• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Au12M(M=Na,Mg,Al,Si,P,S,Cl)團(tuán)簇的結(jié)構(gòu)、穩(wěn)定性和電子性質(zhì)

    2012-12-21 06:33:56趙高峰王銀亮孫建敏王淵旭
    物理化學(xué)學(xué)報 2012年6期
    關(guān)鍵詞:電荷原子軌道

    趙高峰 王銀亮 孫建敏 王淵旭

    (河南大學(xué)計算材料科學(xué)研究所,河南開封475004)

    Au12M(M=Na,Mg,Al,Si,P,S,Cl)團(tuán)簇的結(jié)構(gòu)、穩(wěn)定性和電子性質(zhì)

    趙高峰*王銀亮 孫建敏 王淵旭

    (河南大學(xué)計算材料科學(xué)研究所,河南開封475004)

    采用基于密度泛函理論的第一性原理方法系統(tǒng)地研究了Au12M(M=Na,Mg,Al,Si,P,S,Cl)團(tuán)簇的結(jié)構(gòu)、穩(wěn)定性和電子性質(zhì).對團(tuán)簇的平均結(jié)合能、鑲嵌能、垂直離化勢、最高占據(jù)分子軌道(HOMO)和最低未占據(jù)分子軌道(LUMO)的能級差、電荷布居分析、自然鍵軌道(NBO)進(jìn)行了計算和討論.對于Au12M(M=Na,Mg,Al)團(tuán)簇,它們形成了內(nèi)含M原子的最穩(wěn)定的籠狀結(jié)構(gòu).然而對于Au12M(M=Si,P,S,Cl)團(tuán)簇,它們卻形成了以M元素為頂點(diǎn)的穩(wěn)定錐形結(jié)構(gòu).在這些團(tuán)簇中發(fā)現(xiàn)Au12S團(tuán)簇相對是最穩(wěn)定的,這是由于Au12S團(tuán)簇形成了穩(wěn)定的滿殼層的電子結(jié)構(gòu).自然電荷布居分析表明:對于所有的Au12M(M=Na,Mg,Al,Si,P,S,Cl)團(tuán)簇電荷總是從Au原子轉(zhuǎn)向M原子.自然鍵軌道和HOMO分析表明Au12M團(tuán)簇中發(fā)生了Au原子的s-d軌道和M原子的p軌道間的雜化現(xiàn)象.

    密度泛函理論;團(tuán)簇;自然電荷布居分析;穩(wěn)定性;自然鍵軌道分析

    1 Introduction

    During the past two decades,coinage metal clusters have been intensively studied by both experimental and theoretical methods.Clustering occurs due to the facile hybridization of core d-electrons with outer s-electrons.Gold clusters have been of particular interest.Recently,Bulusu et al.1reported evidence of hollow cages of pure metal atoms.A novel Au20tetrahedral structure identified by photoelectron spectroscopy correlates with relativistic density functional theory(DFT)calculations.2Fa and Dong3identified a stable tube-like Aun(n= 26-28)cluster with scalar,relativistic,all-electron DFT.Highly stable“golden fullerene”Au32andAu42clusters have been reported,4,5and core-shell structures have been verified by recent studies on Au34and Au58clusters.6-8The existence of these high-symmetry clusters is attributed to the manifestation of aurophilicity,which can further enhance strong gold-gold interactions.9In addition,relativistic-effect-enhanced s-d hybridization and s-electron delocalization may also reflect the preference for high-symmetry structures.10-12

    Doping of gold clusters with impurity atoms is expected to open up new channels in which one can tailor properties by varying the nature of the dopant atom.13-15Since Pykko16and Li17et al.first reported the existence of highly stable Au12Wvia photoelectron spectroscopy,a considerable amount of experimental and theoretical work has been carried out on Au clusters doped with other impurity atoms.11,18-34Most of these studies have focused on Au12doped with transition-metal(TM)atoms.The high Ihor Ohsymmetry of the lowest-energy Au12TM clusters is attributed to the strong relativistic effect,aurophilic attraction,and 18-electron bonding to the 4s,5s,and 6s shells of the central heteroatom.16,35Furthermore,Au12TM clusters are more stable relative to icosahedral Au12and Au13cages,as verified by previous experimental17and theoretical11results.

    It is thus clear that the ground-state geometries of Au12TM clusters are icosahedral or octahedral,the reason being that TM atoms possess outer s electron shells.Although a number of studies have focused on the geometric structures and electronic properties of Au12TM clusters,there have been relatively few studies on gold clusters doped with non-transition elements.24,25,36-42In this paper,we perform first-principles studies of single atom impurities with 3s and 3p electrons in Au12clusters.These impurity atoms come from the same row of the Periodic Table,thus their principle quantum numbers remain the same while having an increasing number of valence electrons.When these atoms are embedded in Au12clusters,however,there are clear differences in their lowest-energy Au12M structures.

    2 Computational details

    All computations were performed by DFT with the unrestricted B3LYP exchange-correlation potential43-48and the effective core potential standard LanL2DZ basis sets.49-51The standard LanL2DZ basis sets are effective in calculating noble metals because they reduce difficulties in two-electron integral calculations caused by the heavy atoms.

    Calculations were performed with the Gaussian 03 program package.52For each stationary point of a cluster,the stability was examined by calculating the harmonic vibrational frequencies.If an imaginary frequency was found,a relaxation along the coordinates of the imaginary vibrational mode was carried out until a true local minimum was obtained.Therefore,all isomers for each cluster are guaranteed to be the local minimum. In addition,for the geometry optimization of each isomer,the spin multiplicity(SM)was at least 1,3,and 5 for even-electron clusters(Mg,Si,S,)and 2,4,and 6 for odd-electron clusters (Al,P,Cl).If the total energy decreases with increasing SM, we would use a higher spin state until the energy minimum was found.

    In order to test the validity of the computational method,we performed calculations on Au2and AuAl dimers.As illustrated in Table 1,our results are in good agreement with previous experimental and theoretical data.25,53-59

    3 Results and discussion

    3.1 Structures of clusters

    We examined a considerable number of low-lying isomers and determined the lowest-energy structures for Au12M(M= Na,Mg,Al,Si,P,Cl)clusters that are illustrated in Fig.1.For comparison,the icosahedral and octahedra cages for pure Au13clusters are also in Fig.1.In order to explain the structural features of these lowest-energy structures,we list the point group symmetry,the smallest bond length for Au-Au and Au-M, and the spin multiplicity in Table 2.

    Previous studies indicate that the ground-state structures of Au12TM clusters have TM encapsulated in the center of Au12icosahedral or octahedral cages with high Ihor Ohsymmetry.11,16,17,26,27In our work,the lowest-energy structures of Au12M (M=Na,Mg)clusters are similar to the octahedral structures of Au12TM clusters.However,the other Au12M(M=Al,Si,P,S, Cl)structures differ from theAu12TM structures.

    The ground state of the Au12Na cluster is an octahedral structure with the Na atom at its center,with D3dsymmetry,and a spin multiplicity of 2.The icosahedral structure also has the Na atom in the Au12cage center;however,its energy is 1.36 eVhigher than the ground state.In the octahedral structure,the shortest bond lengths of Au-Au and Au-Na are 0.284 and 0.291 nm,respectively,while the shortest bond lengths of Au-Au and Au-Na are 0.297 and 0.283 nm,respectively,for the icosahedral structure.When an Mg atom imbeds in the Au12cluster,it also forms an octahedral structure with the Mg in the center.However,the symmetry(Oh)of Au12Mg is higher than that(D3d)of Au12Na because all the Au—Au and Au—Mg bond lengths are the same(0.288 nm).The next higher energy isomer Au12Mg(b)in Fig.1 has S4point group symmetry with an energy very close to the ground-state structure(ΔE=0.59 eV). Recently,the geometric and electronic structures of clusters with a central 3d,4d,and 5d transition-metal atom encapsulated in an Au12cage have been investigated.11,26For encapsulated 3d and 4d transition-metals,the icosahedral clusters tend to be more stable than their octahedral isomers.But for 5d transitionmetals,the octahedral clusters tend to be more stable than their icosahedral isomers(except for Au12W).The octahedral structures of Au12Na and Au12Mg are more stable than their icosahedral isomers.Thus their ground state structures are similar to the clusters with a central 5d transition-metal(except for Au12W),but they differ from those with 3d,4d transition-metal impurities.In the case of Au12Al,the ground-state structure can be seen as a deformed octahedron with D2hsymmetry.Although the Al atom remains at the center,the outer Au12octahedral cage undergoes severe deformation.

    Table 1 Bond lengths(R),lowest harmonic vibrational frequencies(Freq),average binding energies(Eb),and vertical ionization potentials(VIPs)for the ground states ofAu2and AuAl dimers

    Table 2 Geometries of the lowest-energy isomers ofAu12M(M= Na,Mg,Al,Si,P,S,Cl)andAu13clusters

    The first important change occurs in the lowest-energy structure of Au12Si,where the Si atom is now located at the top of a pyramid formed by the Au atoms.The pyramidal structure possesses Cssymmetry and a spin multiplicity of 1.The fact that the Si atom is not encapsulated in the Au12cage as for Au12Na and Au12Mg may be due to the bonding properties and the orbital hybridization between M and Au atoms.The octahedral Au12Si cluster has an energy that is 1.45 eV higher than the pyramidal isomer.The ground-state structure of Au12P is also a pyramid,however it has higher symmetry(C4v)compared to Au12Si.The shortest bond lengths of Au-P and Au-Au are 0.257 and 0.279 nm.As shown in Fig.1,the Au12P cluster is more compact than Au12Si,which may be attributed to different Au-Si andAu-P bondings.

    The lowest-energy structure for Au12S is an irregular flat pyramid with low symmetry(C1),with the S atom at the bottom (Fig.1).It is thus more flat and extended than Au12P and Au12Si. It can be argued that the structure of Au12S results from electron delocalization over all the atoms.Surprisingly,a planar rhombic structure of Au12S is also observed,where the S atom occupies the center of the plane.However,its energy is 1.38 eV higher than the ground-state structure.Finally,we note that the Au12Cl cluster has a lowest-energy structure that is basketlike with the Cl atom at the apex.

    Fig.2 Average binding energies(Eb)of ground-stateAu12M (M=Na,Mg,Al,Si,P,S,Cl)andAu13clusters

    3.2 Stabilities of clusters

    The average binding energy(Eb)of a given cluster is a measure of its thermodynamic stability,which is defined as the difference between the energy sum of all the free atoms constituting the cluster and the total energy of the cluster,as given by: where ET(M),ET(Au),and ET(Au12M)represent the total energies of the lowest-energy M,Au,and Au12M,respectively.As seen from Fig.2,the Ebfor the ground states of Au12M(M=Na, Mg,Al,Si,P,S,Cl)clusters are higher than that of the pure Au13cluster.The Au12S cluster,possessing the largest Eb,is also found to be the most stable under study.This is attributed to the closed-shell(18-electron shell-filling)rule,with one electron from eachAu atom and six electrons from the S atom.

    Fig.3 Embedding energies of ground-stateAu12M (M=Na,Mg,Al,Si,P,S,Cl)andAu13clusters

    Fig.4 HOMO-LUMO energy gaps in ground-stateAu12M (M=Na,Mg,Al,Si,P,S,Cl)andAu13clusters

    To further understand the stabilities of Au12M clusters,we will discuss the embedding energy(Ed)of the ground-state structure,which is defined as: where ET(M),ET(Au12),and ET(Au12M)represent the total energies of the lowest-energy M,Au12,and Au12M clusters,respectively.As shown in Fig.3,Au12S possesses the highest embedding energy among Au12M(M=Na,Mg,Al,Si,P,S,Cl)clusters.Hence,Au12S should be the most stable.

    The energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital(HOMOLUMO)is a useful quantity when examining the chemical stability of clusters.A large energy gap correlates with a high barrier required to perturb the electronic structure.HOMOLUMO energy gaps for ground-state Au12M(M=Na,Mg,Al, Si,P,S,Cl)and Au13clusters are displayed in Fig.4.The largest energy gap(1.73 eV)is for Au12Mg,which indicates that it is the most chemically stable of these clusters.Meanwhile, Au12S has the second highest energy gap,and since it has the largest average binding energy among these clusters,it is both chemically and thermodynamically stable.

    Fig.5 VIPof ground-stateAu12M(M=Na,Mg,Al,Si,P,S,Cl) clusters

    The vertical ionization potential(VIP)is yet another parameter used to assess the chemical stability of small clusters,and is given by: where ET(Au12M+)is the total energy of the ionic clusters at the optimized neutral geometry.Large VIPs indicate high chemical stability.As shown in Fig.5,the VIPs of Au12Mg,Au12Si,and Au12S clusters are surprisingly higher than those for Au12Na, Au12Al,Au12P,and Au12Cl.This trend may be attributed to the number of electrons;recall that Au12Mg,Au12Si,and Au12S possess electrons in closed-shells,while the other four have electrons in open-shells.It indicates that Au12M(M=Mg,Si,S) clusters are chemically more stable than the other Au12M(M= Na,Al,P,Cl)clusters.Additionally,the VIP of Au12S is the largest in this series,which can be explained on the basis of its full closed-shells(18-electron rule).60

    3.3 Electronic properties

    Charge-transfer phenomena in the Au12M clusters can be obtained by natural population analysis.The atomic charges of the M atoms in the ground-state Au12M(M=Na,Mg,Al,Si,P, S,Cl)clusters are listed in Table 3,where we see that charges always transfer from the Au atoms to the electron-accepting M atoms.This clearly differs from that observed for Au5M and Au6M(M=Na,Mg,Al,Si,P,S,Cl)clusters.24,25Thus an important finding is that the direction of charge-transfer in M-doped gold clusters depends on cluster size.

    Table 3 Natural charge population and the electron configurations for M atoms inAu12M(M=Na,Mg,Al,Si,P,S,Cl) clusters through natural bond orbital(NBO)analysis

    Fig.6 Spatial orientation of the highest occupied molecular orbitals of the ground-stateAu12M(M=Na,Mg,Al,Si,P,S,Cl) clusters

    To examine hybridization between M(M=Na,Mg,Al,Si,P, S,Cl)atoms and Au in Au12M clusters,we present in Table 3 the natural electron configurations obtained from natural bond orbital(NBO)analysis.The valence electron configurations of the free atoms Na,Mg,Al,Si,P,S,and Cl are 3s1,3s2,3s23p1, 3s23p2,3s23p3,3s23p4,and 3s23p5,respectively.The NBO analysis in Table 3 reflects this s-p hybridization,where electrons transfer mainly from 3s to 3p orbitals in the M atoms.We also note that electrons transfer from 6s and 5d orbitals to 6p orbitals in the Au atoms,indicating sd-p hybridization.Since the 3p orbital gains more than the 3s orbital loses in the M atoms,it follows that the 6s and 5d orbitals in theAu atoms transfer electrons to the M 3p orbital.Thus hybridization does occur between the p orbital of the M atom and the s-d orbitals of the Au atoms.In order to further understand the chemical bonds in these systems,we plot in Fig.6 the spatial orientation of the HOMO energy levels for the Au12M clusters.The HOMOs show hybridization phenomena between p orbitals of the M atoms and the s-d orbitals of the Au atoms.These pictures are in good agreement with the NBO analysis.However,the hybridization of Au12M clusters differs from that in Au12TM,11which is attributed to the electronic properties of the dopant atoms.

    4 Summary

    We have carried out a first-principles investigation using DFT to systematically study the geometries and electronic properties of Au12M(M=Na,Mg,Al,Si,P,S,Cl)clusters.The Au12M(M=Na,Mg,Al)clusters form the lowest-energy cage structures with the M atom encapsulated in the center,while Au12M(M=Si,P,S,Cl)clusters form pyramids with the M atom at the apex.The lowest-energy geometries of Au12M(except Au12Na and Au12Mg clusters)are different from the high symmetry structure of 3d,4d,and 5d transition-metals in Au12TM clusters.This indicates that impurity atoms play a critical role in determining the structures and properties of Au12M clusters.The Au12S cluster,having full closed-shell orbitals,not only possesses a relatively high average binding energy and doping energy,but also a high VIP and HOMO-LUMO energy gap.Thus it is more stable than the other Au12M clusters.Finally,we note that an NBO analysis reveals that hybridization between the s-d orbitals in Au atoms and the p orbitals of the M impurities occurs inAu12M clusters.

    (1) Bulusu,S.;Li,X.;Wang,L.S.;Zeng,X.C.Proc.Natl.Acad. Sci.U.S.A.2006,103,8326.

    (2) Li,J.;Li,X.;Zhai,H.J.;Wang,L.S.Science 2003,299,864.

    (3)Fa,W.;Dong,J.M.J.Chem.Phys.2006,124,114310.

    (4)Johansson,M.P.;Sundholm,D.;Vaara,J.Angew.Chem.Int. Edit.2004,43,2678.

    (5)Gao,Y.;Zeng,X.C.J.Am.Chem.Soc.2005,127,3698.

    (6)Gu,X.;Bulusu,S.;Li,X.;Zeng,X.C.;Li,J.;Gong,X.G.; Wang,L.S.J.Phys.Chem.C 2007,111,8228.

    (7)Huang,W.;Ji,M.;Dong,C.D.;Gu,X.;Wang,L.M.;Gong,X. G.;Wang,L.S.ACS Nano 2008,2,897.

    (8)Dong,C.D.;Gong,X.G.J.Chem.Phys.2010,132,104301.

    (9)Scherbaum,F.;Grohmann,A.;Huber,B.;Krueger,C.; Schmidbaur,H.Angew.Chem.1988,100,1602.

    (10) Pyykko,P.Chem.Rev.1988,88,563.

    (11) Wang,S.Y.;Yu,J.Z.;Mizuseki,H.;Sun,Q.;Wang,C.Y.; Kawazoe,Y.Phys.Rev.B 2004,70,165413.

    (12)Hakkinen,H.;Moseler,M.;Kostko,O.;Morgner,N.; Hoffmann,M.A.;Issendorff,B.V.Phys.Rev.Lett 2004,93, 093401.

    (13)Yu,Y.J.;Wang,H.Y.;Yang,C.L.;Chen,J.N.ActaPhys.-Chim. Sin.2011,27,808.[于永江,王華陽,楊傳路,陳建農(nóng).物理化學(xué)學(xué)報,2011,27,808.]

    (14) Qian,H.F.;Barry,E.;Zhu,Y.;Jin,R.C.Acta Phys.-Chim.Sin. 2011,27,513.

    (15)Liang,W.H.;Wang,X.L.;Ding,X.C.;Chu,L.Z.;Deng,Z.C.; Fu,G.S.;Wang,Y.L.Acta Phys.-Chim.Sin.2011,27,1615. [梁偉華,王秀麗,丁學(xué)成,禇立志,鄧澤超,傅廣生,王英龍.物理化學(xué)學(xué)報,2011,27,1615.]

    (16)Pykko,P.;Runeberg,N.Angew.Chem.2002,41,2174.

    (17)Li,X.;Kiran,B.;Li,H.;Zhai,H.J.;Wang,L.S.Angew.Chem. Int.Edit.2002,41,4786.

    (18)Chen,M.X.;Yan,X.H.J.Chem.Phys.2008,128,174305.

    (19) Heinebrodt,M.;Malinowski,N.;Tast,F.;Branz,W.;Billas,I. M.L.;Martin,T.P.J.Chem.Phys.1996,110,9915.

    (20)Huang,W.;Wang,L.S.Phys.Rev.Lett.2009,102,153401.

    (21)Wang,L.M.;Pal,R.;Huang,W.;Zeng,X.C.;Wang,L.S. J.Chem.Phys.2010,132,114306.

    (22)Ferrighi,L.;Hammer,B.;Madsen,G.K.H.J.Am.Chem.Soc. 2009,131,10605.

    (23)Zhang,M.;He,L.M.;Zhao,L.X.;Feng,X.J.;Luo,Y.H. J.Phys.Chem.C 2009,113,6491.

    (24)Majumder,C.K.;Kandalam,A.K.;Jena,P.Phys.Rev.B 2006, 74,205437.

    (25)Zhang,M.;Chen,S.;Deng,Q.M.;He,L.M.;Zhao,L.N.;Luo, Y.H.Eur.Phys.J.D 2010,58,117.

    (26)Long,J.;Qiu,Y.X.;Chen,X.Y.;Wang,S.G.J.Phys.Chem.C 2008,112,12646.

    (27) Zhai,H.J.;Li,J.;Wang,L.S.J.Chem.Phys.2004,121,8369.

    (28)Gao,Y.;Bulusu,S.;Zeng,X.C.ChemPhysChem 2006,7,2275. (29) Li,X.;Kiran,B.;Cui,L.F.;Wang,L.S.Phys.Rev.Lett.2005, 95,253401.

    (30)Yang,A.P.;Fa,W.;Dong,J.M.J.Phys.Chem.A 2010,114, 4031.

    (31)Sun,Q.;Wang,Q.;Jena,P.;Kawazoe,Y.ACS Nano 2008,2, 341.

    (32)Wang,L.M.;Bai,J.;Lechtken,A.;Huang,W.;Schooss,D.; Kappes,M.M.;Zeng,X.C.;Wang,L.S.Phys.Rev.B 2009,79, 033413.

    (33) Neukermans,S.;Janssens,E.;Tanaka,H.;Silverans,R.E.; Lievens,P.Phys.Rev.Lett.2003,90,033401.

    (34)Walter,M.;Hakkinen,H.Phys.Chem.Chem.Phys.2006,8, 5407.

    (35) Autschbach,J.;Hess,B.A.;Johansson,M.P.;Neugebauer,J.; Patzschke,M.;Pyykko,P.;Reiher,M.;Sundholm,D.Phys. Chem.Chem.Phys.2004,6,11.

    (36)Zhao,L.X.;Cao,T.T.;Feng,X.J.;Liang,X.;Lei,Y.M.;Luo, Y.H.J.Mol.Struct.-Theochem 2009,895,92.

    (37) Graciela,B.P.;Ignacio,L.G.J.Mol.Struct.-Theochem 2002, 619,79.

    (38) Banerjee,A.;Ghanty,T.K.;Chakrabarti,A.;Kamal,C.J.Phys. Chem.C 2012,116,193.

    (39)Chen,D.D.;Kuang,X.Y.;Zhao,Y.R.;Shao,P.;Li,Y.F.Chin. Phys.B 2011,20,063601.

    (40)Li,Y.F.;Kuang,X.Y.;Wang,S.J.J.Phys.Chem.A 2010,114, 11691.

    (41) Jayasekharan,T.;Ghanty,T.K.J.Phys.Chem.C 2010,114, 8787.

    (42) Zhao,L.X.;Feng,X.J.;Cao,T.T.;Liang,X.;Luo,Y.H.Chin. Phys.B 2009,18,2709.

    (43) Becke,A.D.J.Chem.Phys.1986,84,4524.

    (44) Becke,A.D.J.Chem.Phys.1988,88,2547.

    (45) Becke,A.D.J.Chem.Phys.1988,88,1053.

    (46)Lee,C.;Yang,W.;Parr,R.G.Phys.Rev.B 1988,37,785.

    (47)Becke,A.D.J.Chem.Phys.1993,98,5468.

    (48)Kohn,W.;Sham,L.J.Phys.Rev.A 1965,140,1133.

    (49)Hay,P.J.;Wadt,W.R.J.Chem.Phys.1985,82,270.

    (50)Hay,P.J.;Wadt,W.R.J.Chem.Phys.1985,82,299.

    (51)Wadt,W.R.;Hay,P.J.J.Chem.Phys.1985,82,284.

    (52) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03, Revision B.03;Gaussian Inc.:Pittsburgh,PA,2003.

    (53) Zhao,G.F.;Zeng,Z.J.Chem.Phys.2006,125,014303.

    (54)Morse,M.D.Chem.Rev.1986,86,1049.

    (55)Negishi,Y.;Nakamura,Y.;Nakajima,A.;Kaya,K.J.Chem. Phys.2001,115,3657.

    (56) Simard,B.;Hackett,P.A.J.Mol.Spectrosc.1990,142,310.

    (57)Gingerich,K.A.;Blue,G.D.J.Chem.Phys.1973,59,185.

    (58) Ho,J.;Ervin,K.;Lineberger,W.J.Chem.Phys.1990,93,6987.

    (59) Taylor,K.;Pettitte-Hall,C.;Cheshnovsky,O.;Smalley,R. J.Chem.Phys.1992,96,3319.

    (60)Tomlman,C.A.Chem.Soc.Rev.1972,1,337.

    February 14,2012;Revised:April 5,2012;Published on Web:April 6,2012.

    Geometries,Stabilities and Electronic Properties of Au12M (M=Na,Mg,Al,Si,P,S,Cl)Clusters

    ZHAO Gao-Feng*WANG Yin-Liang SUN Jian-Min WANG Yuan-Xu
    (Institute of Computational Materials Science,Henan University,Kaifeng 475004,Henan Province,P.R.China)

    The geometries,stabilities,and electronic properties of Au12M(M=Na,Mg,Al,Si,P,S,Cl) clusters were systematically investigated by using first-principlescalculationsbased on density functional theory(DFT).For each cluster,the average binding energy,the embedding energy,the vertical ionization potential,the energy gap between the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO),the natural charge population analysis,and the natural bond orbital analysis(NBO)were calculated.The lowest-energy structures of Au12M(M=Na,Mg,Al) clusters are cages with M encapsulated in the center,while structures of Au12M(M=Si,P,S,Cl)clusters are pyramidal with M at the apex.The Au12S cluster,having the full closed-shells,is the most stable. Furthermore,from the natural population analysis,it follows that charges transfer from Au to M in all the clusters.The NBO and HOMO analyses reveal that hybridization occurs between the Au s-d orbitals and the M p orbitals.

    Density functional theory;Cluster;Natural charge population analysis;Stability; Natural bond orbital analysis

    10.3866/PKU.WHXB201204063

    ?Corresponding author.Email:zgf@henu.edu.cn;Tel:+86-378-3881602.

    The project was supported by the National Natural Science Foundation of China(10804027,11011140321)and Natural Science Foundation of Education Department of Henan Province,China(2011A140003).

    國家自然科學(xué)基金(10804027,11011140321)和河南省教育廳自然科學(xué)基金(2011A140003)資助項目

    O641

    猜你喜歡
    電荷原子軌道
    連續(xù)分布電荷體系電荷元的自能問題*
    物理通報(2024年4期)2024-04-09 12:41:28
    原子究竟有多???
    原子可以結(jié)合嗎?
    帶你認(rèn)識原子
    電荷知識知多少
    電荷守恒在化學(xué)解題中的應(yīng)用
    基于單純形法的TLE軌道確定
    CryoSat提升軌道高度與ICESat-2同步運(yùn)行
    朝美重回“相互羞辱軌道”?
    靜電現(xiàn)象有什么用?
    亚洲人成网站高清观看| 天堂av国产一区二区熟女人妻| 成人无遮挡网站| 国产精品 国内视频| 18禁裸乳无遮挡免费网站照片| 日韩av在线大香蕉| 久久香蕉国产精品| 哪里可以看免费的av片| 亚洲内射少妇av| 成人特级av手机在线观看| 色综合站精品国产| 中文字幕人妻丝袜一区二区| 男女做爰动态图高潮gif福利片| 国产真人三级小视频在线观看| 18禁国产床啪视频网站| 亚洲精品粉嫩美女一区| 亚洲性夜色夜夜综合| 偷拍熟女少妇极品色| 91久久精品国产一区二区成人 | 日日干狠狠操夜夜爽| 狠狠狠狠99中文字幕| 成人午夜高清在线视频| 欧美一区二区亚洲| 18禁美女被吸乳视频| а√天堂www在线а√下载| 亚洲精华国产精华精| 国产精华一区二区三区| 十八禁人妻一区二区| 国产日本99.免费观看| 精品午夜福利视频在线观看一区| 91麻豆av在线| 精品久久久久久成人av| 麻豆国产av国片精品| 51国产日韩欧美| 国产亚洲欧美在线一区二区| 91在线精品国自产拍蜜月 | 久久精品亚洲精品国产色婷小说| 欧美不卡视频在线免费观看| 黄色成人免费大全| 一进一出抽搐gif免费好疼| 精品电影一区二区在线| 久久久久亚洲av毛片大全| 亚洲精品日韩av片在线观看 | 日本 欧美在线| 午夜精品久久久久久毛片777| e午夜精品久久久久久久| 亚洲国产中文字幕在线视频| 在线播放国产精品三级| 啦啦啦韩国在线观看视频| 一本综合久久免费| 小说图片视频综合网站| 女同久久另类99精品国产91| 免费av不卡在线播放| 我的老师免费观看完整版| 色在线成人网| 一区福利在线观看| 黄片小视频在线播放| 国产一区二区激情短视频| 岛国视频午夜一区免费看| 丰满人妻一区二区三区视频av | 99久久无色码亚洲精品果冻| tocl精华| 国产精华一区二区三区| 麻豆成人午夜福利视频| 老司机福利观看| 成年人黄色毛片网站| avwww免费| 黄色日韩在线| 精品无人区乱码1区二区| 男女之事视频高清在线观看| 久久精品国产自在天天线| 国产免费男女视频| 国产精品亚洲av一区麻豆| 国产淫片久久久久久久久 | 色综合亚洲欧美另类图片| 一二三四社区在线视频社区8| 国产精品精品国产色婷婷| 免费搜索国产男女视频| 日韩av在线大香蕉| 亚洲欧美日韩高清专用| 桃色一区二区三区在线观看| 色综合欧美亚洲国产小说| 日韩欧美在线二视频| 精品99又大又爽又粗少妇毛片 | 制服丝袜大香蕉在线| 男插女下体视频免费在线播放| 老司机午夜十八禁免费视频| 91麻豆av在线| 久久久久精品国产欧美久久久| 免费在线观看日本一区| 国产精品99久久久久久久久| 黄色成人免费大全| 国产av在哪里看| 高清日韩中文字幕在线| 色综合站精品国产| 青草久久国产| 亚洲七黄色美女视频| 嫩草影院精品99| 国产伦人伦偷精品视频| 日韩高清综合在线| 午夜激情福利司机影院| 老司机午夜福利在线观看视频| 国产高清三级在线| 国产熟女xx| av福利片在线观看| 欧美+亚洲+日韩+国产| 国产一区在线观看成人免费| 日本精品一区二区三区蜜桃| 俄罗斯特黄特色一大片| 老鸭窝网址在线观看| xxxwww97欧美| 日日摸夜夜添夜夜添小说| 国产精品99久久99久久久不卡| 波多野结衣高清无吗| 丰满的人妻完整版| 欧美日韩中文字幕国产精品一区二区三区| 亚洲欧美日韩卡通动漫| 国产麻豆成人av免费视频| 久久伊人香网站| 真人做人爱边吃奶动态| 国产伦在线观看视频一区| 999久久久精品免费观看国产| 人人妻人人澡欧美一区二区| 久久久成人免费电影| 国产一区二区激情短视频| 久久6这里有精品| 很黄的视频免费| 精品人妻一区二区三区麻豆 | 午夜激情欧美在线| 久久久国产精品麻豆| 男女视频在线观看网站免费| 欧美色欧美亚洲另类二区| 99精品在免费线老司机午夜| 国产成+人综合+亚洲专区| 两个人的视频大全免费| avwww免费| 国产黄a三级三级三级人| 老鸭窝网址在线观看| 99热6这里只有精品| 欧美色欧美亚洲另类二区| 亚洲av成人精品一区久久| 精品不卡国产一区二区三区| 亚洲乱码一区二区免费版| 女生性感内裤真人,穿戴方法视频| 国产精品久久久久久人妻精品电影| 又爽又黄无遮挡网站| 18+在线观看网站| 国内精品美女久久久久久| 宅男免费午夜| 日韩欧美免费精品| 麻豆成人午夜福利视频| 日本三级黄在线观看| 一个人看视频在线观看www免费 | 午夜免费激情av| 成年女人毛片免费观看观看9| 免费在线观看日本一区| 变态另类成人亚洲欧美熟女| 亚洲真实伦在线观看| 亚洲熟妇中文字幕五十中出| 日韩欧美免费精品| 狂野欧美白嫩少妇大欣赏| 尤物成人国产欧美一区二区三区| 亚洲最大成人中文| 人人妻,人人澡人人爽秒播| 欧美午夜高清在线| 男女视频在线观看网站免费| 老司机午夜福利在线观看视频| 一本综合久久免费| 久久久久亚洲av毛片大全| 精品久久久久久久毛片微露脸| 午夜精品久久久久久毛片777| 尤物成人国产欧美一区二区三区| 免费看光身美女| 欧美一区二区精品小视频在线| 美女黄网站色视频| 亚洲av第一区精品v没综合| 国产中年淑女户外野战色| 亚洲avbb在线观看| 亚洲欧美日韩东京热| 亚洲欧美日韩无卡精品| 淫秽高清视频在线观看| 亚洲成av人片免费观看| 成人18禁在线播放| 在线十欧美十亚洲十日本专区| 午夜福利18| av在线天堂中文字幕| x7x7x7水蜜桃| 在线观看舔阴道视频| 91久久精品电影网| 色吧在线观看| 国产精品 国内视频| 蜜桃亚洲精品一区二区三区| 一区二区三区国产精品乱码| 午夜两性在线视频| 搡女人真爽免费视频火全软件 | 亚洲无线在线观看| 毛片女人毛片| 99热这里只有是精品50| 小蜜桃在线观看免费完整版高清| 搞女人的毛片| 我的老师免费观看完整版| 国产高清视频在线观看网站| 久久久久国内视频| 亚洲男人的天堂狠狠| 特级一级黄色大片| 亚洲成人精品中文字幕电影| 女生性感内裤真人,穿戴方法视频| 久久九九热精品免费| 淫妇啪啪啪对白视频| 欧美日韩综合久久久久久 | 精品欧美国产一区二区三| 精品国内亚洲2022精品成人| 日本黄大片高清| 岛国视频午夜一区免费看| 午夜福利在线观看吧| 亚洲国产精品久久男人天堂| av福利片在线观看| 美女黄网站色视频| 成年人黄色毛片网站| 国内精品久久久久精免费| 色哟哟哟哟哟哟| 精品乱码久久久久久99久播| 日韩高清综合在线| 国产精品一区二区免费欧美| 午夜福利在线观看免费完整高清在 | 午夜免费激情av| 国产精品 欧美亚洲| 白带黄色成豆腐渣| avwww免费| 夜夜爽天天搞| 一卡2卡三卡四卡精品乱码亚洲| 在线十欧美十亚洲十日本专区| 欧美在线黄色| 一夜夜www| 婷婷丁香在线五月| 在线十欧美十亚洲十日本专区| 欧美在线黄色| 欧美zozozo另类| av视频在线观看入口| 国产亚洲精品一区二区www| 久久久久九九精品影院| 国产精品一及| 午夜福利在线在线| 欧美不卡视频在线免费观看| 亚洲无线观看免费| 波多野结衣巨乳人妻| av黄色大香蕉| 国产精品永久免费网站| 可以在线观看的亚洲视频| 日韩亚洲欧美综合| 日韩有码中文字幕| 嫩草影院入口| 成人无遮挡网站| 精品久久久久久,| 国内少妇人妻偷人精品xxx网站| 日本熟妇午夜| 身体一侧抽搐| 一进一出抽搐gif免费好疼| 日本免费一区二区三区高清不卡| 日韩人妻高清精品专区| 此物有八面人人有两片| 亚洲美女视频黄频| 99热6这里只有精品| 日本黄色片子视频| 免费观看精品视频网站| 白带黄色成豆腐渣| 久久久久国产精品人妻aⅴ院| 欧美三级亚洲精品| 精品国产三级普通话版| 亚洲av电影在线进入| 欧美黑人巨大hd| 日本撒尿小便嘘嘘汇集6| 国产色婷婷99| 香蕉久久夜色| 亚洲精品亚洲一区二区| 草草在线视频免费看| 中文字幕精品亚洲无线码一区| 一a级毛片在线观看| 亚洲熟妇中文字幕五十中出| 国产精品 国内视频| 精品免费久久久久久久清纯| 久久久久国内视频| 久99久视频精品免费| 亚洲国产精品久久男人天堂| 午夜免费男女啪啪视频观看 | 久久久国产成人免费| 欧美不卡视频在线免费观看| 亚洲熟妇中文字幕五十中出| 亚洲精品粉嫩美女一区| 99国产综合亚洲精品| 毛片女人毛片| 色av中文字幕| 看黄色毛片网站| 国产精品1区2区在线观看.| 精品人妻偷拍中文字幕| 搡老岳熟女国产| 99精品欧美一区二区三区四区| 露出奶头的视频| 嫩草影院入口| 桃红色精品国产亚洲av| 精品熟女少妇八av免费久了| 很黄的视频免费| 亚洲国产精品久久男人天堂| 高潮久久久久久久久久久不卡| 国产伦在线观看视频一区| 99久久九九国产精品国产免费| 欧美日韩综合久久久久久 | 动漫黄色视频在线观看| 国产野战对白在线观看| 亚洲av免费在线观看| 国产精品自产拍在线观看55亚洲| 久久精品91无色码中文字幕| 俺也久久电影网| 国产97色在线日韩免费| 内地一区二区视频在线| 人人妻人人看人人澡| av天堂中文字幕网| 成人三级黄色视频| 国产高清视频在线观看网站| 男女视频在线观看网站免费| 日本黄色片子视频| 成人欧美大片| 夜夜看夜夜爽夜夜摸| 精品国产美女av久久久久小说| 国产精品女同一区二区软件 | 欧美大码av| 国产成+人综合+亚洲专区| 在线a可以看的网站| 村上凉子中文字幕在线| 在线免费观看的www视频| 天天添夜夜摸| 日韩亚洲欧美综合| 搡老熟女国产l中国老女人| 伊人久久大香线蕉亚洲五| 亚洲内射少妇av| 欧美xxxx黑人xx丫x性爽| 欧美一级a爱片免费观看看| 不卡一级毛片| 午夜免费观看网址| 一区二区三区免费毛片| 少妇的丰满在线观看| 丁香六月欧美| 9191精品国产免费久久| 身体一侧抽搐| 色在线成人网| 国产精品免费一区二区三区在线| 波多野结衣高清作品| 日韩精品中文字幕看吧| 国产一区二区在线观看日韩 | 欧美黑人巨大hd| 在线播放国产精品三级| 欧美日本视频| 日韩中文字幕欧美一区二区| 国产精品av视频在线免费观看| 男女之事视频高清在线观看| 成人无遮挡网站| 亚洲精品456在线播放app | 综合色av麻豆| 很黄的视频免费| av黄色大香蕉| 欧美成人免费av一区二区三区| 在线观看舔阴道视频| 男人舔奶头视频| 欧美性猛交黑人性爽| 欧美乱妇无乱码| 99热这里只有精品一区| 看黄色毛片网站| 999久久久精品免费观看国产| 搡老岳熟女国产| 欧美日韩乱码在线| 久久久国产成人免费| 99久久精品一区二区三区| 身体一侧抽搐| 亚洲精品美女久久久久99蜜臀| 变态另类丝袜制服| 嫩草影院入口| 最新在线观看一区二区三区| 国产高清三级在线| 欧美绝顶高潮抽搐喷水| 精品国产超薄肉色丝袜足j| 3wmmmm亚洲av在线观看| 国产欧美日韩精品亚洲av| 亚洲欧美一区二区三区黑人| 丰满乱子伦码专区| 天堂动漫精品| 男女床上黄色一级片免费看| 国产欧美日韩一区二区三| 草草在线视频免费看| 男人舔女人下体高潮全视频| 男女午夜视频在线观看| 不卡一级毛片| 99视频精品全部免费 在线| 好看av亚洲va欧美ⅴa在| 一级毛片女人18水好多| 国产aⅴ精品一区二区三区波| 两人在一起打扑克的视频| 亚洲av免费高清在线观看| 午夜福利视频1000在线观看| 色精品久久人妻99蜜桃| 最近最新中文字幕大全免费视频| 国内毛片毛片毛片毛片毛片| 亚洲av美国av| 免费电影在线观看免费观看| 欧美午夜高清在线| 欧美在线黄色| 啦啦啦免费观看视频1| 97人妻精品一区二区三区麻豆| 欧美日本亚洲视频在线播放| 欧美+亚洲+日韩+国产| 亚洲激情在线av| 少妇人妻一区二区三区视频| 琪琪午夜伦伦电影理论片6080| 日韩高清综合在线| 亚洲男人的天堂狠狠| 久久久久国产精品人妻aⅴ院| 97人妻精品一区二区三区麻豆| 岛国在线免费视频观看| 国产精品久久久久久久久免 | 国产精品久久久人人做人人爽| 亚洲欧美一区二区三区黑人| 老司机午夜福利在线观看视频| 无限看片的www在线观看| 国产午夜精品久久久久久一区二区三区 | 欧美日韩瑟瑟在线播放| 一进一出好大好爽视频| 1024手机看黄色片| 国产成+人综合+亚洲专区| 国产蜜桃级精品一区二区三区| www.www免费av| 麻豆一二三区av精品| 国产乱人视频| 国产精品女同一区二区软件 | 熟女电影av网| 国产免费av片在线观看野外av| 在线观看午夜福利视频| 国产成人av激情在线播放| 国产精品久久久久久久电影 | 国产高清videossex| 日本成人三级电影网站| 亚洲美女视频黄频| 一本一本综合久久| 在线国产一区二区在线| 精品国产三级普通话版| 久久天躁狠狠躁夜夜2o2o| 99在线人妻在线中文字幕| 精品久久久久久久毛片微露脸| 国产v大片淫在线免费观看| h日本视频在线播放| 久久精品人妻少妇| 欧美一区二区亚洲| 欧美日韩亚洲国产一区二区在线观看| 成人精品一区二区免费| av中文乱码字幕在线| 91久久精品国产一区二区成人 | 18禁在线播放成人免费| 99精品久久久久人妻精品| xxxwww97欧美| 特级一级黄色大片| 国产免费av片在线观看野外av| 1024手机看黄色片| 在线播放无遮挡| 啦啦啦免费观看视频1| 十八禁人妻一区二区| 亚洲国产日韩欧美精品在线观看 | 久久久久久大精品| 亚洲avbb在线观看| 久久精品91蜜桃| 舔av片在线| 成熟少妇高潮喷水视频| 欧美日韩综合久久久久久 | 亚洲五月天丁香| 成人一区二区视频在线观看| 国产真人三级小视频在线观看| 嫩草影院入口| 国产精品亚洲美女久久久| 天堂√8在线中文| 亚洲国产精品久久男人天堂| 午夜福利高清视频| 狠狠狠狠99中文字幕| 精品久久久久久久久久久久久| 国产精品99久久99久久久不卡| 欧美黄色片欧美黄色片| 中亚洲国语对白在线视频| netflix在线观看网站| 国产免费av片在线观看野外av| 成年免费大片在线观看| 成人特级黄色片久久久久久久| 亚洲狠狠婷婷综合久久图片| 亚洲av电影不卡..在线观看| 国产精品亚洲一级av第二区| 亚洲熟妇熟女久久| 性欧美人与动物交配| 精品国产亚洲在线| 日韩欧美免费精品| 亚洲国产中文字幕在线视频| 99视频精品全部免费 在线| 综合色av麻豆| 日本一本二区三区精品| 午夜福利18| 国产精品精品国产色婷婷| 国产久久久一区二区三区| 99久久久亚洲精品蜜臀av| а√天堂www在线а√下载| 18禁黄网站禁片午夜丰满| 国产乱人伦免费视频| 女生性感内裤真人,穿戴方法视频| 非洲黑人性xxxx精品又粗又长| 少妇高潮的动态图| 麻豆国产97在线/欧美| 成熟少妇高潮喷水视频| 亚洲 国产 在线| 男人的好看免费观看在线视频| 国产熟女xx| 国产精品久久久人人做人人爽| 性欧美人与动物交配| 1000部很黄的大片| 国产精品精品国产色婷婷| svipshipincom国产片| 三级国产精品欧美在线观看| 搡老妇女老女人老熟妇| 亚洲在线观看片| 国内揄拍国产精品人妻在线| 非洲黑人性xxxx精品又粗又长| 日本黄色视频三级网站网址| 日本a在线网址| 国产欧美日韩精品一区二区| 男女做爰动态图高潮gif福利片| 女警被强在线播放| 女同久久另类99精品国产91| 欧美日韩中文字幕国产精品一区二区三区| 精品一区二区三区视频在线观看免费| 国产一区二区激情短视频| 99久久综合精品五月天人人| 亚洲 国产 在线| 免费人成视频x8x8入口观看| 午夜日韩欧美国产| 国产成年人精品一区二区| 97超级碰碰碰精品色视频在线观看| 动漫黄色视频在线观看| 亚洲av第一区精品v没综合| 免费人成在线观看视频色| 男人舔女人下体高潮全视频| 99国产综合亚洲精品| 观看免费一级毛片| 国产真人三级小视频在线观看| x7x7x7水蜜桃| 国产免费一级a男人的天堂| 18美女黄网站色大片免费观看| 99久久九九国产精品国产免费| 久久久精品欧美日韩精品| 成人亚洲精品av一区二区| 成人国产一区最新在线观看| 国模一区二区三区四区视频| 欧美精品啪啪一区二区三区| 国产精品日韩av在线免费观看| 国产精品 欧美亚洲| 婷婷精品国产亚洲av在线| 日本一二三区视频观看| 久久精品亚洲精品国产色婷小说| 99精品欧美一区二区三区四区| 亚洲avbb在线观看| 成人国产一区最新在线观看| 国产成人影院久久av| 免费搜索国产男女视频| 99在线人妻在线中文字幕| 国产精品永久免费网站| 美女免费视频网站| 午夜精品久久久久久毛片777| 中文亚洲av片在线观看爽| 69av精品久久久久久| 欧美+日韩+精品| or卡值多少钱| 国产精品野战在线观看| 国产黄a三级三级三级人| 亚洲欧美日韩高清在线视频| 亚洲,欧美精品.| av黄色大香蕉| 亚洲精品成人久久久久久| aaaaa片日本免费| 国产老妇女一区| 宅男免费午夜| 国产在视频线在精品| 每晚都被弄得嗷嗷叫到高潮| 亚洲av日韩精品久久久久久密| 最近最新中文字幕大全电影3| 一级a爱片免费观看的视频| 国产中年淑女户外野战色| 日本成人三级电影网站| 一个人观看的视频www高清免费观看| www日本在线高清视频| 舔av片在线| 又黄又粗又硬又大视频| 嫩草影院精品99| 亚洲av中文字字幕乱码综合| 变态另类丝袜制服| 啦啦啦观看免费观看视频高清| 天堂动漫精品| 人妻丰满熟妇av一区二区三区| 天堂动漫精品| 窝窝影院91人妻| 长腿黑丝高跟| 99精品在免费线老司机午夜| 在线免费观看的www视频| 99热这里只有精品一区| 3wmmmm亚洲av在线观看| 亚洲男人的天堂狠狠| av国产免费在线观看| 欧美另类亚洲清纯唯美| 亚洲精品日韩av片在线观看 | 久99久视频精品免费| 国产精品综合久久久久久久免费| 欧美日韩一级在线毛片| 国产极品精品免费视频能看的| 国模一区二区三区四区视频| 国产黄片美女视频|