.edu.cn,guopz77@yahoo.com;Tel:+86-532-83780378.

    The project was supported by the National Natural Science Foundation of China(20803037,21143006),Natural Science Foundation of Shandong Province,China(ZR2009BM013),and Foundation of Qingdao Municipal Science and Technology Commission,China(11-2-4-2-(8)-jch).

    國家自然科學(xué)基金(20803037,21143006),山東省自然科學(xué)基金(ZR2009BM013)和青島市應(yīng)用基礎(chǔ)研究項目(11-2-4-2-(8)-jch)資助

    O646;O613.3;O614.8

    猜你喜歡
    丙三醇納米線充放電
    Au/Co3O4-ZnO催化劑上CO2-丙三醇羰基化合成丙三醇碳酸酯
    葉絲氣流干燥過程中水分和丙三醇遷移特性
    煙草科技(2022年11期)2022-12-20 05:58:40
    V2G模式下電動汽車充放電效率的研究
    丙三醇制丙三醇碳酸酯催化研究進展
    遼寧化工(2021年8期)2021-09-07 09:14:46
    3d過渡金屬摻雜對Cd12O12納米線電子和磁性能的影響
    基于SG3525的電池充放電管理的雙向DC-DC轉(zhuǎn)換器設(shè)計
    電子制作(2019年23期)2019-02-23 13:21:36
    溫度對NiAl合金納米線應(yīng)力誘發(fā)相變的影響
    磁性金屬Fe納米線的制備及其性能
    丙三醇對氧化鋁陶瓷支撐體性能的影響
    鋰離子電池充放電保護電路的研究
    丰满迷人的少妇在线观看| 国产高清激情床上av| 欧美人与性动交α欧美精品济南到| 亚洲中文av在线| 999精品在线视频| 欧美国产精品va在线观看不卡| 欧美在线一区亚洲| 91麻豆av在线| 黄片大片在线免费观看| 狠狠婷婷综合久久久久久88av| 亚洲第一av免费看| 丰满饥渴人妻一区二区三| av不卡在线播放| 777米奇影视久久| 别揉我奶头~嗯~啊~动态视频| 免费高清在线观看日韩| 国产精品一区二区在线观看99| 久久精品人人爽人人爽视色| 国产91精品成人一区二区三区 | 一本一本久久a久久精品综合妖精| 精品人妻熟女毛片av久久网站| 最近最新免费中文字幕在线| 色综合欧美亚洲国产小说| 色播在线永久视频| tube8黄色片| videosex国产| 久久九九热精品免费| 美女扒开内裤让男人捅视频| 久热爱精品视频在线9| 国产主播在线观看一区二区| a在线观看视频网站| 国产av一区二区精品久久| 国产在线免费精品| bbb黄色大片| 怎么达到女性高潮| 999久久久精品免费观看国产| av欧美777| 亚洲七黄色美女视频| 成年人黄色毛片网站| 老司机福利观看| 少妇猛男粗大的猛烈进出视频| 亚洲一区中文字幕在线| 日韩欧美国产一区二区入口| 亚洲第一青青草原| 免费观看a级毛片全部| 欧美大码av| 国产精品1区2区在线观看. | 好男人电影高清在线观看| kizo精华| 大香蕉久久成人网| 一级毛片精品| 伊人久久大香线蕉亚洲五| 天堂动漫精品| 欧美日韩一级在线毛片| 国产精品 欧美亚洲| 精品少妇久久久久久888优播| 在线观看免费视频日本深夜| 久久中文看片网| 久久精品91无色码中文字幕| 国产精品免费大片| 水蜜桃什么品种好| 美女高潮喷水抽搐中文字幕| 视频区图区小说| 黄色a级毛片大全视频| 一级黄色大片毛片| 日韩成人在线观看一区二区三区| 亚洲成人国产一区在线观看| 高清毛片免费观看视频网站 | 国产成人精品久久二区二区91| 极品人妻少妇av视频| 色视频在线一区二区三区| 亚洲专区字幕在线| 一级a爱视频在线免费观看| 丁香欧美五月| 亚洲人成77777在线视频| 黄片大片在线免费观看| 色视频在线一区二区三区| 午夜激情av网站| 亚洲 国产 在线| 人妻一区二区av| 麻豆av在线久日| 777米奇影视久久| 日韩免费高清中文字幕av| 男人舔女人的私密视频| 亚洲久久久国产精品| 亚洲av国产av综合av卡| 成人三级做爰电影| 精品卡一卡二卡四卡免费| 老汉色∧v一级毛片| 国产精品国产av在线观看| 最近最新中文字幕大全免费视频| 免费不卡黄色视频| www.熟女人妻精品国产| 757午夜福利合集在线观看| 波多野结衣av一区二区av| 成人免费观看视频高清| 1024视频免费在线观看| 欧美成人免费av一区二区三区 | 水蜜桃什么品种好| 男女无遮挡免费网站观看| 少妇裸体淫交视频免费看高清 | 精品人妻熟女毛片av久久网站| 欧美亚洲 丝袜 人妻 在线| 国产精品欧美亚洲77777| 免费日韩欧美在线观看| 国产野战对白在线观看| 国产精品一区二区在线观看99| 国产精品美女特级片免费视频播放器 | 日本av免费视频播放| 国产日韩一区二区三区精品不卡| 黄色成人免费大全| 国产一区有黄有色的免费视频| 老司机影院毛片| 18禁黄网站禁片午夜丰满| 最新美女视频免费是黄的| 女性被躁到高潮视频| 少妇精品久久久久久久| 少妇裸体淫交视频免费看高清 | 久久人妻福利社区极品人妻图片| 菩萨蛮人人尽说江南好唐韦庄| 91精品国产国语对白视频| 丝瓜视频免费看黄片| 欧美激情高清一区二区三区| 正在播放国产对白刺激| 国产深夜福利视频在线观看| 最近最新中文字幕大全免费视频| 人人澡人人妻人| 国产精品亚洲一级av第二区| 午夜福利一区二区在线看| 满18在线观看网站| 久久久久视频综合| 国产成人免费无遮挡视频| 老司机靠b影院| 亚洲精品美女久久久久99蜜臀| 日本av免费视频播放| 精品一区二区三区av网在线观看 | 精品免费久久久久久久清纯 | av不卡在线播放| 波多野结衣av一区二区av| 免费女性裸体啪啪无遮挡网站| 国产成人免费观看mmmm| av电影中文网址| 丝袜喷水一区| 纵有疾风起免费观看全集完整版| 五月天丁香电影| 建设人人有责人人尽责人人享有的| av视频免费观看在线观看| a级毛片在线看网站| 精品久久蜜臀av无| 国产精品电影一区二区三区 | 中文亚洲av片在线观看爽 | 人人妻人人爽人人添夜夜欢视频| 免费女性裸体啪啪无遮挡网站| 国产成人av教育| 我的亚洲天堂| 九色亚洲精品在线播放| 在线观看www视频免费| 波多野结衣av一区二区av| 日韩三级视频一区二区三区| 一夜夜www| 国产成人欧美在线观看 | 天天影视国产精品| 国产福利在线免费观看视频| 成年女人毛片免费观看观看9 | 成人特级黄色片久久久久久久 | 777米奇影视久久| av不卡在线播放| 精品视频人人做人人爽| 18禁美女被吸乳视频| 久久久久视频综合| 美女国产高潮福利片在线看| 国产又色又爽无遮挡免费看| av网站免费在线观看视频| 国产亚洲午夜精品一区二区久久| 午夜激情av网站| 在线永久观看黄色视频| av网站免费在线观看视频| www.熟女人妻精品国产| 日韩免费av在线播放| 国产精品.久久久| 热99re8久久精品国产| 日日爽夜夜爽网站| av线在线观看网站| 日韩欧美免费精品| 夜夜夜夜夜久久久久| www日本在线高清视频| 在线观看免费视频网站a站| 香蕉国产在线看| 一本久久精品| 国产欧美日韩精品亚洲av| 成人国产av品久久久| 国产伦理片在线播放av一区| 亚洲人成电影观看| 91大片在线观看| 精品少妇一区二区三区视频日本电影| 精品人妻在线不人妻| 欧美精品人与动牲交sv欧美| 久久午夜综合久久蜜桃| 999久久久精品免费观看国产| 国产在线免费精品| 高清av免费在线| 亚洲午夜精品一区,二区,三区| 精品一品国产午夜福利视频| 男女边摸边吃奶| 久久影院123| 一级a爱视频在线免费观看| 欧美黑人欧美精品刺激| 两人在一起打扑克的视频| 亚洲自偷自拍图片 自拍| 国产精品香港三级国产av潘金莲| 视频在线观看一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 成人av一区二区三区在线看| 亚洲人成77777在线视频| 777米奇影视久久| 国产亚洲av高清不卡| 亚洲精品美女久久久久99蜜臀| 午夜精品久久久久久毛片777| 精品高清国产在线一区| 悠悠久久av| 黑丝袜美女国产一区| 老司机午夜福利在线观看视频 | 久久人妻熟女aⅴ| 欧美国产精品一级二级三级| 999久久久精品免费观看国产| 色94色欧美一区二区| 国产成人欧美在线观看 | 两个人免费观看高清视频| 久久人妻福利社区极品人妻图片| 亚洲av日韩精品久久久久久密| 国产成人精品久久二区二区91| 亚洲一区二区三区欧美精品| 免费不卡黄色视频| 丰满迷人的少妇在线观看| 国产亚洲精品一区二区www | 少妇粗大呻吟视频| 国产在线观看jvid| 午夜福利,免费看| 国产成人精品无人区| 极品人妻少妇av视频| 久久午夜综合久久蜜桃| 久久精品亚洲精品国产色婷小说| 久久久久久久国产电影| 久久国产精品男人的天堂亚洲| 亚洲男人天堂网一区| 国产午夜精品久久久久久| 99re6热这里在线精品视频| 电影成人av| 国产精品免费大片| 亚洲精品av麻豆狂野| 亚洲午夜精品一区,二区,三区| 亚洲第一av免费看| 热99久久久久精品小说推荐| 亚洲国产精品一区二区三区在线| 夜夜夜夜夜久久久久| 免费久久久久久久精品成人欧美视频| 男女边摸边吃奶| 丝瓜视频免费看黄片| 大陆偷拍与自拍| 久久狼人影院| 在线观看免费视频网站a站| 91av网站免费观看| 欧美精品高潮呻吟av久久| 乱人伦中国视频| 久热这里只有精品99| 亚洲中文av在线| 桃花免费在线播放| 色婷婷久久久亚洲欧美| av欧美777| 国产色视频综合| 久久久精品94久久精品| 国产精品98久久久久久宅男小说| 日韩精品免费视频一区二区三区| 一级片免费观看大全| 色婷婷av一区二区三区视频| 婷婷丁香在线五月| 9热在线视频观看99| 国产淫语在线视频| 狠狠婷婷综合久久久久久88av| 菩萨蛮人人尽说江南好唐韦庄| 香蕉久久夜色| 老熟女久久久| 老司机影院毛片| 一区二区三区精品91| 国产精品亚洲av一区麻豆| 两个人看的免费小视频| 国产精品久久久久久精品电影小说| 午夜福利视频在线观看免费| 亚洲性夜色夜夜综合| 久久香蕉激情| 精品第一国产精品| 曰老女人黄片| av在线播放免费不卡| 国产精品国产av在线观看| 电影成人av| 自拍欧美九色日韩亚洲蝌蚪91| 啦啦啦视频在线资源免费观看| 中文字幕制服av| 19禁男女啪啪无遮挡网站| 亚洲色图 男人天堂 中文字幕| 黄片播放在线免费| 天天影视国产精品| 亚洲人成伊人成综合网2020| 曰老女人黄片| 亚洲精品国产精品久久久不卡| 精品欧美一区二区三区在线| 婷婷成人精品国产| 少妇裸体淫交视频免费看高清 | 国产男女超爽视频在线观看| 高清av免费在线| 欧美 日韩 精品 国产| 天天操日日干夜夜撸| 真人做人爱边吃奶动态| avwww免费| 别揉我奶头~嗯~啊~动态视频| 国产精品国产高清国产av | 后天国语完整版免费观看| 不卡av一区二区三区| 亚洲精品美女久久久久99蜜臀| 午夜激情久久久久久久| 久久久久久人人人人人| 国产精品久久久久久人妻精品电影 | 色在线成人网| 欧美精品一区二区免费开放| av不卡在线播放| 亚洲精品粉嫩美女一区| 熟女少妇亚洲综合色aaa.| 欧美 日韩 精品 国产| 夜夜爽天天搞| 午夜91福利影院| 国产不卡av网站在线观看| 久久精品国产99精品国产亚洲性色 | 18禁国产床啪视频网站| 日本撒尿小便嘘嘘汇集6| 妹子高潮喷水视频| 精品福利永久在线观看| 午夜福利影视在线免费观看| 黄片小视频在线播放| 成人国产av品久久久| 国产免费福利视频在线观看| 中文字幕av电影在线播放| 久久国产精品男人的天堂亚洲| 久久精品亚洲av国产电影网| 午夜激情av网站| 国产成人精品在线电影| www.熟女人妻精品国产| 国产在线一区二区三区精| 亚洲av电影在线进入| 正在播放国产对白刺激| 精品亚洲成a人片在线观看| 黄片大片在线免费观看| 免费在线观看视频国产中文字幕亚洲| 搡老岳熟女国产| 视频区欧美日本亚洲| 日韩欧美国产一区二区入口| 精品一品国产午夜福利视频| 久久免费观看电影| 欧美中文综合在线视频| 丰满人妻熟妇乱又伦精品不卡| 精品高清国产在线一区| 每晚都被弄得嗷嗷叫到高潮| 久久久久精品人妻al黑| 亚洲人成电影免费在线| 啦啦啦视频在线资源免费观看| 久久久精品区二区三区| 午夜福利乱码中文字幕| 男女下面插进去视频免费观看| aaaaa片日本免费| 国产精品电影一区二区三区 | 动漫黄色视频在线观看| 十八禁网站免费在线| 亚洲人成电影免费在线| 美女福利国产在线| 国产成人系列免费观看| 国产成人影院久久av| 99精品在免费线老司机午夜| 天天操日日干夜夜撸| 69av精品久久久久久 | 一区福利在线观看| a在线观看视频网站| 在线av久久热| 91精品国产国语对白视频| 99re在线观看精品视频| 波多野结衣一区麻豆| 99精品在免费线老司机午夜| 日韩成人在线观看一区二区三区| 啪啪无遮挡十八禁网站| 久久久久久久久免费视频了| av欧美777| 纯流量卡能插随身wifi吗| 久久中文字幕一级| 一级毛片电影观看| 天天躁日日躁夜夜躁夜夜| 免费在线观看影片大全网站| videosex国产| 久久午夜亚洲精品久久| 久久影院123| 久久人人97超碰香蕉20202| 国产三级黄色录像| 99热网站在线观看| 成年人午夜在线观看视频| 亚洲av美国av| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美日韩另类电影网站| 捣出白浆h1v1| av片东京热男人的天堂| 夜夜骑夜夜射夜夜干| 啦啦啦中文免费视频观看日本| 国产高清视频在线播放一区| 久久精品国产亚洲av高清一级| 9色porny在线观看| 在线亚洲精品国产二区图片欧美| 国产精品.久久久| 2018国产大陆天天弄谢| 91字幕亚洲| 久久天躁狠狠躁夜夜2o2o| 最近最新中文字幕大全电影3 | 国产精品美女特级片免费视频播放器 | e午夜精品久久久久久久| 久久婷婷成人综合色麻豆| 电影成人av| 色老头精品视频在线观看| 免费高清在线观看日韩| 日日摸夜夜添夜夜添小说| avwww免费| 99久久精品国产亚洲精品| 亚洲中文字幕日韩| 亚洲国产精品一区二区三区在线| 看免费av毛片| 考比视频在线观看| 性少妇av在线| 另类精品久久| 亚洲一码二码三码区别大吗| 大片免费播放器 马上看| 免费在线观看完整版高清| 日韩中文字幕视频在线看片| 18禁观看日本| 黄片大片在线免费观看| 下体分泌物呈黄色| 叶爱在线成人免费视频播放| 9色porny在线观看| 80岁老熟妇乱子伦牲交| 首页视频小说图片口味搜索| 成人av一区二区三区在线看| a在线观看视频网站| 欧美精品亚洲一区二区| 久久人妻福利社区极品人妻图片| 精品久久久久久电影网| 9191精品国产免费久久| 久久99一区二区三区| 黄色成人免费大全| 别揉我奶头~嗯~啊~动态视频| av天堂在线播放| 日韩中文字幕视频在线看片| 热99久久久久精品小说推荐| 丁香六月欧美| 中文字幕另类日韩欧美亚洲嫩草| 水蜜桃什么品种好| 久久久国产成人免费| 亚洲伊人色综图| 久久久久视频综合| 国产欧美日韩一区二区三| 制服人妻中文乱码| 久久精品人人爽人人爽视色| 热99国产精品久久久久久7| 久久精品91无色码中文字幕| 最近最新中文字幕大全电影3 | 91字幕亚洲| 国产区一区二久久| 精品一品国产午夜福利视频| 怎么达到女性高潮| 亚洲九九香蕉| 亚洲五月色婷婷综合| 波多野结衣一区麻豆| 97在线人人人人妻| 午夜久久久在线观看| 亚洲精品一二三| 窝窝影院91人妻| 黄片小视频在线播放| 黄色a级毛片大全视频| 国产在线视频一区二区| 久久久久久久久免费视频了| 99re6热这里在线精品视频| 两个人看的免费小视频| 国产免费av片在线观看野外av| 欧美成人免费av一区二区三区 | 日本精品一区二区三区蜜桃| 最近最新中文字幕大全电影3 | 久久狼人影院| 亚洲成a人片在线一区二区| 国产一区二区在线观看av| 亚洲中文字幕日韩| 91国产中文字幕| 国产在视频线精品| 国产午夜精品久久久久久| 国产av国产精品国产| videosex国产| 国产亚洲精品一区二区www | 国产成人欧美在线观看 | 男女免费视频国产| 国产老妇伦熟女老妇高清| 国产免费福利视频在线观看| 香蕉久久夜色| 免费观看av网站的网址| 夜夜骑夜夜射夜夜干| 大型av网站在线播放| 在线 av 中文字幕| 日韩人妻精品一区2区三区| 国产精品一区二区精品视频观看| 男女边摸边吃奶| 亚洲五月色婷婷综合| 十八禁人妻一区二区| 国产精品亚洲一级av第二区| 久久久久国内视频| 亚洲五月色婷婷综合| 制服诱惑二区| 在线观看免费高清a一片| 国产91精品成人一区二区三区 | 在线观看免费日韩欧美大片| 久久午夜综合久久蜜桃| 嫩草影视91久久| 1024视频免费在线观看| 欧美乱码精品一区二区三区| 精品一区二区三区视频在线观看免费 | 岛国在线观看网站| 国产又爽黄色视频| 日韩大码丰满熟妇| 午夜91福利影院| 日韩精品免费视频一区二区三区| 美女午夜性视频免费| 国产黄频视频在线观看| 精品国产国语对白av| 国产成人欧美| 久久精品91无色码中文字幕| 精品福利观看| 性色av乱码一区二区三区2| 成人18禁高潮啪啪吃奶动态图| 国产精品香港三级国产av潘金莲| 亚洲熟女精品中文字幕| 一级黄色大片毛片| 99精国产麻豆久久婷婷| av天堂久久9| 国产真人三级小视频在线观看| 国产精品av久久久久免费| 丝袜人妻中文字幕| 成人精品一区二区免费| a级片在线免费高清观看视频| 日韩一卡2卡3卡4卡2021年| 国产老妇伦熟女老妇高清| av视频免费观看在线观看| e午夜精品久久久久久久| 女人被躁到高潮嗷嗷叫费观| 中亚洲国语对白在线视频| 中文字幕精品免费在线观看视频| videosex国产| 最新美女视频免费是黄的| 国产不卡一卡二| 一区在线观看完整版| 国产精品久久久久久精品电影小说| 国产av精品麻豆| 一级毛片精品| 亚洲成人国产一区在线观看| 欧美日韩亚洲国产一区二区在线观看 | 性色av乱码一区二区三区2| 欧美激情久久久久久爽电影 | 午夜福利在线观看吧| 热99国产精品久久久久久7| 国产精品久久久久久人妻精品电影 | 国产精品自产拍在线观看55亚洲 | 狠狠精品人妻久久久久久综合| 久久精品国产99精品国产亚洲性色 | 国产不卡av网站在线观看| 9191精品国产免费久久| 汤姆久久久久久久影院中文字幕| 女人被躁到高潮嗷嗷叫费观| 熟女少妇亚洲综合色aaa.| 亚洲精品国产精品久久久不卡| 国产精品久久久久久精品电影小说| 久久久久久久久久久久大奶| 久热爱精品视频在线9| 高清毛片免费观看视频网站 | 久久久久久久久免费视频了| 亚洲av日韩精品久久久久久密| 免费在线观看视频国产中文字幕亚洲| 亚洲精品中文字幕一二三四区 | 欧美日韩中文字幕国产精品一区二区三区 | 久久久国产精品麻豆| 国精品久久久久久国模美| 亚洲男人天堂网一区| 两个人看的免费小视频| 久热这里只有精品99| 国产精品亚洲av一区麻豆| 男女午夜视频在线观看| 两人在一起打扑克的视频| 国产精品影院久久| 亚洲国产av新网站| 亚洲av成人不卡在线观看播放网| 成人黄色视频免费在线看| 免费在线观看影片大全网站| 高清毛片免费观看视频网站 | 亚洲av日韩在线播放| 一区二区三区乱码不卡18| 黄色视频,在线免费观看| netflix在线观看网站| 色94色欧美一区二区| 一区二区三区国产精品乱码| 国产伦人伦偷精品视频| 亚洲欧美日韩高清在线视频 | 久久久久网色| 两性夫妻黄色片| 国产野战对白在线观看| 国产精品一区二区免费欧美| 少妇裸体淫交视频免费看高清 | 大码成人一级视频| 在线永久观看黄色视频|